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Abstract 

In present study a Java algorithm to calculate degree distribution and detect network type was presented. Some 

indices, e.g., aggregation index, coefficient of variation, skewness, etc., were first suggested for detecting 

network type. Network types of some food webs reported in Interaction Web Database were determined using 

the algorithm. The results showed that the degree of most food webs was power law or exponentially 

distributed and they were complex networks. Different from classical distribution patterns (bionomial 

distribution, Poisson distribution, and power law distribution, etc.), both network type and network complexity 

can be calculated and compared using the indices above. We suggest that they should be used in the network 

analysis. In addition, we defined E, E=s2-ū, where ū and s2 is mean and variance of degree respectively, as the 

entropy of network. A more complex network has the larger entropy. If E≤0, the network is a random network 

and, it is a complex network if E>0. 

 

Keywords network; food web; type; degree distribution; aggregation indices; entropy; algorithm; Java.  

 

 

1 Introduction 

The food web is a set of species connected by trophic relations. It is an ecological network made of interactive 

species. Biodiversity, ecosystem structure and function, etc., can be represented by food webs. There are two 

kinds of food webs, i.e., the one with autotrophic species as base species and the one with scavenger animals 

as base species (Gonenc et al., 2007). The complexity and trophic levels of food web determine the stability, 

resilience and robustness of the community. An ecosystem resists the extinction of species if its food web is 

complex enough. The species loss in food web would at some extent detriment the stability of ecosystem.  

Food webs have long been the center of ecological studies. They began with text and table expression and 

then linear and spatial expression. As the emerging of large numbers of algorithms and software, the studies of 

network structure are now becoming the focus of food webs. These algorithms and software have been used to 

explore the ecosystem stability and robustness. For example, they are used to study degree distribution, 

connectance and network size (Dunne et al., 2002). Odum (1983) pointed out that the community stability 

could be measured by energy path in the food web. MacArthur (1955) thought that stability may be increased 

by the increase of links in the food web. Pimm et al. (1991) have discussed effects of different models of food 

webs on ecosystem structure, stability and robustness. It was found that the mechanism of evolution and 

population size will affect food web topology (Rossberg et al., 2005). In addition, habitat destruction and 
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climate change are likely to cause the extinction of key species. Once key species extinct, the robustness of 

food web will be profoundly affected (Allesina et al., 2009). 

The networks, including food webs, met in last decade become more and more complex. There are usually 

large numbers of vertices and links in a complex network (Ibrahim et al., 2011; Goemann et al., 2011; Kuang 

and Zhang, 2011; Martínez-Antonio, 2011; Paris and Bazzoni, 2011; Rodriguez and Infante, 2011; Tacutu et 

al., 2011). It is hard to analyze such networks by using classical methods or algorithms. Graph theory, 

optimization, statistics, and stochastic processes, etc., are becoming the scientific basis and effective tools for 

studying complex networks (Ferrarini, 2011; Zhang, 2011a, b; Zhang, 2012). Degree distribution and network 

type is one of the research focuses based on those tools and methods. In this aspect some ecological networks 

have been proved to be scale-free networks (Zhang, 2011a). 

The present study aimed to present a Java algorithm to calculate degree distribution and detect network type. 

Some indices were first suggested by us for detecting network type. Network types of food webs reported in 

Interaction Web Database were determined using the algorithm. 

 

2 Materials and Methods 

2.1 Methods 
Suppose that the portion of nodes with k-degree is pk, the degree will thus be a random variable and its 

distribution is degree distribution. It has found that in the random network, degree distribution is binomial 

distribution, and its limit model is Poisson distribution. In a random network, the majority of vertices have the 

same degree with the average. In the complex network, degree distribution is a power law distribution, and the 

network is called a scale-free network (Barabasi and Albert, 1999; Barabasi, 2009). A property of the 

scale-free network is that the structure and the evolution of network are inseparable. Scale-free networks 

constantly change because of the arrival of nodes and links (Barabasi and Albert, 1999). 

  In present algorithm, in addition to power law distribution, binomial distribution, Poisson distribution, and 

exponential distribution (Zhang, 2012), some other indices and methods were also used to detect network type: 

(1) Skewness. This index is used to measure the degree of skewness of a degree distribution relative to the  

symmetric distribution, for example, the normal distribution (S=0) (Sokal and Rohlf, 1995):  

 

                               S=v∑(di-ū)2/[(v-1)(v-2)s3]. 

 

where ū, s2: mean and variance of degree; v: number of nodes; di: degree of node i, i=1,2,…,v. The smaller the 

skewness is, the more complex the network is. 

  (2) Coefficient of variation. In a random network, the majority of nodes have the same degree as the 

average. The coefficient of variation, H, can be used to describe the type of a network (Zhang, 2007):  

 

H=s2/ū,  

                                      ū=∑di/v, 

s2=∑(di-ū)2/(v-1), 

 

where ū, s2: mean and variance of degree; v: number of nodes; di: the degree of node i, i=1,2,...,v. The network 

is a random network, if H≤1. Calculate χ2=(v-1)H, and if χ1-α
2(v-1)<χ2<χα

2(v-1), the network is a complete 

random network. It is a complex network, if H>1, and to some extent, network complexity increases with H.  

  Here we define E, E=s2-ū, as the entropy of network. A more complex network has the larger entropy. If 

E≤0 the network is a random network and it is a complex network if E>0. 
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    (3) Aggregation index. Network type can be determined by using the following aggregation index (Zhang, 

2007):  

 

                               H=v*∑di(di-1)/[∑di(∑di-1)]. 

 

The network is a random network, if H≤1. Calculate χ2=H(∑di-1)+v-∑di, and if χ2<χα
2(v-1), the network is a 

complete random network. It is a complex network if H>1, and network complexity increases with H.  

The following code is the Java algorithm, netType, to calculate degree distribution and detect network type:  

 
   /*v: number of vertice; d[1-v][1-v]: adjacency matrix to reflect the feature of edges, e.g., dij=dji=0 means no edge between 
vertice i and j; dij=-dji, and |dij|=1, means there is an edge between vertice i and j; dij=dji=2, means there are parallel edges 
between vertice i and j; dii=3 means there is a self-loop for vertex i; dii=4 means isolated vertex; dii=5 means isolated vertex i 
with self-loop. */ 
   public class netType {    
   public static void main(String[] args){ 
   int i,j,v,n; 
   if (args.length!=1)  
   System.out.println("You must input the name of table in the database. For example, you may type the following in the 
command window: java netType nettype, where nettype is the name of table. Graph is stored in the table using two arrays 
listing and was transformed to adjacency matrix by method adjMatTwoArr."); 
   String tablename=args[0]; 
   readDatabase readdata=new readDatabase("dataBase",tablename, 3); 
   n=readdata.m; 
   int a[]=new int[n+1]; 
   int b[]=new int[n+1]; 
   int c[]=new int[n+1]; 
   int d[][]=new int[n+1][n+1]; 
   for(i=1;i<=n;i++) { 
   a[i]=(Integer.valueOf(readdata.data[i][1])).intValue();  
   b[i]=(Integer.valueOf(readdata.data[i][2])).intValue();  
   c[i]=(Integer.valueOf(readdata.data[i][3])).intValue(); } 
   adjMatTwoArr adj=new adjMatTwoArr();  
   adj.dataTrans(a,b,c); 
   v=adj.v; 
   for(i=1;i<=v;i++)   
   for(j=1;j<=v;j++) d[i][j]=adj.d[i][j];    
   netType(v,d); }   
   public static void netType(int v, int d[][]) { 
   int i,j,k,l,m,rr,ty,r;  
   double it,pp,ss,qq,k1,k2,chi,mean,var,hr,h,skew; 
   int deg[]=new int[v+1]; 
   int p[]=new int[v+1]; 
   double fr[]=new double[v+1]; 
   double pr[]=new double[v+1]; 
   for(i=1;i<=v;i++) { 
   deg[i]=0; 
   for(j=1;j<=v;j++) { 
   if (Math.abs(d[i][j])==1) deg[i]++; 
   if ((d[i][j]==2) | (d[i][j]==3) | (d[i][j]==5)) deg[i]+=2; } } 
   for(i=1;i<=v;i++) p[i]=i; 
   for(i=1;i<=v-1;i++) { 
   k=i; 
   for(j=i;j<=v-1;j++) if (deg[j+1]>deg[k]) k=j+1; 
   l=p[i]; 
   p[i]=p[k]; 
   p[k]=l; 
   m=deg[i]; 
   deg[i]=deg[k]; 
   deg[k]=m; } 
   pp=qq=0; 
   System.out.println("Ranks     Vertice     Degrees\n"); 
   for(i=1;i<=v;i++) { 
   System.out.println(i+"  "+p[i]+"  "+deg[i]); 
   pp+=deg[i]; 
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   qq+=deg[i]*(deg[i]-1); } 
   System.out.println(); 
   rr=10; 
   it=(deg[1]-deg[v])/(double)rr; 
   for(i=1;i<=10;i++) { 
   fr[i]=0; 
   for(j=1;j<=v;j++)  
   if ((deg[j]>=(deg[v]+(i-1)*it)) & (deg[j]<(deg[v]+i*it))) fr[i]++; } 
   System.out.println("Frequency distribution of degrees:"); 
   for(i=1;i<=10;i++)  
   System.out.print(deg[v]+it/2.0+(i-1)*it+"  "); 
   System.out.println(); 
   for(i=1;i<=10;i++)  
   System.out.print(fr[i]/v+"  "); 
   System.out.println("\n"); 
   mean=pp/v; 
   ss=0; 
   for(i=1;i<=v;i++)  
   ss+=Math.pow(deg[i]-mean,2); 
   var=ss/(v-1); 
   skew=v/((v-2)*Math.sqrt(var)); 
   System.out.println("Skewness of degree distribution: "+skew+"\n");    
   h=v*qq/(pp*(pp-1)); 
   System.out.println("Aggregation index of the network: "+h); 
   if (h<=1) System.out.println("It is a random network.\n"); 
   if (h>1) System.out.println("It is a complex network.\n"); 
   h=var/mean; 
   System.out.println("Variation coefficient H of the network: "+h); 
   System.out.println("Entropy E of the network: "+(var-mean)); 
   if (h<=1) System.out.println("It is a random network.\n"); 
   if (h>1) System.out.println("It is a complex network.\n"); 
   ty=1;    //Binomial distri., pr= Crn pr qn-r, r=0,1,2,…, n; 
   ss=0; 
   for(i=0;i<=rr-1;i++) ss+=i*fr[i+1]; 
   pp=ss/(v*(rr-1)); 
   qq=1-pp; 
   pr[0]=Math.pow(qq,rr-1); 
   for(i=1;i<=rr-1;i++) pr[i]=(rr-i)*pp*pr[i-1]/(i*qq); 
   chi=xsquare(v, rr, pr, fr); 
   System.out.println("Binomial distribution Chi-square="+chi); 
   System.out.println("Binomial p="+pp); 
   k1=20.09; 
   coincidence(ty, k1, chi); 
   ty=2;  

//Poisson distri., pr = e-λλr/r! , r=0,1,2,… 
pr[0]=Math.exp(-mean); 

   for(r=1;r<=rr-1;r++) pr[r]=mean/r*pr[r-1]; 
   chi=xsquare(v, rr, pr, fr); 
   System.out.println("Poisson distribution chi-square="+chi); 
   System.out.println("Poisson lamda="+mean); 
   k1=20.09; 
   coincidence(ty, k1, chi);  
   ty=3;   //Exponential distri., F(x) =1-e-λx, x≥0 
   chi=0;  
   for(i=1;i<=10;i++) { 
   k1=deg[v]+it/2.0+(i-1)*it; 
   k2=deg[v]+it/2.0+i*it; 
   pp=v*(Math.exp(-k1/mean)-Math.exp(-k2/mean)); 
   chi+=Math.pow(fr[i]-pp,2)/pp; } 
   System.out.println("Exponential distribution lamda="+1.0/mean); 
   k1=20.09; 
   coincidence(ty, k1, chi);  
   powerDistr(v, deg); } 
   public static double xsquare(int v, int rr, double p[], double h[]) { 
   double hk,ss=0; 
   for(int i=0;i<=rr-1;i++) { 
   hk=p[i]*v; 
   if (p[i]==0) hk=h[i+1]; 
   ss+=Math.pow(p[i]*v-h[i+1],2)/hk;} 
   return ss; 
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   }  
   public static void coincidence(int ty, double k1, double ss) { 
   if (ss<=k1)  
   if (ss>=0) { 
   if (ty==1) System.out.println("Degrees are binomially distributed.\n");  
   if (ty==2) System.out.println("Degrees are Poisson distributed.\n");  
   if (ty==3) System.out.println("Degrees are exponentially distributed.\n");  
   if ((ty==1) | (ty==2)) System.out.println("It is a random network"); } 
   if ((ss>k1) & ((ty==1) | (ty==2))) System.out.println("It is likely not a random network\n");  
   if ((ss>k1) & (ty==3)) System.out.println("It is not an exponential network\n");  
   } 
   public static void powerDistr(int v, int x[]) {     
   //Power law distri., f(x)=x-α, x≥xmin 
   int i,j,k,n,r,xmin;  
   double xmax,a,alpha,dd,maa; 
   int xminn[]=new int[v+1]; 
   int xmins[]=new int[v+1]; 
   double z[]=new double[v+1]; 
   double zz[]=new double[v+1]; 
   double cx[]=new double[v+1]; 
   double cf[]=new double[v+1]; 
   double dat[]=new double[10000]; 
   k=1; 
   xminn[1]=x[1]; 
   for(i=1;i<=v;i++) { 
   n=0; 
   for(j=1;j<=k;j++) 
   if (x[i]!=xminn[j]) n++; 
   if (n==k) { 
   k++; 
   xminn[k]=x[i]; } } 
   for(i=1;i<=k-1;i++) xmins[i]=xminn[i]; 
   for(i=1;i<=v-1;i++) { 
   k=i; 
   for(j=i;j<=v-1;j++) 
   if (x[j+1]>x[k]) k=j+1; 
   r=x[i]; 
   x[i]=x[k]; 
   x[k]=r; } 
   for(i=1;i<=v;i++) z[i]=x[v-i+1]; 
   for(r=1;r<=v;r++) { 
   xmin=xmins[r]; 
   n=0; 
   for(i=1;i<=v;i++) 
   if (z[i]>=xmin) { 
   n++; 
   zz[n]=z[i]; } 
   maa=0; 
   for(i=1;i<=n;i++) maa+=Math.log(zz[i]/xmin);   
   a=n/maa;     
   for(i=0;i<=n-1;i++) cx[i+1]=i*1.0/n; 
   for(i=1;i<=n;i++) cf[i]=1-Math.pow(xmin/zz[i],a); 
   dat[r]=0; 
   for(i=1;i<=n;i++) { 
   cf[i]=Math.abs(cf[i]-cx[i]); 
   if (cf[i]>dat[r]) dat[r]=cf[i]; } } 
   dd=1e+100; 
   for(i=1;i<=v;i++)  
   if (dat[i]<dd) dd=dat[i];  
   for(i=1;i<=v;i++)  
   if (dat[i]<=dd) { 
   k=i;    
   break; }       
   xmin=xmins[k];    
   n=0; 
   for(i=1;i<=v;i++) 
   if (x[i]>=xmin) { 
   n++; 
   zz[n]=x[i]; } 
   maa=0; 
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   for(i=1;i<=n;i++) maa+=Math.log(zz[i]/xmin); 
   alpha=1+n/maa; 
   alpha=(n-1)*alpha/n+1.0/n;  
   System.out.println("Power law distribution KS D value="+dd); 
   if (dd<(1.63/Math.sqrt(n))) System.out.println("Degrees are power law distributed, it is a scale-free complex network"); 
   System.out.println("Power law alpha="+alpha);  
   System.out.println("Power law xmin="+xmin); } 
   } 

 

2.2 Data source 

Interaction Web Database (National Center for Ecological Analysis and Synthesis, 2011; http://www.nceas. 

ucsb.edu/interactionweb/) was chosen as the data source of the present study. Interaction Web Database 

contains seven food webs, namely Anemone-Fish, Host-Parasite, Plant-Ant, Plant-Herbivore, Plant-Pollinator, 

Plant- Seed disperser, and Predator-Prey sub-webs. For each web, the species with corresponding inetrspecific 

relationship but not all species in the ecosystem or community, were included. Each of seven food webs was 

used to calculate degree distribution and detect network type. 

For Anemone-Fish web, we used the data of Fautin and Allen (1997) and Ollerton et al. (2007), as indicated 

in Table 3. The data for other webs were chosen as follows:  

Host-Parasite webs: we used the data for Canadian freshwater fish and their parasites (Arthur et al., 1976), 

which were from the investigation to seven water systems. Moreover, the data from Cold Lake (Leong et al., 

1981; 10 hosts and 40 parasites) and Parsnip River (Arai et al.,1983; 17 hosts and 53 parasites) were also used.  

Plant-Ant web: the data of Bluthgen (2004) from tropical rain forests, Australia, were used. There ware 51 

plants and 41 ants in this web. 

  Plant-Pollinator webs: we used a set of data collected from KwaZulu-Natal, South Africa (Ollerton et al., 

2003; 9 plants and 56 pollinators), and the data from Canada (Small, 1976; 13 plants and 34 pollinators) 

  Plant-Herbivore web: the data from Texas, USA (Joern,1979; 54 plants and 24 herbivores) were used. 

  Predator-Prey webs: four sets of data (Berwick, Catlins, Coweeta and Venlaw) were used. The major 

species included algae, fish, arthropods and amphibians. 

  Plant-Seed disperser webs: two sets of data were used. One from a forest in Papua New Guinea (Beehler, 

1983; 31 plants and 9 birds), and one from a tropical forest in Panama (Poulin et al., 1999; 13 plants and 11 

birds). 

A typical raw data in Interaction Web Database is indicated in Table 1. 

 
 

 Table 1 An example of the data of Interaction Web Database. 
Species 

 
Unidentified 

detritus 
Terrestrial 

invertebrates 
Plant 

material 
Achnanthes 
lanceolata 

Unidentified detritus 0 0 0 0 

Terrestrial invertebrates 0 0 1 0 

Plant material 0 1 0 0 

Achnanthes lanceolata 0 0 0 0 
General  information    In this paper, the authors examined the feeding patterns of 
grasshoppers from two arid grassland communities in Trans-Pecos, Texas. The studies took place 
from May until November in 1974 and 1975. 
Date  type  The authors recorded the identities of insect and plant species and their interactions. 
Data are presented as a binary interaction matrix, in which cells with a "1" indicate an interaction 
between a pair of species, and a "0" indicates no interaction.  
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In Table 1, the values 1 and 0 represent having or not having interspecific trophic relationship. The values 

neither 1 nor 0 represent frequencies and these values were transformed to 1 in present study. Table 1 should 

be transformed to the format needed by the Java algorithm above, as indicated in Table 2. 

 

 

Table 2 The data transformed from Table 1. 

ID of Taxon 1 ID of Taxon 2 Value 

1 2 1 

1 3 1 

2 3 1 

2 4 1 

3 4 1 

 

 

3 Results 

The data of Anemone-Fish web is indicated in Table 3. 

 

 

   Table 3 Species and ID of Anemone-Fish web. 

Genera Species ID Genera Species ID 

Amphiprion spp. Akallopisos 1 Amphiprion spp. percula 19 

Amphiprion spp. Akindynos 2 Amphiprion spp. perideraion 20 

Amphiprion spp. Allardi 3 Amphiprion spp. polymnus 21 

Amphiprion spp. Bicinctus 4 Amphiprion spp. rubrocinctus 22 

Amphiprion spp. chrysogaster 5 Amphiprion spp. sandaracinos 23 

Amphiprion spp. chrysopterus 6 Amphiprion spp. sebae 24 

Amphiprion spp. clarkii 7 Amphiprion spp. tricinctus 25 

Amphiprion spp. ephippium 8 Premnas biaculeatus 26 

Amphiprion spp. frenatus 9 Heteractis crispa 27 

Amphiprion spp. fuscocaudatus 10 Entacmaea quadricolor 28 

Amphiprion spp. latezonatus 11 Heteractis magnifica 29 

Amphiprion spp. latifasciatus 12 Stichodactyla mertensii 30 

Amphiprion spp. leucokranos 13 Heteractis aurora 31 

Amphiprion spp. mccullochi 14 Stichodactyla gigantea 32 

Amphiprion spp. melanopus 15 Stichodactyla haddoni 33 

Amphiprion spp. nigripes 16 Macrodactyla doreensis 34 

Amphiprion spp. ocellaris 17 Heteractus malu 35 

Amphiprion spp. omanensis 18 Cryptodendrum adhaesivum 36 

 
 

Table 3 is transformed to the data type needed by the Java algorithm, as indicated in Table 4. 
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   Table 4 A data type of Anemone-Fish web. 

ID of taxon 1 ID of taxon 2 Value ID of taxon 1 ID of taxon 2 Value 

1 27 1 7 32 1 
1 28 1 7 34 1 
1 29 1 8 28 1 
1 30 1 8 30 1 
1 31 1 8 31 1 
1 32 1 9 27 1 
1 33 1 9 28 1 
1 34 1 9 29 1 
1 35 1 9 32 1 
1 36 1 10 29 1 
2 27 1 10 30 1 
2 28 1 10 32 1 
2 29 1 11 27 1 
2 30 1 11 29 1 
2 31 1 11 32 1 
2 32 1 12 27 1 
2 33 1 12 29 1 
3 27 1 12 30 1 
3 28 1 13 27 1
3 29 1 13 33 1 
3 30 1 13 34 1 
3 31 1 14 27 1 
3 33 1 14 28 1 
3 34 1 14 33 1 
4 29 1 15 28 1 
4 30 1 15 32 1 
4 31 1 16 27 1 
4 33 1 16 30 1 
5 27 1 17 29 1 
5 28 1 17 30 1 
5 29 1 18 27 1 
5 30 1 18 28 1 
5 31 1 19 28 1 
5 32 1 20 30 1 
6 27 1 21 27 1 
6 28 1 22 30 1 
6 30 1 23 28 1 
6 31 1 24 29 1 
7 27 1 25 33 1 
7 29 1 26 28 1 

 
 

Some results running the Java algorithm for Anemone-Fish web are as follows:  

 
Skewness of degree distribution: 0.2739383901373063 
Aggregation index of the network: 1.519811320754717 
It is a complex network. 
Variation coefficient H of the network: 3.361428571428571 
It is a complex network. 
Binomial distribution Chi-square=84779.33198479559 
Binomial p=0.2222222222222222 
It is likely not a random network 
Poisson distribution chi-square=462.75941519476396 
Poisson lamda=4.444444444444445 
It is likely not a random network 
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Exponential distribution lamda=0.22499999999999998 
Degrees are exponentially distributed. 
Power law distribution KS D value=0.0 
Degrees are power law distributed, it is a scale-free complex network 
Power law alpha=NaN 
Power law xmin=14 

 
 
  It is obvious that the food web is a complex network. 
  The results for all food webs are listed in Table 5 and 6. 

 
 

      Table 5 Summary of results for calculation of degree distribution and network type. 

 
Anemone-Fish 

web 
Host-Parasite webs 

Plant-Ant 

web 
Plant-Pollinator webs 

Data source 
Anemone 

fish 
Aishihik

Lake 
Cold 
Lake 

Parsnip 
River 

Bluthgen,
2004 

Ollerton 
et al,2003 

Small, 
1976 

Skewness of degree 
distribution 

0.2739 0.2524 0.2822 0.2404 0.1626 0.2065 0.2330 

Aggregation index of 
the network 

1.5198 1.6913 1.7425 1.6709 1.8597 3.1461 1.3843 

Variation coefficient  
of the network 

3.3614 4.0615 3.7425 4.0627 6.3754 7.8742 3.3478 

Binomial distribution 
Chi-square 

84779.33 316459.4 1500517 53631.9 346819.3 156.63 536.45 

Binomial p 0.2222 0.2099 0.1556 0.1905 0.1715 0.0325 0.2577 

Poisson distribution 
Chi-square 

462.759415 538.79 498.22 1661.19 11352.2 1007.7 1197.5 

Poisson lamda 4.4444 4.3333 3.6400 4.5143 6.1957 3.1692 6 

Exponential 
distribution lamda 

0.2249 0.2308 0.2747 0.2215 0.1614 0.3155 0.1667 

Power law distribution 
KS D value 

0 0 0 0 0.1586 0 0 

Power law alpha - - - - - - - 

Power law Xmin 14 15 15 17 6 35 18 

Type of degree 
distribution 

Exponential, 
power law 

Power 
law 

Power 
law 

Power 
law 

Power 
law 

Power 
law 

Power 
law 

Network type 
Complex 
network 

Complex 
network 

Complex 
network

Complex 
network

Complex 
network

Complex 
network 

Complex 
network 

 
 

  From variation coefficient and aggregation index in Table 5 and 6, we can find that all values are greater 

than 1 and all webs are thus complex networks. Plant-Pollinator web (Ollerton et al, 2003) is the most complex, 

seconded by Predator-prey web (Catlins) and Plat-Ant web (Bluthgen, 2004), the complexity of Plant-Seed 

disperser web (Poulin, 1999) is the lowest. It can be fond that the skewness of Plant-Pollinator web (Ollerton 

et al, 2003) is the smallest and its degree distribution is the most skewed, which reveals it is the most complex  

network. 

  The results show that the degree distribution of most of the food webs is power law and exponential 

distribution, and all of the food webs are complex networks. 
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   Table 6 Summary of results for calculation of degree distribution and network type. 

 P-H 
web  

Plant-Seed disperser webs Predator-Prey webs 

Data source Joern, 1979 
Veehler

1983 
Poulin,
1999 

Berwick Catlins Coweeta1 Venlaw 

Skewness of 
degree 
distribution 

0.2261 0.1969 0.3612 0.1735 0.2069 0.2313 0.1918 

Aggregation 
index of the 
network 

1.8139 1.6254 1.2334 1.7743 2.0198 1.8211 1.7875 

Variation 
coefficient H of 
the network 

4.6468 4.8003 2.0656 5.7552 5.6528 4.6157 5.3199 

Binomial 
distribution 
Chi-square 

48066.1 1451.8 898.8 256.2 180662.6 382.9 3897.6 

Binomial p 0.1182 0.2 0.3333 0.1252 0.1043 0.0958 0.1643 

Poisson 
distribution 
Chi-square 

2167.1 1306.7 64.4 8483.6 945.7 1286.7 2241.8 

Poisson lamda 4.4359 5.95 4.4167 6.0759 4.4898 4.3448 5.4203 

Exponential 
distribution 
lamda 

0.2254 0.1681 0.2264 0.1646 0.2227 0.2302 0.1845 

Power law 
distribution KS 
D value 

0 0 0 0 0 0 0 

Power law 
alpha 

- 2.9967 - - - - - 

Power law 
Xmin 

23 6 11 35 27 26 26 

Type of degree 
distribution 

Power law 
Exponential, 
power law 

Exponential,
power law 

Exponenti
al, 
power law

Exponential
, power law

Power law 
Exponential, 
power law 

Network type 
Complex 
network 

Complex 
network 

Complex 
network 

Complex 
network 

Complex 
network 

Complex 
network 

Complex 
network 

   Note: P-H web means Plant-Herbivore web. 
 
 
4 Discussion 

Different from classical distribution patterns (bionomial distri., Poisson distri., and power law distri., etc.), 

both network type and network complexity can be calculated and compared using the indices above, i.e., 

aggregation index, coefficient of variation, skewness, etc. We suggest they should be used in the network 

analysis. 

  Other indices to detect aggregation strength can also be used in network analysis. For example, the Lloyd 

index: 

                                        L=1+(s2-ū)/ū2,  

where ū, s2: mean and variance of network degree. The network is a random network, if L≤1. It is a complex 

network, if L>1, and network complexity increases with L. It is obvious that at certain extent the entropy E, 

defined above, is equivalent to L. 
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