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Abstract 

The knowledge of the mechanisms that shape biodiversity–stability relationships is essential to understand 

ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss 

and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant 

networks: symbiotic (ants and myrmecophytes) and nonsymbiotic (ants and plants with extrafloral nectaries). 

Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new 

approach. For this, I used models based on simulations of cumulative removals of species from the network at 

random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic 

network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic 

network tends to be functionally redundant and more robust to species extinction. The difference for food 

resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I 

contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes 

in facultative and obligate mutualisms. 
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1 Introduction 

One of the central goals in biological conservation is to understand how different ecological mechanisms shape 

biodiversity (Van Jaarsveld et al., 1998; Loreau et al., 2001; Groom et al., 2006). The recent increases in 

species extinction rates have increased the researcher’s interest as to how these losses may affect ecosystems 

functioning and help us in management actions towards species and ecosystem conservation (Casey and Myers, 

1998; Berglind, 2000; Stuart et al., 2004; Jones et al., 2007). However, most studies have focused only on 

species loss and ignore loss of species interactions (Janzen, 1974; Memmott et al., 2007; Dyer, 2010; Blüthgen, 

2012). Ecological interactions have an important role in the structure and stability of populations and 

communities over space-time (Janzen, 1974; Burslem et al., 2005; Del-Claro and Torezan-Silingardi, 2009; 

Dyer et al., 2010; Dormann, 2011; Nedorezov, 2011; Zhang, 2011; Elsadany, 2012; Zhang, 2012a, 2012b). 

Thus, understanding how and why these loss of species interactions occur is important for our current 

knowledge about the ecological dynamics of interacting species (Wilmers, 2007; Kaiser-Bunbury et al., 2010; 

Pocock et al., 2012). 

Ecological interactions are increasingly at risk from local and global extinction as a consequence of 

disturbances caused by human activities, including habitat loss, altered land use, introduction of alien species 
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and climate change (Kearns et al., 1998; Biesmeijer et al., 2006; Zhang et al., 2006; Sayadi and Sayyed, 2011; 

Zhang and Chen, 2011; Zhang and Liu, 2012; Zhang and Wu, 2012; Zhang and Zhang, 2012). Recently, 

studies about ecological networks have provided important insights into mechanisms that contribute to the 

stability and structural organization of species interactions at community level (Medan et al., 2007; Morales 

and Vázquez, 2008; Nielsen and Bascompte, 2007; Rezende et al., 2007; Stang et al., 2007; Vázquez et al., 

2007, 2009; Zhang, 2011; Zhang, 2012a). In mutualistic networks, the extinction of one of the interaction 

partners can lead to coextinction of the other partner, and it has important consequences for ecological system 

dynamics (Wilson, 1992; Solé and Montoya, 2001; Dunne et al., 2002; Memmott et al., 2004; Dorman, 2011; 

Blüthgen, 2012). The extinction risk of an organism depends on the number of interactive partners, as 

organisms with higher number of partners are more robust to extinction (Ashworth et al., 2004; Memmott et al., 

2004). Moreover, the specialization level of the organism also influences the whole ecological and 

evolutionary dynamics of the system (Ashworth et al., 2004; Memmott et al., 2004; Vázquez and Simberloff, 

2002; Stang, 2007). A specialist interacting with a generalist is less prone to extinction (Melian and Bascompte, 

2002; Memmott et al., 2004), and the loss of specialized interactions can destabilize the system (Bascompte et 

al., 2005; Bascompte et al., 2006; May, 1973; McCann et al., 1998; Kokkoris et al., 1999; Neutel et al., 2002). 

A good system in which to study questions about coextinction in mutualistic networks is the ant-plant 

mutualism. Ants and plants can interact positively in different ways, from facultative to highly specialized 

relationships (Rico-Gray and Oliveira, 2007; Dáttilo et al., 2009a). In this paper, I used as a model the 

symbiotic and nonsymbiotic ant-plant interactions to study the loss of interactions on mutualistic networks. In 

both kinds of interactions ants defend the plants against potential herbivores (Vasconcelos, 1991; Del-Claro et 

al., 1996; Oliveira et al., 1999; Rico-Gray and Oliveira, 2007). In symbiotic ant-plant interactions, plants 

known as myrmecophytes provide nesting sites in cavities called domatia, and, often food to their resident ant 

colonies (Benson, 1985; Mckey and Davidson, 1993; Leroy et al., 2008). On the other hand, in nonsymbiotic 

ant-plant interactions, plants produce nutritious liquid in their extrafloral nectaries for ants (Baker et al., 1978; 

Rico-Gray and Oliveira, 2007). In this case, as the resource offered by plants is seasonal over space-time, the 

ants do not have "fidelity" of foraging on the same plant, and therefore the interactions tend to be less 

specialized (Rico-Gray et al., 1998; Díaz-Castelazo et al., 2004; Schoereder et al., 2010). In contrast to 

nonsymbiotic ant-plant interactions that have a variety of interchangeable partners, both myrmecophyte and 

ants are highly specialized, involving only one or a few partners (Benson, 1985; Blüthgen et al., 2007; 

Guimarães et al., 2007). In some cases, the specialization degree between ants and myrmecophytes is so high, 

that ant queens use volatile cues to discriminate their host-plants from nonmyrmecophytic species at the time 

of colonization (Edwards et al., 2006; Dáttilo et al., 2009b). 

Here, I hypothesize that although the interaction between ants and myrmecophytes is extremely specialized 

and compartmentalized (Benson, 1985; Fonseca and Ganade, 1996; Guimarães et al., 2007), the symbiotic 

ant-plant networks are more vulnerable to species extinction compared to nonsymbiotic ant-plant networks. 

Moreover, I expected that the difference in natural history of symbiotic and nonsymbiotic ant-plant 

interactions could generate differences in the topological structure of both networks. In order to test my 

hypothesis, I used databases from literature about the frequency of interactions of symbiotic and nonsymbiotic 

ant-plant networks in two tropical rainforests. 

 

2 Material and Methods 

2.1 Datasets 

In literature, there are few ecological datasets about ant-plant interactions based on the frequency of partner 

interactions (quantitative data). Because of this, I only used two datasets in this study from literature of 
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symbiotic and nonsymbiotic ant-plant networks. The symbiotic study of ant-plant interactions was carried out 

by Davidson et al. (1989) from September through November in 1985 and 1986 in the Amazon tropical 

rainforest at the Parque Nacional Manu, Madre de Dios, Peru (11º52’ S, 71º22’ W). The authors walked 4.800 

m of trails and recorded the occurrence of different ant species in all myrmecophyte individuals found. The 

nonsymbiotic study was carried out by Blüthgen et al. (2004) between September 1999 and May 2002 in the 

rainforest at the Australian Canopy Crane in Cape Tribulation, Far North Queensland, Australia (16º07’ S, 

145º27’ E), including patches of open secondary forest. The authors collected ants consuming nectar in 

extrafloral nectaries during the day and night. Observed plants were haphazardly selected and irregularly 

distributed throughout the forest. 

2.2 Network topology  

In order to describe the network topology of both nonsymbiotic and symbiotic ant-plant networks, I calculated 

the following metrics: links per species, network specialization, modularity and nestedness. I calculated the 

level of specialization networks using the specialization index (H2’) [ranges from zero (extreme generalization) 

to one (extreme specialization)]. This index is mathematically derived from the Shannon entropy, and it is 

based on the deviation from the expected probability distribution of the interactions (Blüthgen et al., 2006). 

The index is robust to changes in sampling intensity and the number of interacting species (see more details 

about this index in Blüthgen et al., 2006, 2007). The bipartite graphs and all metrics were made in bipartite 

packpage (Dormann et al., 2009) using the R-Project software version 2.15.0 (R Development Core Team, 

2005). 

I calculated the modularity of both networks using the modularity index M (range 0-1). This index 

estimates the degree at which groups of species (ants and plants) interact more among each other than with 

species in other groups in the network (Newman and Girvan, 2004). High values of M indicate that the ants 

and plants form modules that are semi-independent of other interactions within the network (Olesen et al., 

2007). I tested the significance of index M for each network through 1000 simulated networks generated by 

Null Model II (Bascompte et al., 2003), in order to assess whether the value of M observed in the empirical 

network is higher than expected for networks of equal size and with similar heterogeneity in interactions 

among species. In this null model, the probability of an interaction occurring is proportional to the level of 

generalization (degree) of plant and ant species (Bascompte et al., 2003). I made the null model network 

through a routine in MATLAB, and I calculated the M using the software Netcarto (Guimerà and Amaral, 

2005). Although this index is used for bipartite network, my null models control any potential effects of 

bipartite structure on modularity (Pires et al., 2011). 

I also used the NODF index (Nestedness metric based on Overlap and Decreasing Fill) to estimate the 

nestedness value of networks, using ANINHADO software (Guimarães and Guimarães, 2006). This metric is a 

much better nestedness metric than others and less prone to type-I statistical error, since it is based on the 

nestedness of all pairs of columns and rows in the matrix (Almeida-Neto et al., 2008). To assess if the 

nestedness value observed was higher than expected by random interaction patterns, I tested the nestedness of 

each network with 1000 networks generated by Null Model II. 

2.3 Robustness to extinctions 

I calculated the robustness of symbiotic and nonsymbiotic ant-plant networks to species extinction in both 

trophic levels (plants and ants) based on cumulative removals of species from the network at random (Burgos 

et al., 2007). Initially, I removed one species from one trophic level (e.g. ants), and when species from the 

other trophic level (e.g. plants) were connected only to the initial removed species, they was also removed 

from the network, indicating secondary losses. Afterwards, I was removing randomly all remaining species 

until all species from the trophic level chosen were removed (Mello et al., 2011). For more information about 
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this procedure, please see Dormann et al. (2009). Moreover, I calculated the area under the extinction curve (R) 

proposed by Burgos et al. (2007) to measure the robustness of networks, where R= 1 corresponds to a very 

slow decrease in the curve until the point at which almost all species of one trophic level are eliminated (more 

robust network), and R= 0 corresponds to a very fast decrease in the curve as soon as any species is lost (less 

robust network). I ran 100 randomizations for each network to simulate the species removals. I chose the R 

index because it is more robust and it is not sensitive to the shape of the curve when compared to the index 

proposed by Memmott et al. (2004), called Attack Tolerance Curve (ATC). 

 

3 Results 

Both networks studied here had different numbers of interacting species. The symbiotic network had 8 plant 

species and 18 ant species, while the nonsymbiotic network had 51 plant species and 41 ant species (see Fig. 

1A-B). The nonsymbiotic network also had approximately four times more links per species (3.097) than the 

symbiotic network (0.807). Additionally, nestedness was higher in the nonsymbiotic network (NODF= 22.11) 

than in the symbiotic network (NODF= 15.96). Nonsymbiotic networks exhibited a significantly nested 

topology (P= 0.01). However, the nestedness value observed in symbiotic network was more equal than 

expected by random patterns of interaction (P= 0.999). 

Symbiotic ant-plant network was more specialized (H2’= 0.926) than the nonsymbiotic network (H2’= 

0.193). In both networks, I did not observe significantly higher modularity than expected by the heterogeneity 

of interactions (Nonsymbiotic: P= 0.999; Symbiotic: P= 0.151). However, there was lower modularity in the 

nonsymbiotic network (M= 0.302) than in the symbiotic network (M= 0.763). 

The robustness to cumulative extinctions had different patterns in nonsymbiotic and symbiotic ant-plant 

networks (see Fig. 2). The simulations of cumulative removals of species showed that the nonsymbiotic 

network is very robust for both removals of plant and ants than the symbiotic network, since their extinction 

curves declined more slowly. The robustness of the nonsymbiotic network was relatively high, both for plants 

(R= 0.680) and ants (R= 0.773) (see Fig. 2A-B). However, in the symbiotic network, the robustness was low 

both for plants (R= 0.449) and ants (R= 0.446) (see Fig. 2C-D). 
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Fig. 1 Bipartite graphs of (A) symbiotic and (B) nonsymbiotic ant-plant networks. Symbiotic network represents mutualistic 
interaction between ants and myrmecophytes plants (database: Davidson et al., 1989). Nonsymbiotic network represents the 
mutualistic interactions between ants and plants with floral and extrafloral nectaries (database: Blüthgen et al., 2004). The nodes 
on the left represent different plant species, and the nodes on the right correspond to ant species that interact positively with the 
plants. Lines, also called "links", connect positively interacting species. 
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Fig. 2 Robustness to cumulative species removal of (A) plants and (B) ants in symbiotic network (database: Davidson et al., 
1989), and (C) plants and (D) ants in nonsymbiotic network (database: Blüthgen et al., 2004). 

 

 

4 Discussion 

Currently, thousands of species become extinct each year and the role of most of these species in their 

ecosystems will hardly ever be understood (Röckstrom et al., 2009; Lee and Jetz, 2011; Wilson et al., 2011). In 

megadiversity regions (i.e., tropical forests) many species depend on one another during their ontogeny and the 

loss of one partner can lead to coextinctions, which represents the irreplaceable loss of evolutionary history of 

species interacting (Boucher et al., 1982; Stachowicz, 2001; Tillberg and Breed, 2004). Here, I showed that 

symbiotic networks are less robust for both ants and plants species extinction compared to nonsymbiotic 

networks. They can generate different influences on the ecological and evolutionary dynamics of ant-plant 

132



Network Biology, 2012, 2(4):127-138 

 IAEES                                                                                     www.iaees.org  

interaction. Moreover, I also showed the topology structure of symbiotic and nonsymbiotic ant-plant networks 

differ fundamentally in the interactions pattern in tropical forests. 

Symbiotic network showed a high level of specialization and modularity. These results corroborate with 

previous studies where the authors showed that symbiotic ant-plant networks are formed by isolated groups of 

species (Fonseca and Ganade, 1996; Blüthgen et al., 2007; Guimarães et al., 2007). However, the results 

demonstrated that there was low specialization and modularity in nonsymbiotic networks. The difference in 

specialization and modularity of these networks is possibly due to difference in the intimacy degree of 

ant-plant interactions. In symbiotic ant-plant interactions, the ants obligatory inhabit myrmecophytes, and 

during their ontogeny the number of overlapping partners is practically non-existent (Benson, 1985; Fonseca 

and Ganade, 1996; Heil and McKey, 2003). In nonsymbiotic interactions nectar is a seasonal resource 

(Rico-Gray et al., 1998; Díaz-Castelazo et al., 2004; Blüthgen et al., 2007; Schoereder et al., 2010). Thus, 

when a plant does not secrete nectar, the ants can use other resources available on foliage. Therefore, this kind 

of ant-plant interaction is less specialized and facultative (Schoereder et al., 2010). The ant's ability to change 

of a nectar possibly occurs because the physiological and nutritional requirements of ants that feed on EFNs 

are very similar (Blüthgen et al., 2007). 

In my results, even where the nestedness was not significant in symbiotic network, the nonsymbiotic 

network was more nested. It is known that nonsymbiotic ant-plant networks are a lot more nested that 

symbiotic network, and only 15.38 % of the symbiotic network was significantly nested. (Guimarães et al., 

2007). Moreover, according to Bastolla et al. (2009) the nested pattern in mutualistic networks reduces 

interspecific competition enhancing the number of coexisting species. Thus, as the nonsymbiotic network is 

more nested than the symbiotic network it is expected that the nested pattern of nonsymbiotic networks could 

also be generated by the low level of specialization of ant-plant interaction. 

Several studies have showed the role of functional redundancy on the stability of ecological communities 

(Walker, 1992; Rosenfeld, 2002; Petchey et al., 2007; Joner et al., 2011). Based on the insurance hypothesis 

(Yachi and Loreau, 1999), systems with high functional redundancy are more resilient to disturbances (Walker, 

1995; Naeem, 1998; Fonseca and Ganade, 2001). This is because different species perform similar roles in 

ecosystem function, and when a species is extinct other species "dampens" the system (Lawton and Brown, 

1993; Rosenfeld, 2002; Mouchet et al., 2010). Here, due to high generalization of the nonsymbiotic network, it 

is expected that these networks are functionally redundant, because there is low specificity in this interaction. 

So, when I remove species from nonsymbiotic networks, the extinction curves declined more slowly compared 

with symbiotic networks, because the deletion of one species does not necessarily cause the deletion of other 

partner species. Biologically, arboreal ants do not depend exclusively on the food offered by a particular plant 

species and also supplement their diet with insect exudates (honeydew) (Davidson et al., 2004). Moreover, in 

tropical regions many honeydew tend to be more productive and spatially more concentrated when compared 

with extrafloral nectaries (Blüthgen et al., 2004b). Thus, when a plant species with extrafloral nectaries is 

extinct, the ants can substituted this resource by other liquid resources commonly found in tropical 

environments. On the other hand, due to the high specialization of partners in ant-plant symbiotic interactions, 

the change of traits or exclusion of one partner directly affects the ecological maintenance of the other partner 

(Guimarães et al., 2007). In addition, even using only one network for each ant-plant interaction, I believe that, 

the pattern found in this study will be repeated in other networks with the same differences in natural history, 

with more specialized ecological networks being more susceptible to species losses.  

Here, I showed that specialized ant-plant interactions are highly susceptible to loss of species and this 

pattern should occur in other plant-animal networks with a high degree of specialization. Thus, the loss of very 

specialized interactions can lead to a cascade effect of loss of other species and all ecological services provided 
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by them. In addition, the resilience of biological communities is not based only on high functional redundancy 

but also on how functionally similar species respond to environmental disturbance (Elmqvist et al., 2003; 

Folke, 2006; Nyström, 2006; Laliberte et al., 2010). Thus, I suggest as a topic for future studies that one 

evaluates response diversity in different ant-plant mutualistic networks after disturbances in order to assess 

whether different tolerance also occurs for these networks as regards species extinction in natural 

environments. 
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