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Abstract 

Rare, but highly connected, hub proteins subdivide hierarchically global networks of interacting proteins into 

modular clusters. Most biological research, however, focuses on functionally defined sub-networks. Thus, it is 

important to know whether the sub-networks retain the same topology of the global networks, from which they 

derive. To address this issue, we have analyzed the protein-protein interaction sub-network that participates in 

the polarized growth of the budding yeast Saccharomyces cerevisiae and that is derived from the global 

network of this model organism. We have observed that, in contrast to global networks, the distribution of 

connectivity k (i.e., the number of interactions per protein) does not follow a power law, but decays 

exponentially, which reflects the local absence of hub proteins. Nonetheless, far from being randomly 

organized, the polarity sub-network can be subdivided into functional modules. In addition, most non-hub 

connector proteins, besides ensuring communications among modules, are linked mutually and contribute to 

the formation of the polarisome, a structure that coordinates actin assembly with polarized growth. These 

findings imply that identifying critical proteins within sub-networks (e.g., for the aim of targeted therapy) 

requires searching not only for hubs but also for key non-hub connectors, which might remain otherwise 

unnoticed due to their relatively low connectivity. 

 

Keywords protein interactions; protein interaction networks; connectivity; topological role; budding yeast; cell 

polarity. 

 

 

1 Introduction 

Previous studies in the biological, social and information sciences have analyzed the large-scale topology of 

complex systems, including global networks of protein-protein interactions. In these networks, hub proteins, 

which are rare proteins with an exceedingly large number of interactions, hold together all the other proteins, 

which have just few interactions (Barabasi and Oltvai, 2004; Martínez-Antonio, 2011; Tacutu et al., 2011). 

Accordingly, the connectivity k is not distributed uniformly, but decays as a power law (Barabasi and Albert, 

1999; Zhang, 2011). Moreover, hubs organize the global networks hierarchically into functional modules of 

densely connected proteins (Ravasz et al., 2002). However, it is unclear whether the same topological 

organization is retained in the functionally and locally defined sub-networks that derive from the global 

networks. 

The issue is important, because biological investigation usually deals with smaller-scale sub-networks 

(Hartwell et al., 1999), i.e., fractions of global networks that are restricted locally (to cell components) and/or 
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functionally (to biological processes). Thus, we asked whether the same topological features are retained, 

when switching from the whole (the network) down to the parts (the sub-networks). 

To answer this question, we have analyzed a sub-network of protein-protein interactions, which is restricted 

locally (to the growing bud) and functionally (to polarized growth), is well defined (in the extensively studied 

model organism Saccharomyces cerevisiae) (Drubin and Nelson, 1996; Bork et al., 2004) and is subdivided 

into functional modules (Drees et al., 2001; Gavin et al., 2006). We have identified a hub-less and non-

hierarchical organization of the polarity sub-network into highly inter-connected modules. 

 

2 Methods 

2.1 Generation of the polarity and random networks 

To generate the polarity network, protein-protein interactions (supported by a published reference) were 

obtained by searching reviews (Pruyne and Bretscher, 2000a, b), articles (Drees et al., 2001; Gavin et al., 2006; 

Collins et al., 2007) and the Saccharomyces Genome Database (Cherry et al., 1997). To generate the random 

network, two series of 117 numbers n each (1≤n≤117) were distributed in a uniform manner, with the numbers 

in each pair of the two series corresponding to pairs of interacting nodes. 

2.2 Network fragmentation 

Network fragmentation was performed as described (Albert et al., 2000). Briefly, nodes were removed 

sequentially and, at each step t, the number n of nodes remaining in the fragments was counted. The size S of 

the largest fragment was expressed as the ratio between n(t) and the initial number of nodes n(t0). Finally, S 

was plotted as function of the fraction f of removed nodes. 

2.3 Clustering analysis and topological roles 

Clustering was performed as described (Rives and Galitski, 2003). Briefly, networks were represented as 

undirected graphs of nodes linked by edges, and each edge was assigned a length of 1. Then, an adjacency 

matrix of all-pairs shortest path distances was subjected to average linkage hierarchical clustering (Eisen et al., 

1998) with uncentered correlation as the similarity metric, using the Cluster 3.0 (de Hoon et al, 2004) and Java 

Tree View 1.0.13 (Saldanha, 2004) programs for hierarchical clustering and visual display of the clustered tree, 

respectively. Cytoscape 2.6.1 (Shannon et al., 2003) was used to visualize the networks. Finally, the 

topological role of each node i was defined by measuring its within-module degree zi and participation 

coefficient Pi, as described (Guimera and Nunes Amaral, 2005). 

 

3 Results and Discussion 

3.1 Exponential distribution of connectivity in the polarity network 

Starting from the global network of protein-protein interactions in S. cerevisiae, a list was made of all the 

interactions among the proteins that contribute to polarized growth in the yeast bud (Online material 1). With 

this list, a sub-network was assembled, which hereafter is referred to as ‘polarity network’. The polarity 

network, which consists of N nodes (117 proteins) and E edges (285 interactions), has average connectivity 

(<k> = 2E/N) of 4.9 edges per node (Fig. 1a inset). For comparison, a random network, with the same <k> as  

the polarity network, was generated by uniformly distributing 285 edges among 117 nodes (Fig. 1b left inset). 

In global networks, the degree distribution P(k), which is the probability that a selected protein has exactly k 

interactions, decays as a power law over several orders of magnitude (Barabasi and Albert, 1999). However, 

when plotting P(k) as a function of k, we observed that both P(k)polarity (Fig. 1a) and P(k)random (Fig. 1b) decay 

exponentially, which is consistent with exponential (rather than power law) distribution. In particular, the 

P(k)polarity curve is fitted by the exponential function 

P(k) polarity = P0 e
-Ak 
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(P0 = 0.233±0.020; A = 0.132±0.046), with an R-squared value of 0.932. In contrast, when fitting the curve by 

a power law function, the R-squared value is 0.708. As the probability of finding a node with exceedingly high 

connectivity is practically prohibited in exponential networks, it follows that hub proteins are absent from the 

polarity network. Remarkably, exponential distribution also characterizes the random network shown in Fig. 

1b, as well as other random graphs (e.g. the Erdös-Rényi model) that follow a Poisson distribution of 

connectivity peaked at <k> (Erdös and Rényi, 1960). This observation, however, does not necessarily imply 

that the polarity network is a random graph. Actually, when fitting the P(k)polarity to a Poisson distribution, we 

obtained a chi-squared value (X2
obs) of 115.6 and P(X2 ≥115.6)<10-20. In contrast, when fitting the P(k)random to 

a Poisson distribution, we obtained a X2
obs value of 1.2 and P(X2 ≥ 1.2) = 0.99, thus indicating that the random 

(but not the polarity) network follows a Poisson distribution. 

Notably, as the interactions used to assemble the polarity network are derived from high-quality data (such 

as published studies and manually annotated databases), it is unlikely that our analysis is significantly affected 

by possible incompleteness (false negatives) and incorrectness (false positives) of the initial data. Actually, 

error analysis confirmed our conclusions about the exponential and non-random nature of the polarity network 

(Online material 2). 

3.2 Removal of the most connected proteins does not cause massive fragmentation of the polarity 

network 

Even though proper hub proteins (with k >> <k>) are absent from the polarity network, the exponential tail of 

P(k)polarity indicates the presence of few nodes with k > <k>. It is known that the hubs play a major role in 

ensuring physical cohesion of the scale-free networks, because these networks become fragmented upon 

removal of even small fractions of the hubs (Albert et al., 2000). Thus, to test whether the highly connected 

(albeit non-hub) proteins might play in the polarity network the same role that the hubs play in scale-free 

networks, we performed a targeted attack, by sequentially removing the most connected proteins in decreasing 

order of connectivity k. As control, we performed a non-targeted attack, which consists of removing the same 

number of nodes as in the targeted attack, but irrespective of the connectivity. We found that targeted removal 

of the highly connected proteins did not cause massive fragmentation of the polarity network (Online material 

3). Specifically, up to about 10% of removed nodes, both targeted and non-targeted attacks caused comparable 

fragmentation of the polarity and random networks. Only with the removal of higher fractions of nodes, 

fragmentation became more obvious in the polarity network under targeted (compared with non-targeted) 

attack, as well as in the polarity (compared with the random) network under targeted attack. 

3.3 The polarity network can be subdivided into protein clusters that correspond to functional modules 

Another role of the hubs (at least in hierarchical systems) consists of organizing networks into clusters of 

nodes (Ravasz et al., 2002). A parameter that quantifies the tendency of each node to form clusters is the 

clustering coefficient C. Specifically, if node a is directly connected to nodes b and c, then Ca is the probability 

that b and c are also directly connected to each other. Compared with the majority of nodes, the hubs of 

hierarchical scale-free networks display not only higher k, but also lower C. As a consequence, C(k), i.e. the 

distribution of C as a function of k, decreases with k and approximates k -1 (Watts and Strogatz, 1998). In 

contrast, in the polarity network, we observed that C(k) does not change with k (Fig. 1c). 

Taken together, the exponential decay of P(k) and the independence of C(k) on k indicate the absence of 

highly-connected and poorly-clustered hubs. On one side, these observations might suggest that the polarity 

network does not display the hierarchical structure of many scale-free systems. On the other side, the average 

clustering coefficient <C>, which characterizes the overall tendency of all nodes to form clusters of nodes, is 

about 10-fold greater in the polarity (0.208±0.022) than in the random (0.027±0.004) network. Thus, in 
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contrast to scale-free networks (Ravasz et al, 2002), the global lack of hierarchy in the polarity network does 

not negate its local organization into clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Distribution of the connectivity and the clustering coefficient. The P(k) of the polarity (a) and random (b) network is 
shown in logarithmic plots and, for the random network, also on a linear plot, to highlight that its distribution is peaked at <k> 
(right inset of b). Both networks are also displayed visually (left insets of a and b), to show that comparable fractions of first 
neighbours (gray) are linked to the most connected nodes (black) in the polarity (30,8%) and random (26,5%) network. The 
independence of C(k) on k in both networks is shown in (c). 
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Clusters of interconnected nodes that perform distinct functions are often referred to as modules (Hartwell et 

al., 1999). To examine whether the polarity network can be subdivided into modules, we deployed a clustering 

method (Rives and Galitski, 2003), which consists of measuring the length l of the shortest path (i.e. the path 

with the smallest number of links) between all pairs of nodes in the network. The method is based on the 

assumption that nodes with similar (i.e. clustered) l profiles are members of the same module. We found that 

the polarity network can be subdivided into five clusters (Fig. 2a and Online material 4) and that the 

subdivision is highly modular, as defined by the Girvan and Newman algorithm, which finds the division of a 

network into modules that maximizes a coefficient Q (Newman and Girvan, 2004). The normalized Qm 

coefficient of the polarity network (0.57) is comparable with the coefficients of highly modular systems, such 

as the transcriptional (0.54), neuronal (0.54) and signalling (0.58) networks (Kashtan and Alon, 2005). 

Furthermore, the clusters correspond to functional modules, as several proteins with a common Gene Ontology 

(GO) annotation (Ashburner et al., 2000) belong to the same protein cluster (Fig 2b and Online material 5).  

3.4 Connecting roles of the polarity proteins 

To reconcile the modularity of the polarity network with the absence of hubs, we hypothesized the existence of 

connectors, i.e. non-hub nodes that link modules (in spite of a relatively low k). To test this hypothesis, we 

examined the connecting role of each protein based on its pattern of intra- and inter-module connections, using 

the within-module degree z and the participation coefficient P, respectively (Guimera and Nunes Amaral, 

2005). In this functional cartography, nodes with z≥2.5 are defined as module hubs and nodes with z<2.5 as 

non-hubs. In keeping with the above findings, only two proteins (i.e. Las17p and Cdc42p) attain a z score that 

is just above the threshold of 2.5 (Fig. 3a). In addition, the coefficient P defines the role of each node in 

connecting to nodes in modules other than its own. In this way, we found that the two module hubs do not play 

a major connecting role. On one side, Las17p is a provincial hub (i.e. a hub with almost all its links within its 

module; P≤0.30). On the other side, Cdc42p is certainly a connector hub (i.e. a hub with many links to most of 

the other modules; 0.30<P≤0.75), but its P coefficient is just above the threshold of 0.30. All the other proteins 

in the polarity network are non-hubs (z<2.5). Among these non-hubs, the vast majority does not play a 

significant connecting role. More than 90% are either ultra-peripheral or peripheral (i.e. nodes with all or most  

links within their module, respectively; P≤0.05 or 0,05<P≤0.62). The remaining non-hub proteins are 

connectors (i.e. nodes with many links to other modules; 0.62<P≤0.80). At variance with the polarity network, 

the random network displayed a different pattern (Fig. 3b). Specifically, we found a 4-fold decrease and a 4.4-

fold increase in the fractions of ultra-peripheral and connector non-hubs, respectively. Thus, the connecting 

roles are not randomly distributed among the proteins of the polarity network, thus unveiling the fundamental 

role of the non-hub connectors in its modular (albeit not hierarchical) organization. 
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Fig. 2 The polarity network can be subdivided into protein clusters that correspond to functional modules. The network was 
analyzed by hierarchical clustering to obtain the tree shown in (a). Columns in (b) correspond to six classes of GO terms (A: 
Exocyst; B: Vesicle-mediated transport; C: Cell cortex, Actin cortical patch; D: Septin ring, Cellular bud neck septin ring, 
Cellular bud neck contractile ring, E: Establishment of cell polarity, Cellular bud site selection, Axial bud site selection; F: Signal 
transduction, Cellular morphogenesis). Fillings indicate that the GO terms that annotate a given protein either are (black) or are 
not (gray) enriched in the protein cluster, to which the annotated protein belongs. Further details can be found in Online material 
5 and Fig. S2. 
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Fig. 3 Connecting roles of the polarity proteins. According to the within-module degree z and participation coefficient P, 
individual proteins in the polarity (a) and random (b) network are assigned to seven different roles of connection. (c) A core of 
connectors links proteins involved in polarized actin assembly. Solid lines indicate direct links between the connectors. Nodes are 
colour-coded as in Fig 2. 
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Biological evidence strengthens the topological significance of the identified non-hub connectors. The eight 

non-hub connector proteins (z<2.5; 0.62<P≤0.80) are Bni1p, Msb3p, Msb4p and Pkc1p (cluster 1), Cmk1p 

(cluster 3), Bud6p and Spa2p (cluster 4), and Pfy1p (cluster 5). As the hub Cdc42p (cluster 2) is a connector 

too, all the five clusters identified above (Fig. 2a) contain at least one connector (Fig. 3c). Noteworthy, eight 

out of nine connectors are directly associated to each other, thus constituting a central core of connection for 

the five clusters, while the ninth connector (Pkc1p) is indirectly linked to the core via a common neighbour 

(Rho1p). In addition, five connectors in the central core (Bni1p, Msb3p, Msb4p, Bud6p and Spa2p), together 

with two neighbours (Bnr1p and Pea2p), are the components of the polarisome, a structure required for the 

polarized organization of actin (Pruyne and Bretscher, 2000b; Tcheperegine et al., 2005). In particular, the 

polarisome provides a docking site for the formin Bni1p, which in turn links the Cdc42p-triggered 

establishment of polarity with the profilin Pfy1p-mediated polymerization of actin (Evangelista et al., 1997; 

Sheu et al., 1998). Thus, the connectors do represent a core of functionally important connections between the 

modules of the polarity network. 

3.5 Final remarks 

In this study, we have shown that the connectivity distribution within a local sub-network does not follow a 

power law, but decays exponentially. While this observation reflects the absence of hubs, it does not imply that 

the polarity network is randomly organized. Rather, we provide evidence that it is orderly subdivided into 

functional modules, with the non-hub connector proteins taking on the functionally-important role of ensuring 

inter-module communication (Guimera and Nunes Amaral, 2005). Notably, from all the proteins of the 

polarity network, this approach has singled out a set of key connectors (mostly members of the polarisome) 

that link and coordinate different events in the establishment of polarity. 

In practice, our findings highlight the usefulness of combining the methods of network clustering (Fig. 2a) 

(Rives and Galitski, 2003) and role attribution (Fig. 3a) (Guimera and Nunes Amaral, 2005) to identify 

important proteins within defined sub-networks, based on their ability to connect modules and not merely on 

their intrinsic connectivity. In a broader perspective, we envision our findings as a new framework for studies 

of defined sub-networks, such as those associated with biological processes and subcellular organelles 

(Rachlin et al., 2006; Goemann et al., 2011; Jains et al, 2011; Rodriguez and Infante, 2011), including the 

junctional complex (Zaidel-Bar et al., 2007; Paris and Bazzoni, 2008; Cirillo and Prime, 2009), as well as 

human diseases (Vidal et al., 2011; Ibrahim et al, 2011). 
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