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Abstract 

Tumorigenesis is a multi-factorial and multi-step process, among which the changes in cell signaling pathways 

play a key role. Up till now there are fewer studies on network structure of tumor signaling pathways. In 

present study the degree distribution was analyzed based on thirty kinds of tumor signaling networks, 

including VEGF-pathway, JNK-pathway, p53-signaling, etc. The results showed that almost all of them were 

scale-free complex networks. Key metabolites in some tumor networks were also described. 
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1 Introduction 

Tumorigenesis is a multi-factorial and multi-step process. Among them, the changes in cell signaling 

pathways play a key role. Complex signaling pathways in a human body cell include a large number of 

ligands, receptors, signaling proteins, and other links, which result in a complex network. Metabolism of 

tumor signaling is also true. Complex signaling pathways constitute different networks and thus affect the 

metabolic processes of the tumor. 

Tumor signaling pathways are mainly divided into six categories: JAK-STAT signaling pathway, p53 

signaling pathway, NF-κB signaling pathway, Ras, PI3K and mTOR signaling pathway, Wnt NF-κB 

signaling pathway and BMP signaling pathway. There are dozens of ligands, receptors and signaling proteins 

associating with the six signaling pathways, and each of them has its own complex metabolic signaling 

pathways. All of them shape a complex and directed network, similar to the various networks reported 

(Ibrahim et al., 2011; Goemann et al., 2011; Kuang and Zhang, 2011; Martínez-Antonio, 2011; Paris and 

Bazzoni, 2011; Rodriguez and Infante, 2011; Tacutu et al., 2011; Zhang, 2011, 2012c) 

JAK-STAT signaling pathway is primarily made of receptor tyrosine kinases, tyrosine kinases JAK and 

transcription factor STAT that involve in cell proliferation, differentiation, apoptosis, immune regulation and 

other important biological processes (Marrer, 2005). 

p53 signaling pathway is a signaling metabolic process based on the gene p53 which has the closest 

relationship with cancer. p53 gene is regulated by a variety of signaling factors (Ho et al., 2006). 

In the NF-κB signaling pathway, NF-κB (Nuclear Factor-kappa B) will specifically bind to the enhancer 

B sequence GGGACTTTCC of kappa light-chain gene of immunoglobulin, and promote the expression of κ 

light-chain gene, thus affect the metabolism of tumor. 

For Ras, PI3K and mTOR signaling way, the key regulatory factors in the Ras and PI3K signaling 
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pathway undergone significant mutations (Kolch, 2002), which affect the metabolism of the downstream 

regulation molecule mTOR and lead to disorders of cell growth and the generation of tumor cells (Stauffer et 

al., 2005). 

    Wnt metabolism has a crucial role in early development and organ formation of animal embryos, and 

tissue regeneration and other physiological processes. Mutations of key proteins in the signaling pathway will 

lead to abnormal activation of signaling and likely induce the occurrence of cancer (Katoh, 2005). 

BMP (Bone Morphogenetic Protein) is an important member in the superfamily of TGF-β 

(Transforming Growth Factor-β). It controls many biological processes, such as tumorigenesis, by regulating 

the activity of a series of downstream genes (Moustakas et al., 2002). 

So far, most studies on tumorigenesis have focused on single metabolic process, mutation induced 

signaling abnormality and tumorigenesis, and key ligands, receptors, signaling proteins in cancer signaling 

pathways. However, there were fewer studies on network structures of tumor signaling pathways (Zeitoun et 

al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                 Fig. 1 VEGF-pathway (Source: www.sabiosciences.com) 

 

 

The most important aspect for network structure is the degree distribution of network (Butts, 2009). 

Degree distribution depicts the extent of complexity of a network. In random networks, the degree distribution 

is binomial distribution and its limit is the Poisson distribution. In a random network, most nodes have the 

same or similar number of connections. In complex networks, the degree distribution is typically a power law 

distribution. These networks are scale-free networks (Barabasi and Albert, 1999; Barabasi, 2009). A property 

of the scale-free network is that the structure and the evolution of network are inseparable. Scale-free networks 
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constantly change because of the arrival of nodes and links (Barabasi and Albert, 1999). In general, the degree 

of a network can be described with various distribution models, like binomial distribution, Poisson distribution, 

exponential distribution, power law distribution, etc (Zhang and Zhan, 2011; Zhang, 2012b).   

In present study, network structure, including network size, degree distribution (Dunne et al., 2002) and 

network type, of 30 tumor signaling networks was analyzed using network type detection algorithm in order 

to provide a deep insight on tumorigenesis and tumor treatment.  

 

 
 

  

                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Fig. 2 The graph for VEGF-pathway 
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2 Material and Methods 

2.1 Data sources  

Above six signaling pathways are closely related to the signaling pathways of 30 kinds of important 

metabolites/steps. The later were collated and interpreted to form a new analytical database. All image 

information for signaling networks were downloaded from SABiosciences 

(http://www.sabiosciences.com/pathwaycentral.php) (Pathway Central, 2012) and Abcam 

(http://www.abcam.com/) (Abcam, 2012). For example, the image of VEGF-pathway is indicated in Fig. 1. 

    In Fig.1, all VEGF-pathway related metabolites/steps, metabolic paths and directions were clearly given. 

The image in Fig. 1 may be further transformed into a clearer graph with nodes and directed connections, as 

indicated in Fig. 2. Each metabolite/step (node) in the graph was given an ID number. The arrows represented 

between-metabolite/step relationships (However, a clear graph may also be drawn by using the programs of 

Arnold et al. (2012) and Zhang (2012a)). 

    In present study, the graphs are undirected graphs, i.e., all connections are undirected connections (they 

are represented by 1). The graph in Fig. 2 was transformed into the data used in netType program (Zhang, 

2012b; Zhang and Zhan, 2011), as indicated in Table 1. 

 

 

Table 1 The data of VEGF-pathway used in netType program 

ID for from 
metabolite/step 

ID for to 
metabolite/step

Relation-
ship 

ID for from 
metabolite/step

ID for to 
metabolite/step 

Relation- 
ship 

1 6 1 14 20 1 

1 7 1 15 31 1 

2 8 1 16 20 1 

2 27 1 17 19 1 

2 35 1 18 22 1 

3 5 1 19 29 1 

3 7 1 20 29 1 

3 9 1 21 23 1 

4 27 1 22 29 1 

4 35 1 23 24 1 

5 11 1 24 25 1 

6 8 1 25 30 1 

6 31 1 25 32 1 

7 17 1 26 23 1 

8 10 1 27 28 1 

9 21 1 28 33 1 

10 14 1 30 33 1 

10 16 1 31 19 1 

10 18 1 31 29 1 

11 13 1 32 29 1 

12 14 1 33 34 1 

12 16 1 34 29 1 

13 15 1 35 26 1 

 

 

98



Network Biology, 2012, 2(3):95-109 

 IAEES                                                                                     www.iaees.org  

    Following Fig. 2 and Table 1, in total 30 signaling networks were organized into the data required. Table 

2 shows the other 28 signaling pathway networks used in present study, besides JNK-pathway and 

VEGF-pathway networks discussed in the following analysis. 

 

 

Table 2 Twenty-eight signaling pathway networks (Source: www.sabiosciences.com) 

akt-signaling BRCA1-pathway 

TNF-Signaling Caspase-Cascade 

ppar-pathway Androgen-Signaling 

p53-signaling PTEN-Pathway 

STAT3-pathway MAPK-Signaling 

PI3K signaling mTOR-Pathway 

Ras Pathway JAK-STAT-Pathway 

Mitochondrial-Apoptosis HIF1Alpha-Pathway 

ErbBfamily-Pathway IGF1R_Signaling 

TGF-Beta pathway Fas-Signaling 

EGF-pathway ERK_Signaling 

Inerferon-Pathway cAMP-Dependent 

Estrogen-Pathway Cellular_Apoptosis 

HGF-pathway  Cyclins+Cell_Cycle_Regulatio 

 
 

2.2 Methods 

Methods used in present study came from Zhang (2012b), Zhang and Zhan (2011). Suppose that the portion of 

nodes with k-degree is pk, the degree will thus be a random variable and its distribution is degree distribution. 

In present algorithm, in addition to power law distribution, binomial distribution, Poisson distribution, 

and exponential distribution, some other indices and methods were also used to detect network type (Zhang 

and Zhan, 2011; Zhang, 2012b):  

(1) Coefficient of variation. In a random network, the majority of nodes have the same degree as the 

average. The coefficient of variation, H, can be used to describe the type of a network (Zhang and Zhan, 2011; 

Zhang, 2012b):  

H=s2/ū, ū=∑di/v, s2=∑(di-ū)2/(v-1), 

where ū, s2: mean and variance of degree; v: number of nodes; di: the degree of node i, i=1,2,...,v. The network 

is a random network, if H≤1. Calculate χ2=(v-1)H, and if χ1-α
2(v-1)<χ2<χα

2(v-1), the network is a complete 

random network. It is a complex network, if H>1, and to some extent, network complexity increases with H.  

As defined in Zhang and Zhan (2011), E=s2-ū, is the entropy of network. A more complex network has 

the larger entropy. If E≤0 the network is a random network and it is a complex network if E>0. 

    (2) Aggregation index. Network type can be determined by using the following aggregation index (Zhang 

and Zhan, 2011; Zhang, 2012b):  

                               H=v*∑di(di-1)/[∑di(∑di-1)]. 

The network is a random network, if H≤1. Calculate χ2=H(∑di-1)+v-∑di, and if χ2<χα
2(v-1), the network is a 

complete random network. It is a complex network if H>1, and network complexity increases with H.  

The Java algorithm, netType (http://www.iaees.org/publications/software/index.asp, BioNetAnaly), was 

used to calculate degree distribution and detect network type.  
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3 Results 

3.1 VEGF-pathway (Matsumoto and Claesson-Welsh, 2001) 

From the statistics in Table 3, we found that ANGIO GENESIS has the most connections. It is likely the most 

significant metabolite/step in VEGF-pathway, seconded by Akt/PKB and Actin Reorganization.  

 

 

Table 3 Degree distribution statistics of VEGF-pathway (collated from Table 1) 

Rank 
Metabolite

/step 
Degree Rank 

Metabolite
/step 

Degree 

1 29 6 19 4 2 

2 10 4 20 5 2 

3 31 4 21 9 2 

4 2 3 22 11 2 

5 3 3 23 12 2 

6 6 3 24 13 2 

7 7 3 25 15 2 

8 8 3 26 17 2 

9 14 3 27 18 2 

10 16 3 28 21 2 

11 19 3 29 22 2 

12 20 3 30 24 2 

13 23 3 31 26 2 

14 25 3 32 28 2 

15 27 3 33 30 2 

16 33 3 34 32 2 

17 35 3 35 34 2 

18 1 2    

 

 

Use the data in Table 1, and run the netType as the following:  

C:\ BioNetAnaly\bin>java netType VEGF 

We thus obtained the results for degree distribution and network type as follows: 

 
Aggregation index of the network: 0.7274247491638796 
It is a random network. 
Variation coefficient H of the network: 0.2704603580562659 
Entropy E of the network: -1.9176470588235297 
It is a random network. 
Binomial distribution Chi-square=82.10062003702488 
Binomial p=0.12063492063492064 
It is likely not a random network 
Poisson distribution chi-square=119.20494737910627 
Poisson lamda=2.6285714285714286 
It is likely not a random network 
Exponential distribution lamda=0.3804347826086957 
It is not an exponential network 
Power law distribution KS D value=0.0 
Degrees are power law distributed, it is A scale-free complex network 
Power law alpha=NaN 
Power law xmin=6 
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    It can be found that the VEGF-pathway network is a random network in terms of aggregation index, 

coefficient of variation and network entropy. Binomial and Poisson distribution fitting results showed that this 

network does not meet the above two distribution patterns. In general, the degree is power law distributed and 

the VEGF-pathway network is most likely a scale-free complex network. 

3.2 JNK-pathway (Himes et al., 2006)  

Following the above procedures, JNK-pathway in Fig. 2 was finally transformed into the data used in netType 

program after each metabolite/step was given an ID (Table 4), as shown in Table 5. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                              Fig. 2 JNK-pathway (Source: www.sabiosciences.com) 
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                                 Table 4 IDs for metabolite/steps in JNK-pathway 

ID Metabolite/Step ID Metabolite/Step 

1 TRAF2 25 MLKs 

2 CrkL 26 MEKK4/7 

3 HPK 27 JNKs 

4 TAK1 28 M3/6 

5 Ras-GTP 29 MKPs 

6 GCKR 30 IRS1 

7 CDC42 31 BCL2 

8 ASK1 32 TCF 

9 c-Raf 33 DCX 

10 GCK 34 MAP1B 

11 Rac 35 Spir 

12 GLK 36 MAP2B 

13 MKK1 37 HSF1 

14 HGK 38 DPC4 

15 PAK 39 Paxillin 

16 MLK3 40 c-Jun 

17 GRB2-SOS-SHC 41 ATF2 

18 GPCR 42 ELK1 

19 PI3K 43 SMAD4 

20 UV and other stress 44 p53 

21 MEKK4 45 NFAT1 

22 POSH 46 NFAT4 

23 p115RhoGEF 47 STAT4 

24 RhoA 48 Gene Expression 

 
 

Table 5 The data of JNK-pathway used in netType program 

ID for from 
metabolite/step 

ID for to 
metabolite/step 

Relation
-ship 

ID for from 
metabolite/step

ID for to 
metabolite/step 

Relation
-ship 

1 6 1 20 11 1 

1 8 1 21 26 1 

1 10 1 22 26 1 

1 12 1 24 13 1 

1 14 1 24 21 1 

2 3 1 23 24 1 

3 4 1 26 27 1 

5 6 1 27 30 1 

5 9 1 27 31 1 

5 7 1 27 32 1 

5 11 1 27 33 1 

5 19 1 27 34 1 

6 13 1 27 35 1 

7 13 1 27 36 1 
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7 15 1 27 37 1 

7 16 1 27 38 1 

7 21 1 27 39 1 

7 22 1 27 40 1 

7 11 1 27 41 1 

7 25 1 27 42 1 

8 13 1 27 43 1 

9 8 1 27 44 1 

10 13 1 27 45 1 

11 13 1 27 46 1 

11 15 1 27 47 1 

11 16 1 28 27 1 

11 21 1 29 27 1 

11 22 1 35 48 1 

11 25 1 36 48 1 

12 13 1 37 48 1 

13 26 1 38 48 1 

14 13 1 39 48 1 

15 13 1 40 48 1 

16 26 1 41 48 1 

17 5 1 42 48 1 

18 7 1 43 48 1 

18 11 1 44 48 1 

18 23 1 45 48 1 

19 5 1 46 48 1 

19 11 1 47 48 1 

20 7 1    

 
 

From the statistics in Table 6, we found that JNKs has the most connections. JNKs is likely the most 

significant metabolite/step in JNK-pathway.  

 

 

Table 6 Degree distribution statistics of JNK-pathway (collated from Table 5) 

Rank 
Metabolite

/step 
Degree Rank 

Metabolite
/step 

Degree 

1 27 21 25 25 2 

2 48 13 26 35 2 

3 11 11 27 36 2 

4 7 10 28 37 2 

5 13 10 29 38 2 

6 5 7 30 39 2 

7 1 5 31 40 2 

8 26 5 32 41 2 

9 21 4 33 42 2 

10 6 3 34 43 2 

11 8 3 35 44 2 

12 15 3 36 45 2 

103



Network Biology, 2012, 2(3):95-109 

 IAEES                                                                                     www.iaees.org  

13 16 3 37 46 2 

14 18 3 38 47 2 

15 19 3 39 2 1 

16 22 3 40 4 1 

17 24 3 41 17 1 

18 3 2 42 28 1 

19 9 2 43 29 1 

20 10 2 44 30 1 

21 12 2 45 31 1 

22 14 2 46 32 1 

23 20 2 47 33 1 

24 23 2 48 34 1 

 

 

Use the data in Table 5 and run the netType. We obtained the results for degree distribution and network 

type as the follows: 

 
Aggregation index of the network: 1.950943396226415 
It is a complex network. 
Variation coefficient H of the network: 4.2170212765957515 
Entropy E of the network: 10.723404255319172 
It is a complex network. 
Binomial distribution Chi-square=1703.3646822209705 
Binomial p=0.0763888888888889 
It is likely not a random network 
Poisson distribution chi-square=564.9845392902733 
Poisson lamda=3.3333333333333335 
It is likely not a random network 
Exponential distribution lamda=0.3 
It is not an exponential network 
Power law distribution KS D value=0.0 
Degrees are power law distributed, it is A scale-free complex network 
Power law alpha=NaN 
Power law xmin=21 

 
 

The results showed that JNK-pathway network is most likely A scale-free complex network. 

3.3 Results for other 28 signaling metabolic networks 

Table 7 indicates the results of network type detection for remaining 28 signaling networks. 

 

 

Table 7 Summary of results for network type detection of 28 signaling networks 

 akt-signaling TNF-Signaling ppar-pathway p53-signaling 

Aggregation index of 
the network 

4.52621596 0.892721519 0.728186145 1.951279528 

Variation coefficient 
 H of the network 

8.485475985 0.7175 0.362282878 3.368872549 

Entropy E  
of the network 

15.74531155 -0.729032258 -1.464387464 5.83107089 
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Binomial distribution 
 Chi-square (χ2) 

7.550775793 185.2217856 61.78265951 636313.367 

Binomial p 0.007662835 0.279569892 0.283950617 0.051282051 

Poisson distribution 
 Chi-square (χ2) 

356.3078645 41.45697612 56.839442 316.086834 

Poisson λ 2.103448276 2.580645161 2.296296296 2.461538462 

Exponential  
distribution λ 

0.475409836 0.3875 0.435483871 0.40625 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α NaN Infinity Infinity NaN 

Power law xmin 32 6 4 17 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 STAT3-pathway PI3K signaling Ras Pathway Mitochondrial-Apoptosis 

Aggregation index of 
the network 

0.868778 1.124764151 1.05614035 1.054945055 

Variation coefficient 
 H of the network 

0.70903 1.354241071 1.12383901 1.146520147 

Entropy E  
of the network 

-0.630435 0.994360902 0.26890756 0.384615385 

Binomial distribution 
 Chi-square (χ2) 

41.00305 31.8895742 2.24869397 50.1063552 

Binomial p 0.157407 0.276803119 0.1015873 0.155555556 

Poisson distribution 
 Chi-square (χ2) 

25.78968 8.993995609 29.3818551 51.19489909 

Poisson λ 2.166667 2.807017544 2.17142857 2.625 

Exponential  
distribution λ 

0.461538 0.35625 0.46052632 0.380952381 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α Infinity Infinity NaN NaN 

Power law xmin 5 9 10 10 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 
ErbBfamily 
Pathway 

TGF-Beta pathway EGF-pathway 
Inerferon 
Pathway 

Aggregation index of 
the network 

0.769231 0.915662651 1.18505218 0.664335664 

Variation coefficient 
 H of the network 

0.382353 0.810810811 1.45577667 0.239819005 

105



Network Biology, 2012, 2(3):95-109 

 IAEES                                                                                     www.iaees.org  

Entropy E  
of the network 

-1.623529 -0.418207681 1.11043771 -1.694117647 

Binomial distribution 
 Chi-square (χ2) 

82.68389 1497.027453 4.67977985 112.6795217 

Binomial p 0.320635 0.239766082 0.04646465 0.380952381 

Poisson distribution 
 Chi-square (χ2) 

62.14559 120.87115 257.481508 208.9204611 

Poisson λ 2.628571 2.210526316 2.43636364 2.228571429 

Exponential  
distribution λ 

0.380435 0.452380952 0.41044776 0.448717949 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α Infinity NaN NaN NaN 

Power law xmin 5 6 14 4 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 
Estrogen 
Pathway 

HGF-pathway BRCA1-pathway Caspase-Cascade 

Aggregation index of 
the network 

2.139322 0.972972973 1.98043326 2.199460916 

Variation coefficient 
 H of the network 

3.650161 0.943629344 3.07851852 3.862349914 

Entropy E  
of the network 

6.089732 -0.115873016 4.31692308 6.742424242 

Binomial distribution 
 Chi-square (χ2) 

15.90759 8414.563824 0.23396135 56.05705936 

Binomial p 0.026005 0.101851852 0.01282051 0.017283951 

Poisson distribution 
 Chi-square (χ2) 

264.2854 40.13860056 125.876825 315.0779746 

Poisson λ 2.297872 2.055555556 2.07692308 2.355555556 

Exponential  
distribution λ 

0.435185 0.486486486 0.48148148 0.424528302 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α NaN NaN NaN NaN 

Power law xmin 20 8 14 21 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 Androgen-Signaling PTEN-Pathway MAPK-Signaling mTOR-Pathway 

Aggregation index of 
the network 

1.079193 1.126506024 1.30956625 0.987677371 

Variation coefficient 
 H of the network 

1.237579 1.328125 1.83094099 0.971794872 

Entropy E  
of the network 

0.695767 0.835227273 2.20629159 -0.063768116 
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Binomial distribution 
 Chi-square (χ2) 

5.065875 71.87522136 197056.514 75.54143044 

Binomial p 0.178571 0.141414141 0.16475096 0.128019324 

Poisson distribution 
 Chi-square (χ2) 

23.78943 29.71517195 100.314801 39.29714189 

Poisson λ 2.928571 2.545454545 2.65517241 2.260869565 

Exponential  
distribution λ 

0.341463 0.392857143 0.37662338 0.442307692 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α NaN NaN NaN NaN 

Power law xmin 10 10 11 9 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 
JAK-STAT-Pathwa
y 

HIF1Alpha-Pathway IGF1R-Signaling Fas-Signaling 

Aggregation index of 
the network 

0.982304 2.090909091 0.81334445 1.47242921 

Variation coefficient 
 H of the network 

0.953231 3.210526316 0.54787879 2.120861459 

Entropy E  
of the network 

-0.121816 4.421052632 -1.0811594 2.629713424 

Binomial distribution 
 Chi-square (χ2) 

306.7507 12.46450871 49.8289811 4.708626886 

Binomial p 0.165375 0.022792023 0.19323671 0.051282051 

Poisson distribution 
 Chi-square (χ2) 

45.76475 170.5548778 35.2204129 314.8308315 

Poisson λ 2.604651 2 2.39130435 2.346153846 

Exponential  
distribution λ 

0.383929 0.5 0.41818182 0.426229508 

Power law distribution 
 K-S D value 

0 0 0 0 

Power law α NaN NaN NaN NaN 

Power law xmin 9 16 7 13 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

A scale-free complex 
network 

 ERK-Signaling cAMP-Dependent 
Cellular-Apoptosi
s 

Cyclins+Cell_ 
Cycle-Regulation 

Aggregation index of 
the network 

2.061591 2.025092672 1.13825609 1.296023564 

Variation coefficient 
 H of the network 

4.004843 3.593795094 1.38308458 1.844537815 

Entropy E  
of the network 

8.413559 6.503844414 1.04761905 2.364705882 
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Binomial distribution 
 Chi-square (χ2) 

23231.23 845.7420426 58.8993924 8474.914866 

Binomial p 0.046296 0.019900498 0.17006803 0.193650794 

Poisson distribution 
 Chi-square (χ2) 

462.1018 595.3938607 57.7338769 102.7538674 

Poisson λ 2.8 2.507462687 2.73469388 2.8 

Exponential  
distribution λ 

0.357143 0.398809524 0.36567164 0.357142857 

Power law distribution 
 K-S D value 

0 0 0 8 

Power law α NaN NaN NaN Infinity 

Power law xmin 23 23 11 8 

Type of  
degree distribution 

Power law Power law Power law Power law 

Network type 
A scale-free complex 
network 

A scale-free complex 
network 

A scale-free 
complex network 

A scale-free complex 
network 

 
 
4 Discussion 

All 30 kinds of tumor signaling metabolic networks are basically scale-free complex networks. Most degree 

distributions are power law distribution and exponential distribution, indicating that a few metabolites/steps 

have high degree, and the degree of the majority metabolites/steps is low. The metabolites/steps with higher 

degree (more connections) are often key metabolites or metabolic processes. 

Our results showed that 11 kinds of networks, including VEGF and ppar, have the coefficient of variation 

of less than 1, and the rest of 19 kinds of networks have coefficient of variation of greater than 1. It 

demonstrates that the 11 kinds of networks are more random than the other 19 kinds of metabolic networks. 

Most studies on degree distribution and structure of networks (Cohen et al., 1990; Pimm et al., 1991; 

Havens, 1992; Martinez, 1992; Zhang, 2011) have focused on food webs and ecological networks. For 

metabolic networks this area is relatively weak and should be strengthened in the future. 

    Due to the limitation of the program we used, we have only made analysis on undirected networks. In the 

future studies, directed networks should be analyzed and more methods and tools should be used to approach 

tumor signaling pathways (Zhang, 2012b). 
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