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Abstract 

Continuous-discrete model of population dynamics is considered in current publication. It is assumed that 

death process of individuals has a continuous nature, and appearences of individuals of new generations are 

observed at fixed time moments. It is also assumed that population has non-overlapping generations, and for 

every generation self-regulative mechanisms have distributed time lag in reaction on population size changing. 

For particular case when death rate of individuals between fixed time moments corresponds to Verhulst’s law, 

it was obtained that various cyclic regimes can be observed in phase space. For various values of model 

parameters the structure of domain in space of parameters, where chaotic dynamic regimes can be realized, is 

described. 

 

Keywords population dynamics; mathematical model; broken trajectories; time lag; reaction; self-regulative 

mechanisms. 

 

 

1 Introduction 

It is possible to point out several main goals of the development of theory of continuous-discrete models of 

population dynamics (differential equations with impulses; Poulsen, 1979; Aagard-Hansen, Yeo, 1984; 

Nedorezov, 1986, 1997; Nedorezov and Nedorezova, 1994, 1995; Il’ichev, 2004; Kulik and Tisdell, 2008; 

Mailleret and Lemesle, 2009; Nedorezov et al., 2010; Nedorezov and Utyupin, 2011, and others). First of all, it 

gives a background for using discrete mathematical models (maps, models with discrete time) for fitting 

empirical datasets, for new and qualitative (from biological point of view) interpretations of discrete model 

parameters (Tonnang et al., 2009, 2010; Nedorezov and Sadykova, 2008, 2010; Nedorezova and Nedorezov, 

2012). It is well-known that discrete models play very important role in description of dynamics of various 

populations and in development of methods of optimal management (Ricker, 1954; Vorontsov, 1978; Isaev et 

al., 2009; Sharma and Raborn, 2011; Griebeler, 2011; Nedorezov, 2012, and others). 

The second, it allows obtaining new discrete models of population dynamics which cannot be obtained 

using traditional ways for discrete models development (Nedorezov and Utyupin, 2011). The third, 

continuous-discrete models give more realistic description of population processes in various cases. For 

example, within the limits of this approach we can get more realistic models for population dynamics in boreal 

zone, for management process of exploited populations etc.  

Time lag in a reaction of regulative mechanisms onto population size changing is one of the basic 

properties of natural regulators. In some ecological theories time lag is marked as main property of population 
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regulators, and pointed out that interaction of population with regulator with respective time lag can lead to 

realization of outbreak regimes (Isaev et al., 1984, 2001, 2009; Berryman, 1981). Our previous publications 

(Nedorezov and Nazarov, 1998, 2000; Nedorezov et al., 1998) were devoted to constructing and analyses of 

continuous-discrete models when population dynamics in current vegetation season depends on averages of 

population sizes in some previous vegetation periods. Current publication is devoted to constructing and 

analysis of model of population dynamics when intra-population regulative mechanisms have time lag within 

the vegetation time interval, and have influence on dynamics of one generation only. 

 

2 Model Description 

Let’s assume that at fixed time moments kt , 01  hconsttt kk , ...2,1,0k , there are the 

appearance of individuals of new generations and death of all individuals of previous generation. It means that 

in considering situation there is non-overlapping generations. Let )(tx  be the population size at time moment 

t , and )0( ktx  be the number of individuals survived to moment kt . If Y  is average productivity of 

individuals then changing of population size at fixed moments kt  can be described with the following 

equation 

           )0()(  kkk tYxtxx .                                              (1) 

Below it is assumed that 0 constY . But in general case it isn’t true, and productivity depends on food 

conditions for individuals during the vegetation period (or part of this period). In particular, it can lead to the 

dependence of productivity of individuals of current generation on food conditions in previous vegetation 

periods (Nedorezov, Nazarov, 1998, 2000).   

On every time interval ),[ 1 kk tt   population dynamics will be described with following differential 

equation  

  )(xR
dt

dx
 .                                                             (2) 

In equation (2) )(R  is the intensity of death rate of individuals,   is an average of individuals of current 

generation on time interval ),[ 1 ttk : 
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In biggest part of mathematical models of isolated population dynamics it is assumed (Verhulst, 1838; Volterra, 

1931; Smith, 1974; Nedorezov, 1986, 1997 and many others) that function R  satisfies the following relations 

  00 R , 0
d

dR
, )(R .                                              (3) 

In (3) )0(R  is Malthusian parameter (in considering situation )0(R  is intensity of death rate when 

population size is rather small). Increasing of value of function R  with increasing of amount of   

correlates with strengthening of influence of intra-population self-regulative mechanisms on population 

dynamics. Population size changing is graphically presented on Fig. 1. 
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      Fig. 1 Population size changing in time. 

 

 

Thus, introduced time lag into model can be interpreted as indirect description of competition between 

individuals for food resource. This assumption and interpretation are valid if population fluctuations are not 

strong enough. And this assumption is truthful for various groups of insects in boreal zone (for example, for 

indifferent species and for various prodromal species; Isaev et al., 1984, 2001, 2009). But this assumption is 

not valid for prodromal species with sufficient big fluctuations of population size and for outbreak species – 

for such species we can observe dependence of population birth rates on conditions of population sizes in 

previous vegetation periods. 

 

3 Properties of Model (1)-(3) 

(1) For all non-negative initial values of population size solutions of model (1)-(3) are non-negative too: if 

0)0( 0  xx  then for all 0k  0kx . 

(2) All trajectories of model (1)-(3) are bounded, and it is possible to point out constant C , 0 constC , 

with the following property: if Cx )0(  then Cxk   for all 0k . 

(3) If the following inequality 

hReY )0(  

stationary state 0 is global stable equilibrium of considering model (condition of population extinction). If the 

inverse inequality is truthful origin is unstable stationary state: in such a condition population cannot extinct 

for all initial values of its size.  
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Fig. 2 Bifurcation diagram for model (4) obtained for the following values of model parameters: 2.0 , 4.0 , 
1h . Ordinate line: coordinates of stable attractors; abscissa line: values of coefficient of productivity 

 

(4) For particular case when  R  model (1)-(3) can be presented in the following form  
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In Fig. 2, there is the bifurcation diagram for model (4) which was obtained for 2.0 , 4.0 , 

1h , 1600  Y . As we can see from this picture, if coefficient of productivity Y  is rather small 

population eliminates for all initial values of population size. Increase of coefficient Y  leads to appearance of 

non-trivial stationary state, and population size stabilizes at this level at positive initial values. Further 

increasing of coefficient Y  leads to appearance of stable fluctuations: at initial stages we can observe stable 

cycles of the lengths 2, 4, 8 etc (Fig. 2). When coefficient Y  is big enough we can observe a stable cycle of 

the length 2 again.  

It is important to note that observed complicated dynamical regimes were appeared in a result of existence 

of time lag in a reaction of self-regulative mechanisms. As it was proved before (Nedorezov and Nedorezova, 
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1995), if )(xRR   and satisfies to conditions (3) there are no cyclic regimes in a set of model of (1)-(3) 

type.  

 

 

Fig. 3 Behavior of Lyapunov characteristics for 2.0 , 4.0 , 1h . 

 

In Fig. 3 there is the graphic of changing of Lyapunov characteristics with respect to coefficient of 

productivity (for the same values of model parameters 4.0,2.0   , 1h ) 
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where f is the function in right-hand side of equation (4), 'f  is a derivative of function f . As we can see 

from this picture for determined values of model parameters there is exponential divergence of model 

trajectories (positive values of Lyapunov characteristics are observed on the picture). Thus, for concrete values 

of parameters the chaotic behavior of trajectories can be observed.  

Theorem (Diamond, 1976): Let I  be a set in NR  and NRIf :  is a continuous mapping. Suppose 

that there is a nonempty compact set IX   satisfying the conditions 

(1) IXfXfX  )()( )2( , 

(2)  )(XfX . 

Then 

For every ...3,2,1k  there is a k -periodic set in I ; 

There is an uncountable set IS   containing no periodic points and satisfying the following relations 

 SSf )( ; 

 for arbitrary two different points Sp  and Sq  we have 

0)()( )()(
______

lim 


qfpf kk

k

. 

 for every point Sp  and every periodic point Iq  we have 
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0)()( )()(
______

lim 


qfpf kk

k

. 

In Diamond’ theorem )()( kf  is k th iteration of map f . From this theorem we can conclude if 

conditions 1 and 2 are truthful (for map determined by the relations (1)-(3)) then in phase space of model 

chaotic trajectories are observed. Results of numerical calculations with model (4) are presented on figures 4 

and 5. 

 

 

 

Fig. 4 Structure of the plane ),( Y  at 4.0  and 1h . In domain 1  conditions of Diamond’ theorem are 

truthful; in 2  conditions of theorem are not truthful.  

 

 

For the situation presented on fig. 4 we can conclude that for fixed coefficient of productivity Y  increase 

of intensity of death rate leads to stabilization of system behavior – increase of value of   leads to 

disappearance of chaotic trajectories. At the same time for every fixed value of parameter   increase of 

individuals productivity leads to destabilization of system behavior – increase of parameter Y  leads to 

appearance of chaotic trajectories in phase space.  

It is important to note that boundary between domains 1  and 2  (Fig. 4) is below the line 

)(Ln Y  which is the boundary for the domain of population elimination. Thus, for every fixed value of 

Y  increase of death coefficient   leads to impossibility for the realization in phase space of chaotic 

trajectories, and after that (for big values of parameter  ) the regime of non-conditional elimination of 

population is observed in phase space (elimination for all possible initial values of population size). 

 

 

Fig. 5 Domain 1  (colored by black) where conditions for Diamond’ theorem are truthful. Parameters 1h  and 

190Y . 
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In Fig. 5 there is the structure of the plane ),(   for 1h  and 190Y . Boundary between sets 

1  and 2  are very complicated, and it doesn’t allow giving a description of role of the parameter   in a 

process of population regulation. Anyway, it allows us to conclude that increase of parameter   leads to the 

decrease of the interval of parameter   changing where chaotic regimes can be observed.  

 

4 Conclusion 

As it was proved before (Nedorezov and Nedorezova, 1995), if regulative mechanisms haven’t time lag in their 

reaction onto population size changing, and productivity of individuals is constant there are no oscillation 

regimes for population, and population stabilizes asymptotically at unique level for all positive initial values. If 

regulative mechanisms have a time lag chaotic and oscillation regimes can be observed for population even 

with constant productivity.  
Constructing of models with discrete time is based on the assumption that coefficient of population birth 

rate (it is determined as relation of population sizes or densities of two nearest generations) can be presented as 

rather simple function with respect to population size. In most cases investigators present this coefficient as 

simplest monotonic decreasing function (Nedorezov and Utyupin, 2011) with obvious biological interpretation 

of model parameters. All classic discrete models of population dynamics were constructed under these 

assumptions. 

But very often investigators meet with serious problems of model parameters interpretation. In particular, 

if parameter was announced as a characteristics of influence of intra-population self-regulative mechanisms 

and its increasing corresponds to strengthening of these mechanisms (i.e. coefficient of birth rate is smaller for 

the same value of population size), then natural question arises: what concrete biological mechanism is on the 

base of this situation (increasing of value of parameter)? It can be observed, for example, in the results of 

decreasing of surviving of individuals during the winter time or in a result of strengthening of intra-population 

competition among individuals. Within the framework of discrete model it is impossible to give an answer in 

principle. 

At the same time using of continuous-discrete models of the type (1)-(3) or (4) allows for investigators to 

separate all regulative mechanisms, and finally to give an answer on pointed out question. Moreover, within 

the framework of model (1)-(3) where every parameter has its own biological sense and respective 

interpretation, we can get very complicated models with discrete time (like model (4)) which doesn’t 

practically allow giving biological interpretation of model parameters. In these discrete models parameters are 

complicated and depend on characteristics of various population mechanisms.  
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