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Abstract 

This study showed that the network communities with biological significance could be identified by using 

hierarchical local modularity maximum method. 
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1 Introduction 

Many computational studies focus on the building, validating and analyzing biological networks, e.g., gene 

regulatory networks, protein interaction networks, metabolic networks, etc (Barabasi and Oltvai, 2004). 

Among lots of analytical methods, the concept of network communities from complex networks has been 

widely used for decades. In a general way, the study of biological network communities could helpful for 

understanding the structure and function of these networks (Newman, 2006, 2010; Fortunato, 2010). 

Generally speaking, limited network community studies have been achieved for biological networks. 

Almost all of current studies consider biological networks as general complex networks (Ibrahim et al., 2011; 

Kuang and Zhang, 2011; Huang and Zhang, 2012; Zhang, 2012). As a result, the communities obtained are 

often biological insignificance (Ding and He, 2011). However, in present study I herein showed that the 

network communities with biological significance could be identified by using hierarchical local modularity 

maximum (Blondel et al., 2008). 

 

2 Method and Application 

The hierarchical local modularity maximum method is mainly represented by two steps  

(1) Find a local maximum of modularity according to 
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(2) Build a new network whose nodes are the communities.  

Repeating above two steps will generate a hierarchical decomposition of network (Blondel et al., 2008). 

To apply the method, I constructed a metabolite graph model for a recent reconstructed high-quality S. 

aureus metabolic network. I revised the model and extracted the giant strong component (Ding and Li, 2009) 
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for network communities study. It contained 250 nodes and 560 connections. At last, using hierarchical local 

modularity maximum method, I identified 13 communities in the giant strong component of S. aureus 

metabolic network (Fig. 1). 

The modularity in the partition of the giant strong component of S. aureus metabolic network is 0.792. 

The 13 communities are all biologically significant. For example: community 0 mainly corresponded to 

pyruvate metabolism; valine, leucine and isoleucine degradation; community 1 mainly corresponded to bile 

acid biosynthesis, and valine, leucine and isoleucine degradation; community 2 mainly corresponded to 

glycine, serine and threonine metabolism, glyoxylate and dicarboxylate, and folate biosynthesis, etc. See Fig. 2  

for the size distribution of these 13 communities. 

  

 

Fig. 1 The 13 communities in the giant strong component of S. aureus metabolic network (each community is marked by a 
distinct color). 
 

 
Fig. 2 The size distribution of 13 communities in the giant strong component of S. aureus metabolic network. 
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