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Abstract 

New insights to understand the dynamics of enormous modifications during cancer in comparison to healthy 

condition have made the ground for the emergence of sophisticated systemic approaches like Network Systems 

Biology in the twenty first century which is potentially effective to model different biological phenomena such 

as regulation of gene-expression and protein-protein interaction. In the current study, the construction and 

computational analysis of protein interaction networks (PINs) based on expression data of proteins involved in 

10 major cancer signal transduction pathways were done in case of five different tissues e.g. bone, breast, 

colon, kidney and liver for both normal and cancer conditions. Differential expression database 

GeneHubs-Gepis, and protein-protein interaction prediction tools PIPs and STRING were applied for primary 

data retrieval. Upregulation and downregulation of proteins in various cancers were analyzed to identify 

patterns in PINs during cancer signaling. Different network parameters were evaluated and comparisons were 

made among normal and cancer networks for each tissue and for different cancer based on Cytoscape software 

package.  The networks for cancer show notable differences and fluctuations from normal ones for various 

network parameters. A cluster of 34 upregulated proteins with 76 relevant interactions was also found to be 

conserved in all five cancerous tissues.  
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1 Introduction 

Cancer being an abnormal manifestation of the inherent subtleness of biological organization can be viewed as 

a result of defective organogenesis which acts as an association of multiple diseases and characterized through 

the process of tumorigenesis (Goldthwaite, 2006; Reya et al., 2001). In the complex enigma of cancer 

progression cells accumulate mutations in oncogenes or tumor suppressor genes that allow chromosomal 

aberrations, genomic and proteomic instabilities, and ultimately result into abnormal proliferation and 

differentiation (Hanahan and Weinberg, 2000). Various approaches like classical clonal genetic model (Arends, 

2000; Fearon and Vogelstein, 1990), epigenetic model (Esteller, 2008; Tysnes, 2010) and cancer stem cell 

model (Ye et al., 2008; Goll et al., 2005) have been proposed so far to understand cancer initiation and 

metastasis and all these models are based on local alterations of genomic and proteomic status of the cells 

leading to cancer conditions. But recent understandings have made it plausible that cancer might act as an 
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exceptionally unusual ‘whole’ (like organs) in the complex fractal hierarchy of ‘wholeness’ functioning in our 

body system (cell\organ\organism). Due to the massive alterations both in genome and proteome, cancer 

initiation is more likely to be stochastic while it demands more comprehensive systemic approach to endow 

the non-locality and non-linearity underlying the process of cancer development (Mamun et al., 2011).  

Biological research for over the last century has been dominated by the reductionist philosophy and a 

wealth of knowledge has been generated about structural and functional attributes at cellular level (Kitano, 

2002). Despite huge achievement of reductionism, it is gradually becoming clearer that discrete biological 

functions can rarely be ascribed to individual molecules. Instead, most biological properties emerge from 

highly interactive complexity gained from functional integrity of cell’s numerous constituents (Oltvai and 

Barabasi, 2002). Therefore, understanding the structural and functional dynamics of the intricate web of 

interactions at cellular level has been a key challenge for biology in the twenty-first century (Barabasi and 

Oltvai, 2004). 

In cancer condition, genomic alterations result in modifications in downstream signal transduction 

pathways and protein-protein interactions. Studying the molecular interactions entirely is a must to have an 

insightful understanding of the comparative regulatory patterns of normal and cancerous cells (Mirzarezaee et 

al., 2010) and Network Systems Biology has prospective usefulness to model various biological phenomena 

such as regulation of gene expression and protein-protein interaction (Zhou et al., 2012). Probably the most 

commonly studied type of biological networks is protein interaction networks (PINs) which can provide some 

more realistic interpretations about cancer complexity in terms of network properties based on the graph 

theoretical approaches (Platzer et al., 2007; Huang and Zhang, 2012; Zhang, 2012). The whole array of 

development is highly regulated with extreme sophistication through controlled proliferation while in cancer 

things get skewed up and genomic and proteomic instability occurs. But still tumorigenesis follows some 

fundamental rules of development and hence the term alternative form of life has been used to address cancer 

(Davies, 2004; Shrodinger, 1958). So very simply there has to be some signs or notifications representing the 

subtle orderliness of the highly disordered phenomenon of cancer progression. Interestingly we found a small 

protein interaction network (PIN) cluster which is conserved in different cancerous tissues in accordance with 

this current approach.  

The  main aim of this study was to construct and visualize differential PINs in five tissues e.g. bone, 

breast, colon, kidney and liver for both normal and cancer conditions based on gene expression data for the 

proteins involved in ten major cancer signal transduction pathways. A comparative analysis of different 

network parameters among normal and cancer conditions for each of the five tissues was done. Remarkable 

differences were observed in the network parameters among the networks for normal and cancerous tissues.  

 

2 Materials and Methods 

2.1 Construction and analysis of differential networks 

The protein molecules involved in cancer signal transduction pathways were listed from Cancer Cell Map 

Database (http://cancer.cellmap.org/cellmap/) (Memorial Sloan-Kettering Cancer Center, 2006). The ten 

cancer signal transduction pathways from the database were considered e.g. Alpha-6-Beta-4-Integrin, 

Androgen Receptor, Kit Receptor, EGFR1, Hedgehog, Wnt, ID, NOTCH, TGFBR and TNF Alpha/NF-kB. 

The total number of signaling protein molecules was 737. Possible protein-protein interactions were studied 

for the signaling proteins via PIPs (a database human protein-protein interaction prediction; 

http://www.compbio.dundee.ac.uk/www-pips/) (McDowall et al., 2009; Scott and Barton, 2007) and STRING 

(a database of known and predicted protein interactions; http://string.embl.de/) (Auguste et al., 2007; Caldieri 

and Buccione, 2010). Protein-protein interaction data were available for 722 signaling proteins out of 737 
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molecules. Here the interactions were considered among the 722 signaling proteins, other predicted interacting 

proteins were excluded. Thus 609 proteins were found to show total 8359 possible interactions among them. 

Differential expressions of the signaling protein molecules in normal and cancer conditions for five human 

tissues e.g. bone, breast, colon, kidney, liver were accumulated and studied using GeneHub-Gepis (an online 

bioinformatics tool for inferring gene expression patterns in a large panel of normal and cancer tissues; 

http://research-public.gene.com/Research/genentech/genehubgepis/index.html) (Zhang et al., 2007). The 

expression data were represented in digital expression unit (DEU). Expression data were available for 598 

proteins out of the 609 molecules and total 8245 possible interactions were found to exist among them. A PIN 

representing all the possible interaction among the proteins was constructed (Fig. 1) and the network properties 

for this network was listed (Table 1). As the expressions of different signaling proteins differentiate in normal 

and cancer conditions of various tissues, a fraction of the total possible interactions is manifested in different 

tissues with normal or cancer conditions. PINs for normal and cancer conditions of the five tissues were 

constructed based the expression data. The expressed proteins were assigned values 1 and the unexpressed 

proteins were assigned values 0. As the unexpressed proteins have no chance to interact with other proteins, 

only the proteins having the value 1 show the possibility to form interactions with other proteins. Thus each 

pair of proteins having assigned expression values 1 for both proteins of the pair was assumed to have a valid 

interaction between the proteins. Such sorting of valid interactions was conducted using codes based on JAVA 

programming language. The binary calculation was utilized for this purpose (only 1+1=1 denotes to valid 

interaction and 1+0=0, 0+1=0, 0+0=0 denote to invalid interaction). TextPad 4.42 version was used for the 

coding purpose (http://www.textpad.com/) (Helios Software Solutions, 2012). PINs were established for 

normal and cancer conditions of five tissues exploiting the valid interactions based on the expression data. 

Cytoscape 2.8.3 version was used for all the network construction purposes (Smoot et al., 2011; Cline et al., 

2007; Shannon et al., 2003). The Network Analysis Plugin was used to determine the network parameters of 

each network. The parameters considered in the study were clustering coefficient, connected components, 

network diameter, network radius, network centralization, shortest paths, characteristic path length, average 

number of neighbors, multi-edge node pairs, number of edges, network density, network heterogeneity, 

isolated nodes, number of self-loops and number of nodes. 

 

 

Table 1 Graph related parameters of the network of 8245 interactions  
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Fig. 1.3 BioLayout of PIN for bone (cancer) Fig. 1.2 BioLayout of PIN for bone (normal) 

 

   Fig. 1.1 BioLayout of 8245 interactions 

Fig. 1.4 BioLayout of PIN for breast (normal) Fig. 1.5 BioLayout of PIN for breast (cancer) 
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Fig. 1.6 BioLayout of PIN for colon (normal) Fig. 1.7 BioLayout of PIN for colon (cancer) 

Fig. 1.8 BioLayout of PIN for kidney (normal) Fig. 1.9 BioLayout of PIN for kidney (cancer) 

Fig. 1.10 BioLayout of PIN for liver (normal) Fig. 1.11 BioLayout of PIN for liver (cancer)
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2.2 Identification of conserved cluster of protein-protein interactions 

Set of signaling proteins which are upregulated or downregulated during transformation from normal condition 

to cancer condition were sorted out. The commonly upregulated or downregulated signaling proteins in five 

tissues in case of cancer conditions were identified. The relevant interactions of the upregulated proteins were 

only considered (as the single downregulated protein has less interaction importance). TextPad 4.42 version 

(http://www.textpad.com/) (Helios Software Solutions, 2012) was used to code in JAVA programming 

language for identifying upregulated signaling proteins (the normal expression of all proteins were subtracted 

from their cancer expression and the proteins having the positive values were sorted out with the relevant 

interactions). Networks for interactions of commonly upregulated proteins for five tissues were constructed via 

Cytoscape 2.8.3 version (Smoot et al., 2011; Cline et al., 2007; Shannon et al., 2003). The largest clusters were 

identified for the cancer conditions in five tissues, and the proteins and the relevant interactions of the largest 

clusters were listed. The common set of proteins and interactions for five tissues during cancer conditions was 

identified and used to construct a PIN. This was further analyzed as conserved cluster of protein-protein 

interactions of upregulated signaling proteins during cancer conditions via Cytoscape Network Analysis Plugin. 

It is mentionable that all networks considered here were undirected networks. The differential networks were 

represented with edge-weighted force-directed (BioLayout) layout and the clusters were represented with 

degree sorted circle layout. 

 

3 Results and Discussion 

According to the objectives of our study we primarily constructed and visualized the differential PINs for five 

tissues e.g. bone, breast, colon, kidney and liver in normal and cancer conditions (Fig. 1.2-Fig. 1.11). The 

network parameters of the differential PINs were analyzed afterwards (Table 2). The graphical representations 

were done to compare the parameters (Fig. 2 (a)-2(n)). The network of 8245 interactions is found to have 684 

nodes and 8202 edges. The differential networks based on the expression data show fluctuations from this 

network. The parameters for differential networks vary between normal and cancer conditions. Number of 

nodes, number of edges, multi-edge node pairs, average number of neighbors increase in cancer conditions for 

all five tissues. Network density and characteristic path length decrease in cancer conditions for all five tissues. 

Clustering coefficient increases in cancer conditions in the tissues under study except colon. Network diameter 

increases in kidney and liver, decreases in breast and colon and remains constant in bone during cancer 

conditions. Network radius increases in breast, kidney, and liver and remains constant in bone and colon. 

Network centralization increases in cancer conditions in the tissues under study except liver. Connected 

components decreases in breast and kidney and remains constant in bone, colon and liver. Shortest paths 

increases in breast, colon and kidney and remains constant in bone and liver. Network heterogeneity increases 

in colon, kidney and liver and decreases in bone and breast. Number of self-loops increases in kidney and liver 

and remains constant in bone, breast and colon. Isolated nodes number is zero for all five tissues. 

Differential upregulation and downregulation of proteins in bone, breast, colon, kidney and liver in cancer 

conditions are presented (Fig. 3.1- Fig. 3.10). 64 proteins are found to be commonly upregulated (Fig. 4.1) in 

five tissues during cancer conditions and only one protein is found commonly downregulated. Interactions 

among the upregulated proteins show a large cluster and some discrete interactions in each tissue (Fig. 4.2 

(a)-4.2 (e)). These large clusters from each of the different tissues has a common set of 34 proteins with 76 

relevant interactions (Fig. 5.1 and 5.2(a)-5.2(e)) and this cluster of PIN remains conserved in all five tissues 

with respect to various network attributes (Table 3). 

From the above study it is obviously evident to summarize that the intracellular biomolecular dynamics is 

quantitatively different in regard of PINs while at the same time our results suggest that qualitative fluctuations 
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might hold the underlying mechanism of observable disorders which could be subjected to an orderly control 

that remains subtle mostly. And the conservancy of PIN cluster eventually stands as a support for this 

interpretation. It is also found that a PIN cluster of interactions of 34 proteins remain conserved in the five 

cancerous tissues. It can be assumed that the conserved cluster play a non-trivial role at the very fundamental 

level of cancer and metastasis. Though we know that cancer is a result of chromosomal instability and random 

genetic mutations, PIN conservation points toward to a non-genetic regulation in cancer progression and also 

directs us to a new window of understanding the cell molecular biology.  

 

 

Table 2 Graph Related Parameters for both the Normal and Cancerous Tissues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

                    Table 3 Graph Related Parameters for 34 conserved proteins 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) 

Fig. 2.1 Different network attributes for normal and cancerous Tissues. Number of nodes (a), Number of edges (b), Connected 
components (c), Multi-edge node pairs (d), Number of self-loops (e), Clustering Coefficient (f), Network density (g), Network 
centralization (h), Shortest path (i), Characteristic path length (j), Network diameter (k), Network heterogeneity (l), Network radius 
(m), Avg. number of neighbors (n).   
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Fig. 3.1 Upregulated proteins in bone Fig. 3.2 Downregulated proteins in bone 

Fig. 3.3 Upregulated proteins in breast Fig. 3.4 Downregulated proteins in breast 
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Fig. 3.6 Downregulated proteins in colon 

Fig. 3.7 Upregulated proteins in kidney Fig. 3.8 Downregulated proteins in kidney 

Fig. 3.5 Upregulated proteins in colon 
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Fig. 3.9 Upregulated proteins in liver Fig. 3.10 Downregulated proteins in liver 

Fig. 4.1 Commonly expressed 64 proteins of all five tissues in cancer conditions. 
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4 Conclusion and Recommendation 

In general this study suggests the requirement of a more holistic understanding of cancer and metastasis and 

the inherent regulatory pattern of cancer emergence. This study includes only the networks of signaling 

proteins of cancer signal transduction pathways. But the total proteomic networks of cancer cells would be 

more convenient. Here only the simple parameters have been considered but more significant parameters like 

Fig. 5.1 Commonly expression 34 proteins of the large protein interaction network cluster for all five 

tissues in cancer conditions. 

Fig. 4.2 Cytoscape layout of PIN of commonly overexpressed proteins during cancer conditions in bone (a), breast (b), colon (c), 

kidney (d) and liver (e). Degree sorted circle layout is used in representation. 

Fig. 5.2 Cytoscape layout of conserved PIN cluster of overexpressed proteins during cancer conditions in bone (a), breast (b), colon 

(c), kidney (d) and liver (e). Degree sorted circle layout is used in representation. 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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network complexity, network entropy etc. are also required to be analyzed. This approach is based on some 

static networks, but dynamic network based studies are needed  to bring out more realistic interpretations. 

Protein interaction network with association of gene regulatory networks would provide more holistic results 

which are beyond the scope of this study. To overcome the drawbacks of such studies high throughput 

proteomic study and highly comprehensive computational tools are required to use network systems biology as 

future tool of understanding cancer related biomolecular alterations more inclusively. A combination of wet 

lab and dry lab approaches is a must in this regard. Moreover, the evolutionary conservancy among cancer 

protein networks for different metazoa can be studied to decipher the common nature of cancer evolution 

which can lead us to a step ahead towards the pattern recognition in tumorigenesis. Also from the therapeutic 

point of view this type of network analysis can evidently identify important nodes and hubs in cancer PINs 

which can be used as new drug targets. 
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