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Abstract 

Self-organization is a universe mechanism in nature. In a self-organizing system, the system evolves 

spontaneously to form an order structure based on some compatible rules. Without external instructions and 

forces, the self-organizing system arises only from the interactions between the basic components of the 

system. Although numerous theories and methods were established to describe self-organization, there are still 

many problems in this area. We still lack of unified theories and thoughts on self-organization. Also, we lack 

of universal basis of methodology in the modeling and simulation of self-organization. Self-organization is 

classified into a research area in complexity science. So far it is not an independent science. For this reason, a 

fundamental science, selforganizology, is proposed for finding and creating theories and methods from 

self-organization phenomena in nature, simulating and reconstructing self-organization phenomena, exploring 

mechanisms behind numerous self-organization phenomena, and promoting the applications of 

self-organization theories methods in science and industry. Existing theories and methods of self-organization 

are overviewed. Methodological basis of selforganizology is shortly discussed.  
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1 Self-organization 

1.1 Theories and principles of self-organization 

Organization can be characterized to two basic categories, i.e., self-organization and external-organization. 

The main difference between the two categories of organizations is that whether the organizational 

instructions/forces come from outside the system or from inside the system. The organization with 

organizational instructions/forces from inside the system is self-organization. In other words, a system is called 

self-organizing system if there is any specific intervention from the outside during the system is in the process 

of evolution (Foerster, 1960; Heyligen, 2002). The stronger a system’s self-organization capacity is, the 

stronger the system’s ability to generate and maintain new functions.  

   Self-organizing systems are a kind of systems which can evolve and improve the organization’s behaviors 

or structure by themselves. Self-organization is a process to describe the system’s global state. In a 

self-organizing system, the system evolves spontaneously to form an order structure based on some compatible 

rules. Unlike other organizations, the self-organizing system arises only from the interactions between the 

basic components of system, without external instructions and forces. In the process of self-organization, 

several structural components can interact and cooperate to display the behaviors that only a group will have. 
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The dynamic interactions between low-level components typically include attraction and repulsion, that is, 

positive and negative feedbacks. 

   Generally, self-organization arises from the increase in complexity or information. According to the 

thermodynamic laws, this situation will only occur in the open systems far away from equilibrium. For most 

systems, this means the energy supply to the system is needed for generating and maintaining a certain mode. 

In an abstract sense, self-organization is a process that makes the system’s entropy increase in the absence of 

external forces (i.e., a dynamic process that from the disorder to order states) (Glansdorff and Prigogine, 1971; 

Nicolis and Prigogine, 1977). 

   From the perspective of systematic theory, self-organization is an irreversible dynamic process. Each 

component in the system will spontaneously aggregate to form an organic whole without outside instructions. 

From the view of mathematics and physics, self-organization means the dimensional reduction of state space 

or the reduction of degrees of freedom, i.e., the system converges spontaneously to one or more steady states 

(attractors). In such a system, the local interactions between the basic components of the system can change 

the modes of the system’s organization, and the global behaviors of the system cannot be understood 

intuitively. They cannot be understood by simply observing existing laws and behaviors of 

between-component interactions (Zhang, 2012). In a word, the global properties of self-organizing systems are 

not predictable.    

Self-organization usually requires to be based on three elements (Bonabeau et al, 1999): (1) strong 

nonlinear dynamic interactions, even though they do not necessarily correlate to the positive or negative 

feedbacks; (2) a balance between development and exploration, and (3) complex and diverse interactions. 

Self-organization is ubiquitous in nature and human society, covering many fields as physics, chemistry, 

biology, economics and society. The most obvious examples of self-organization are the nonlinear processes in 

physics (Glansdorff and Prigogine, 1971; Ansari and Smolin, 2008; Brau et al., 2011). Self-organization is also 

chemical-related, which is often considered to be synonymous to self-assembly of molecules (Kim et al, 2006; 

Coleman et al, 2011; Harada, et al 2011). It is also very important to the description of biological systems, 

whether at sub-cellular level or at ecosystem level (Hess and Mikhailov, 1994; Misteli, 2001; Camazine, 2003; 

Clyde et al, 2003; Motegi et al., 2011). It can also be found in the mathematical systems, like cellular automata 

(Zhang, 2012). 

1.1.1 Thermodynamic basis of self-organization 

The spontaneous formation of new structures, for examples, crystallization process, Bénard phenomenon, 

Belouzov-Zhabotinsky reaction (Sun and Lin, 2004), etc., are all self-organization processes, i.e., the 

formation of a structure or a mode does not need to be imposed any external force. It seems that the 

components of these systems are arranged into a more order pattern by themselves. At first appearance, 

self-organization violates the second law of thermodynamics. This law holds that the entropy of an 

independent system can only increase rather than decrease. In other words, the second law of thermodynamics 

means that an isolated system should evolve in a uniform, simple, difference-eliminating way, which is in fact 

an evolution to a low-level organization. 

   In the example of crystallization process, the randomly moving molecules that have been bonded into a 

crystal structure and thus have been fixed will transmit their kinetic energy to the liquid that they are dissolved. 

Thus, the reduction in the entropy of crystallization process is just offset by the increase in the entropy of 

liquid. The entropy of the whole system has actually increased, and therefore it is consistent with the second 

law of thermodynamics. 

   For self-organizing systems, which are not in their equilibrium, it is hard to determine whether the second 

law of thermodynamics is true or not. Prigogine started to study the systems far away from equilibrium states 
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since the 1950s and proposed the theory of dissipative structures (Glansdorff and Prigogine, 1971; Nicolis and 

Prigogine, 1977), in which the most used models to explain the dynamic self-organization process are Bénard 

cells and the Brusselator. The theory of dissipative structures tried to address such problems as, under what 

conditions a system will be able to evolve from the disorder to the order, and form a new, stable, and 

internally-dynamic structure. Such a structure must be an open system, i.e., there are energy/matter flows in 

the system; the system will continuously generate entropy, but at the same time the entropy will be actively 

dissipated from the system or output from the system. Thus, at the cost of environmental disorder, the system 

will be able to increase order of its own. The system will be able to follow the second law of thermodynamics 

simply by getting rid of its excess entropy. This dissipation can be mostly found in life systems. Plants and 

animals obtain energy and matter by absorbing light or food with low entropy, and then output energy and 

matter by draining the metabolic waste of high entropy. This will reduce its internal entropy to offset the 

degradation process required by the second law of thermodynamics. 

   The output of entropy cannot explain why and how self-organization happened. Prigogine held that 

self-organization would mostly occur in the nonlinear systems far away from equilibrium. 

1.1.2 Principles of self-organization 

The first symposium on self-organization was held in 1959 in Chicago. In this symposium, British cybernetic 

expert, Ashby, proposed “the principle of self-organization” (Ashby, 1947). He believed that a dynamic 

system, ignoring its classification or composition, always tend to move towards an equilibrium, or the 

“attractor” we are talking about. This theory reduced our uncertainty on the state of system and solved the 

problem of entropy in systematic science. This is equivalent to self-organization, which finally reaches the 

equilibrium and the final equilibrium can be considered to be a state of mutually adaptation of all components 

in the system. Another cybernetic expert, Heinz von Forster, proposed the principle of order from noise 

(Foerster, 1996). He believed that the larger a system is subject to random interference, paradoxically, the 

quicker it will perform self-organization (i.e., become more order). This idea is very simple: The larger the 

state space that a system moves through is, the faster it will reach the attractor. If the system stays at its initial 

state, it will not reach the attractors, and self-organization will thus not occur (Foerster, 1996). Generally, there 

are multiple attractors in a nonlinear system. The attractor theory holds that the behavioral trajectories of 

complex system in the state space can be represented by the dynamic equations. These dynamic equations are 

always determined by a set of “attractors”. What attractor the system will move towards depends on the 

attraction domain that the initial state falls into. What attractor the system eventually reaches is uncertain. 

Small fluctuation of some parametrical values will cause the system to change. Prigogine thus proposed a 

related principle, i.e., order through fluctuations. 

1.1.3 Known theories of self-organization 

So far, self-organization theory is generally believed to mainly consist of three parts, the theory of dissipative 

structures (Glansdorff and Prigogine, 1971; Nicolis and Prigogine, 1977), synergetics (Haken, 1978, 2004), 

and catastrophe theory (Saunders, 1980). However, the basic thoughts and theoretical kernel of 

self-organization can be derived entirely by the theory of dissipative structures and synergetics. 

(1) The theory of dissipative structures. Prigogine officially proposed the theory of dissipative structures in 

1969 in a theoretical physics and biology symposium (Nicolis and Prigogine, 1977). The theory mainly aimed 

to explain the exchange of matter and energy between the system and the environment and its effect on the 

self-organizing system. The structure established on the basis of the exchange of matter and energy between 

the system and the environment is a dissipative structure, such as a city, an organism, etc. Far away from 

equilibrium, the openness of system, and nonlinear mechanism between different components of system, are 

three conditions for the formation of a dissipative structure. Far away from equilibrium refers to that the 

3



Network Biology, 2013, 3(1): 1-14 

 IAEES                                                                                     www.iaees.org  

distribution of matter and energy in different areas of a system is extremely uneven. The theory of dissipative 

structures is mostly used to discuss the evolution of complex systems. The theory of dissipative structures uses 

two levels of approaches, i.e., deterministic and stochastic approaches in the discussion of system evolution. 

Deterministic approach uses macroscopic physical variables to describe system dynamics and features. 

Stochastic approach treats macroscopic physical variables as the average of corresponding random variables. 

Analyzing random variables will not only produce the averaged values but also help understand fluctuation 

characteristics of the system. 

(2) Synergetics. Haken first proposed the concept of “synergy” in 1976, and another science on 

self-organization, synergetics, was thus established (Haken, 1978, 1983, 2004). About synergetics, Haken held 

that on the one hand, in a system many subsystems interact to produce the structure and function at the 

macroscopic scale; on the other hand, there are many different scientific disciplines cooperating to explore the 

general principles for governing self-organizing systems. The order parameters generate and govern 

subsystems by competition and cooperation between various subsystems. Serving of various subsystems to 

order parameters reinforces order parameters themselves and further promotes the serving of subsystems to 

order parameters, so that the system can spontaneously organize by itself (Haken, 1978, 2004). Competition 

and cooperation between order variables will result in different forms of evolution of self-organization. 

Synergetics mainly discusses the coordination (synergy) mechanism between internal components of the 

system studied. It holds that the coordination between various components in the system is the basis of 

self-organization process. Competition and cooperation between order parameters of the system are direct 

forces for the formation of new structures. Because of independent evolution of components in the system, 

various local and collaborative evolution, as well as random inferences by environmental factors, the actual 

state of system always deviates from the average. The magnitude of such a deviation is called fluctuation. 

When the system is in its transition from one steady state to another steady state, and if the independence 

evolution and collaborative evolution between system components move into a balance, any small fluctuation 

will be amplified, and quickly spread to the whole system. The resultant giant fluctuation will promote the 

system moving into an order state. In addition, Harken proposed the concept of “functional structure”, i.e., the 

function and structure are dependent for each other. If the energy or matter flow is cut off, the physical and 

chemical system will lose their structure, while a biological system is mostly able to maintain a fairly long 

time. Such biological systems seem to combine non-dissipative and dissipative structures together (Haken, 

1978, 2004). 

(3) Catastrophe theory. Catastrophe theory was first proposed by the French mathematician, Thom R, in 1969. 

Since the 1970s, Zeeman and other scientists have further developed catastrophe theory and apply it to various 

aspects of physics, biology, ecology, medical science, economics and sociology, and produced significant 

impacts (Zeeman, 1976). This theory was built on the basis of the stability theory. It considers a catastrophe 

process as a process that transit towards a new steady state through an unsteady state from an original steady 

state. In mathematical view, this means the changes of values of a set of parameters and mathematical 

functions that denote the states of the system. Thus it is a theory to describe the phenomena that the continuous 

change of parameters lead to the discontinuous change of the states of system. It treats with the systems that 

almost sure structural stability in the state space but there is some structural instability on some point sets of 

measure 0. The basic characteristics of catastrophe systems include: multiple steady states; reachability; 

jumping; lagging, and divergence (which reflects the sensitivity of evolutionary trajectory to the path of 

control parameters). Catastrophe theory holds that different outcomes may occur even if it is the same process 

that corresponds to the same controlling factors and critical values; different new steady states may be 

achieved at different probabilities (Saunders, 1980). Generally, catastrophe theory does not reveal the 
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mechanism to produce catastrophe phenomenon. It provides a reasonable mathematical model to describe the 

phenomenon of catastrophe in the real world, and classifies various catastrophe types. In ecology, there are a 

lot of applications on catastrophe theory, such as the sudden outbreak or sudden collapse of biological 

population. 

   In addition, there are also other theories on self-organization, for example, Eigen’s super circle theory. 

Super circle theory is a self-organization theory of molecular evolution. However, it is a scientific hypothesis, 

the impact is still limited. 

1.1.4 Properties of self-organization  

By interacting with the environment, the self-organizing system can evolve to form new structures and 

functions. Unlike ordinary mechanical systems, it has its own peculiar properties. Those peculiar properties 

can be used as part of the definition of self-organizing systems, for example, there is no centralized control, 

and continuous adaptation to the changing environment, etc. 

(1) Local interactions generate global order 

the most obvious change in the self-organizing system is the formation of global order. Local interactions 

follow immediately basic physical processes; any impact from one region to another region must first move 

through all intermediate regions. When it passes through intermediate regions, all the processes will be 

disturbed by the turmoil occurred in the intermediate regions. First assume the system is disorder and all 

components of system evolve randomly. The impact of any passed will be quickly dispersed and ultimately 

destructed by these random turbulence. The result is thus that, starting at the chaotic state, the distant parts of 

system is actually independent: they do not affect each other. During self-organization process, all the 

components of system are closely linked. Understanding of the structure of a regional component will be 

valuable to know the structure of components of its consecutive regions. 

(2) Distributed control 

People tend to consider that a highly organized system is instructed and controlled by external or internal 

forces. This control is called centralized control. 

   In a self-organizing system, the control on organization is distributed throughout the system. All 

components contribute to the final arrangement of the states of system. Despite some of the advantages of 

centralized control with respect to distributed control, on some levels centralized control must be based on 

distributed control. For example, the function of human brain is dispersed in the network formed by interacting 

neurons. Different brain regions perform specific functions, but not a neuron or a group of neurons has all the 

ability to control brain. This is a result of self-organization. 

(3) Nonlinearity and feedbacks 

Nonlinearity means the whole is not equal to the simple sum of its parts, i.e., superposition principle is not met. 

Suppose a system is represented by a function: y=f(x). If the following condition is satisfied:          

f(αx1+βx2)=αf(x1)+βf(x2), where α,β∈R, then it is a linear system, otherwise it is a nonlinear system (Zhang, 

2010, 2012). Judging from the mechanical movement, a linear phenomenon is generally manifested as smooth 

motion in time and space; it can be described by the functions with good performance, and the functions are 

continuous and differentiable. The nonlinear phenomenon is a movement from regular motion to irregular 

motion, with obvious jumping and intermitting features. From the view of disturbance and parameter theory, 

the response of a linear system is smooth and proportional changes, but nonlinear system will exhibit 

substantial changes in some of the key points because of the small changes in parameters, and form and 

maintain spatially regular and order structures. Linear relationship is independent of each other, while the 

nonlinear relationship is an interactive one, which makes it violate superposition principle and produce gain or 

loss. In nonlinear systems, there are feedbacks between system components; each component affects the others, 
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and other components in turn affect it. The positive feedback plays a role similar to the input so that the 

system’s deviation increases, and the system’s oscillation is thus amplified. The negative feedback causes 

reverse outcome as compared with input’s role, so that the system’s output error can be reduced and the system 

is thus stabilized. 

   In complex self-organizing systems, there are often several chains of positive and negative feedbacks, so a 

change can be enlarged in a certain direction but suppressed in the other directions. This will result in the very 

complex behaviors difficult to be predicted. 

(4) Far away from equilibrium 

Equilibrium is a special state of a system. At this state, the everywhere measurable macroscopic physical 

properties of system are uniform throughout the system (so that there is not any macroscopic irreversible 

process inside the system). At the equilibrium state, the system follows the first law of thermodynamics: dE = 

dQ - pdV, i.e., the increment of energy inside system is equal to the absorbed heat subtracting by outward work 

done by the system. It is also coincident with the second law of thermodynamics: dS/dt≥0, that is, the 

spontaneous evolution of system is always toward the direction of entropy’s increase. For the system in 

equilibrium state, it must abandon its extra energy; it will remain in the minimum energy state without the 

input of external energy. 

     A system will likely move to a nonlinear region when it is far away from equilibrium. The system far away 

from equilibrium is more sensitive and more vulnerable to environmental changes due to its dependence on 

external energy input. But it is more powerful to respond changes. On the other hand, the surplus of external 

input energy allows the system to amplify the self-organization process, for example, offsetting small 

turbulence or maintaining positive feedbacks longer in the aid of strong interactions. This makes the system 

more vigorous and more adaptive to external changes. 

(5) Systematic termination and organizational hierarchy 

The interactions between individual components of self-organizing system can be to some extent defined as an 

order structure. However, the order does not mean organization. Organization is an order structure and can 

achieve a particular function. In a self-organizing system, this function is to maintain a particular structure 

under various disturbances. The general characteristics of self-sufficiency can be understood as a closure. A 

process with causal relationship can be represented as a chain or a sequence: A → B → C → D → ..., where A 

initiates B, B initiates C, C initiates D, and so on. Overall, this will lead to a continuous change. However, 

there may be its own termination of a link in the chain, for example, O returns J, so the cycle of the system 

becomes J, K, L, M, N, O, J, K, L. Thus the corresponding arrangement of system will always be maintained 

or recycled. In addition, if the loop is placed in a negative feedback region, it is relatively unaffected by the 

impact of external interference (Foerster, 1960). 

   In a self-organizing system, it may generate a lot of autonomous and organization-closed subsystems. 

Those subsystems will interact in a more indirect way. They will also adapt to the structure for termination and 

determine subsystems at a higher level. New generated subsystems will contain the original subsystems as 

their components. Each self-organizing system constitutes a series of subsystems. A self-organizing system 

thus forms a layered structure. Each self-organizing system belongs to the high-level self-organizing system 

and contains low-level self-organizing systems. It interacts with other self-organizing systems at the same level. 

Therefore, the hierarchy is a characteristic of self-organizing systems. 

1.2 Algorithms of self-organization 

1.2.1 Mathematical and computer modeling 

Because it is difficult to predict the complex behaviors of self-organizing systems, mathematical modeling and 

computer simulation have been widely used for theoretical experiments of these systems. They also help 
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people understand how these systems work. A mathematical modeling method for self-organization is to use 

nonlinear differential equations, and another method is to use cellular automata (Wolfram, 2002; Ballestores 

and Qiu, 2012; Zhang, 2012).  

1.2.2 Intelligence computation 

Many complex problems are difficult to be effectively addressed by traditional artificial intelligence 

technologies. Intelligence computation is a powerful technique to solve more complex problems. In the 

intelligence computation, computation is intelligent. It can automatically adjust parameters during the process 

of computation, and thus achieve optimal results (Koza, 1992). Evolutionary computation searches the optimal 

solution by simulating biological evolution in nature, for example, genetic algorithms, etc. Swarm intelligence 

algorithms are a kind of new evolutionary algorithms, which are closely related to evolutionary strategies and 

genetic algorithms. 

1.2.2.1 Swarm intelligence algorithms 

The concept, swarm intelligence, was first proposed by Hackwood and Beni (1992) in their cellular automata 

system. Swarm intelligence refers to that a group of unintelligent entities can cooperate to solve problems in a 

distributed way. They can directly or indirectly communicate by changing the local environment. These 

unintelligent entities behave intelligently through cooperation (Bonabeau et al, 1999; Hu and of Li, 2008; 

Zhang, et al., 2008). A significant feature of swarm intelligence is, although the behaviors of an individual are 

simple, but when they work together, the system will exhibit very complex behaviors. Without centralized 

control and global model, swarm intelligence provides a solution for distributed problems. 

(1) Ant colony algorithm 

Ant colony algorithm (ant algorithm) is a method for finding the optimal path in the graph. It is a probabilistic 

algorithm (Colomi and Maniezzo, 1991; Dorigo et al, 1996). It is proposed by Dorigo in 1992 in his doctoral 

thesis, inspired by the behaviors of ants found in the process of looking for food path (Colomi and Maniezzo, 

1991). Ant colony in nature can cooperate to find the shortest path from the nest to the food, and can change 

strategy as circumstances change and quickly re-find the shortest path. 

   Numerous studies found that ant colony algorithm is a self-organization algorithm. At the start of 

algorithm, a single artificial ant searches for solution in a disorder way. After a period of algorithm evolution, 

the artificial ants spontaneously tend to find some solutions close to the optimal solution, which is a process 

from the disorder to the order. 

(2) Particle swarm algorithm 

Particle swarm algorithm is also called Particle Swarm Optimization (PSO). PSO is an evolutionary 

computation based on iteration, which is proposed by Kennedy and Eberhart (1995). Particle swarm algorithm 

was originally a graphical simulation of preying behaviors of a flock of birds. The basic idea is inspired by 

their early findings on group behaviors of birds, and they thereafter used and improved biological population 

model. In the particle swarm algorithm, each particle in the particle swarm is equivalent to a bird in the bird 

flock. They all track the currently optimal particle (which is equivalent to the bird most near the food) in the 

solution space, and they constantly update their position and velocity. Through continuous iteration, the 

algorithm reaches the optimal solution (similar to bird finding food) (Shi and Eberhart, 1998; Eberhart and Shi, 

2000; the Krink and Løvbjerg, 2002; Clerc, 2004, 2006; Zhang et al. , 2007; Niknam and Amiri, 2010).  

(3) Stochastic diffusion search 

In 1989, Bishop proposed stochastic diffusion search method in order to solve the problem of incentive 

equivalence in pattern recognition (Bishop, 1989). Stochastic diffusion search is one of the swarm intelligence 

algorithms. Unlike most swarm intelligence algorithms, stochastic diffusion search uses direct communication 

between entities (Beattie and Bishop, 1998; Nasuto et al., 1998; Myatt et al., 2004; Meyer, 2004; Meyer et al., 
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2006). In stochastic diffusion search, each of the entity holders holds an assumed solution about the problem to 

be solved, and assesses the solution partially. The successful entity directly communicates with unsuccessful 

entities to repeatedly test its assumption. Thus a positive feedback mechanism is established, so that the group 

can quickly converge to the optimal solution in the solution space. In the solution space the regions largely 

aggregated by entities are considered as candidate solutions. Through the cooperation between the locally-run 

simple entities, the global solution can be reached in the region with most aggregated entities. The stochastic 

diffusion search is a truly adaptive algorithm, because even if the optimal solution is found, there are still some 

entities to explore the solution space, which makes the algorithm adapt to changes in the environment (Nasuto 

et al., 1998). 

1.2.2.2 Genetic algorithms 

Genetic algorithms are a kind of stochastic search algorithms that simulate the evolution of organisms 

(survival of the fittest, genetic mechanism). It was first proposed by Holland (Holland, 1975). It aimed to 

explain the adaptive processes of natural and artificial systems. Main characteristic of genetic algorithms 

include, (1) directly operate the structural objects; (2) there is no assumptions on derivative and function 

continuity, and (3) implicit parallelism and better search performance on global optimization; using 

probabilistic optimization-searching method which can automatically obtain and guide optimized search space, 

and adaptively adjust the search direction without determinant rules. These properties make genetic algorithms 

widely use in combinatorial optimization, machine learning, signal processing, adaptive control and artificial 

life. Genetic algorithms are considered key technologies that will have significant impacts on the future of 

computing technology, along with adaptive systems, cellular automata, chaos theory and artificial intelligence. 

1.2.3 Other algorithms 

In addition to the commonly used algorithms above, a variety of new algorithm have been proposed to study 

self-organization. Widely recognized algorithms include, fish swarm algorithm (Li, 2003; Grosenick et al, 

2007; Chen et al, 2009), bee colony algorithm, co-evolutionary algorithm, Memetic algorithm, hybrid 

optimization algorithm, bio-inspired algorithm, evolutionary programming, evolutionary strategy, parallel 

algorithm, etc. 

1.3 Case examples of self-organization 

(1) Physics 

A few categories of physical processes can be considered as self-organization. Such examples include: 

(a) Phase transition of structures, spontaneous symmetry breaking. For examples, spontaneously magnetization, 

crystallization in classical physics, laser in quantum mechanics, superconductivity, and Einstein-Bose 

condensation. 

(b) Formation of structures in the thermodynamic systems far away from equilibrium. The theory of 

dissipative structures and synergetics are important to theoretically understand these phenomena. Those 

phenomenon include, structure formation in astrophysics and cosmology (including formation of stars, 

formation of planetary systems, formation of the Milky Way, etc.), self-similar expansion, diffusion-limited 

aggregation, infiltration, and reaction-diffusion systems, etc. 

(2) Chemistry 

Self-organization can be widely found in chemistry. For examples, self-assembly of molecules, oscillatory 

reactions, autocatalytic networks, Langmuir-Blodgett film, self-assembled monolayer film, B-Z reaction, 

self-organization of nanomaterials, macroscopic self-assembly under molecular recognition (Kim et al., 2006; 

Coleman et al., 2011; Harada et al., 2011).  

(3) Life sciences 

In the field of life sciences, there is a growing emphasis on the phenomena of self-organization in vivo. In 
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biological systems, self-organization is a process at global level. The system is generated only from the 

interactions between components at the low levels. Implementing the rules of between-component interactions 

only requires local information rather than global information (Camazine, 2003). 

   A large number of living systems are self-organization phenomena (Hess and Mikhailov, 1994; Misteli, 

2001; Clyde et al, 2003; Motegi et al, 2011), such as, 1) the self-assembly of proteins, as well as the formation 

of other biological macromolecules and lipid bilayers; 2) homeostasis, which is a self-organization from cell to 

tissue; 3) pattern formation and morphogenesis, i.e., the growth and differentiation of living organisms; 4) 

human motion; 5) creation of structures by gregarious animals, such as social insects, bees, ants, etc.; 6) group 

behaviors (the most typical examples can be found in birds and fish), and 7) in the super cycle theory and 

autocatalytic theory, life itself is originated from the self-organizing chemical systems. 

(4) Cybernetics 

Scientists held that the automatic and continuous identification of the black box problems and subsequent 

replication fitted the properties of self-organization (Machol and Gray, 1964). Self-organization is one of the 

key steps in self-assembly of molecules. In some sense, cybernetics deals with some of the self-organization 

problems.  

In addition to the above applications, self-organization has also been widely applied to many other fields 

such as anthropology, economics, linguistics and computer network.  

 

2 Selforganizology  

2.1 Problems for self-organization research 

Although numerous theories and methods were established to describe self-organization, there are still many 

problems in this area. We still lack of unified theories and thoughts on self-organization. Also, we lack of 

universal basis of methodology in the modeling and simulation of self-organization. Self-organization is 

classified into a research area in complexity science. So far it is not an independent science.  

2.2 Selforganizology: a science to deal with self-organization 

For the reason mentioned above, here I propose a fundamental science, selforganizology. It is proposed for 

finding and creating theories and methods from self-organization phenomena in nature, simulating and 

reconstructing self-organization phenomena, exploring mechanisms behind numerous self-organization 

phenomena, and promoting the applications of self-organization theories methods in science and industry. 

Selforganizology is a science that deals with self-organization. Many properties, principles, theories and 

methods on self-organization hold in this science. The theory of dissipative structures and stability theory are 

two of the fundamental theories in selforganizology. Some theories and methods should be futher improved. 

The theory of synergetics should be further improved and innovated to promote selforganizology.     

Selforganizology is an interdisplinary science based on systematic theory, computational science, artificial 

intelligence, mathematics, physics and some other sciences. Evolution-, interaction-, behavior-, organization-, 

intelligence- and feedback-based theories, such as coevolution theory, coextinction theory, community 

succession theory, correlation analysis, parrondo’s paradox (Harmer and Abbott, 1999a, b; Toral, 2001, 2002), 

game theory, neural networks, artificial intelligence, behavioral theory, organization theory and automation 

theory in various scientific disciplines can be reviewed, revised and introduced to selforganizology. 

2.3 Some thoughts on methodological basis of selforganizology 

In selforganizology, the self-organization is considered as a universe mechanism in nature. In a sense, all 

things, from atom to universe, are the products of various self-organization processes. Without external forces 

and instructions, a dissipative system far away from equilibrium may spontaneuously evolve toward one or 

more steady states through self-organization process by between-component interactions at different 
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hierarchies. It is thus a self-organizing system. In the self-organizing system, the interactions between 

components will produce different functions and properties and behaviors from that of components, which 

leads to a system with certain functional characteristics and purposeful behaviors that different from the nature 

of components. A self-organizing system is an aggregation of interactive components, and it has a hierarchical 

structure. A component is an autonomous and organization-closed subsystem. Some components at a 

hierarchical level will interact and aggregate to form a component at higher hierarchical level, with or without 

these components in this component. The most basic and inseparable component is the individual (i.e., a 

person, a bird, a plant). Different components at the same hierarchical level or at different hierarchical levels 

will most likely have different behaviors. Self-organization is a dynamic and spontaneous process from the 

low-level to the high-level, from the local to the global and from the micro-level to the macro-level.  

Following Macal and North (2005), we may define a component as that satisfies these criteria (Zhang, 

2012):  

 (1) A component is an independent and identifiable individual which possesses a set of attributes and rules 

that forge its behaviors. A component is self-contained and independent. It has a boundary through which 

people can easily discern between outside the component and inside the component or shared characteristic. 

 (2) Each component locates in a certain position and interacts with its adjacent components. A component 

has a set of protocols that govern its interactions with other components, such as communication protocol, the 

capability to affect its environment, etc. The component is able to identify and discern the characteristics of 

other components. 

(3) The component is goal-directed. The component behaves to realize some goals. 

(4) The component is independent, autonomous and self-guided. At least within a finite range, the 

component can independently operate in its environment. 

(5) The component is flexible. It is capable of adapting the environment and adjusting its behaviors. The 

component possesses some high-level rules to adjust its low-level behavior rules.  

The behaviors of a self-organizing system cannot be described by using deduction, induction, or other 

formalization methods. However, the behaviors of a component (aggregation behaviors) can be derived from 

the interactions between components at low hierarchical level. A behavior of an independent component might 

be a primitive response and decision, or even a complex intelligence. The behavior rules of a component 

include basic rules and the high-leveled rules that govern basic rules (rule-changing rules) (Casti, 1997; Zhang, 

2012). Basic rules define necessary responses to the environment, and rule-changing rules define adaptation. In 

a specific study, it is necessary to determine a theory on behaviors. A component may use various behavioral 

models, including if-then rule and threshold rules. Knowledge engineering and participative simulation can be 

used in defining behaviors. Knowledge engineering includes a series of techniques collected for organizing 

experts’ knowledge (Zhang, 2012). 

In a self-organization system, the basic structure of behavior rules includes: IF-THEN-ELSE rule; (2) GO 

TO rule; (3) DO WHILE rule; (4) SWITCH CASE DO rule; (5) LET rule; (6) RANDOMIZE rule, etc. I think 

that using these simple rules for all components at all hierarchical levels will probably produce any complex 

behaviors of the self-organizing system. Simple rules are more useful in exploring mechanisms behind 

numerous self-organization phenomena. Complex mathematical equations and models can be avoided in the 

simulation and modeling of self-organization phenomena. 

In the sense of systematic simulation, selforganizology may be considered as a science based on 

self-organization, components, hierarchies, interactions, feedbacks, behaviors and rules. 

   Some methods, such as agent-based modeling (Topping et al., 2003; Griebeler, 2011; Zhang, 2012) can be 

considered as the methodological basis of self-organization simulation and modeling. These methods will not 
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only help propose hypothesis on behaviors and mechanism of a self-organizing system but also help propose 

management strategies on the self-organizing system. 

  In selforganizology, we can follow some standard protocol, for example, the standard protocol proposed by 

Grimma et al. (2006) to describe the simulation and modeling of self-organization. The core of the protocol is 

to structure the information about self-organization simulation and modeling in a sequence. This sequence 

consists of seven elements, which can be grouped in three blocks: overview, design concepts, and details 

(Grimma et al., 2006):  

(1) The overview consists of three elements including purpose, state variables and scales, process overview 

and scheduling. It provides an overview of the overall purpose and structure of the model. It includes the 

declaration of all objects (classes) describing the models entities (different types of components or 

environments) and the scheduling of the model’s processes.  

(2) The design concepts describe the general concepts underlying the design of the model. The purpose of 

this element is to link model design to general concepts identified in the field of self-organizing systems. 

These concepts include the interaction types between components, whether the components consider 

predictions about future conditions, or why and how stochasticity is considered.  

(3) The details include three elements, i.e., initialization, input, and submodels, which present the details 

that were omitted in the overview. The sub-models implementing the model’s processes are particularly 

described in detail. All information required to completely re-implement the model and run the baseline 

simulations should be provided.  

The logic behind the protocol sequence is, context and general information is provided first (overview), 

followed by more strategic considerations (design concepts), and finally more technical details (details). 

Main procedures of self-organization simulation and modeling include (Zhang, 2012): (1) determine 

various types of components and define behaviors of components; (2) identify relations between components, 

and construct interaction types between components; (3) determine the platforms and environments for 

self-organization simulation and modeling, and set the strategies for simulation and modeling; (4) acquire 

necessary data for simulation and modeling; (5) validate the patterns of components’ behaviors and system’s 

behaviors, and (6) run the model, and analyze the output from the standpoint of linking the micro-scale 

behaviors of the components to the macro-scale behaviors of the self-organizing system. 

   Here I have proposed and presented some ideas for the establishment and development of selforganizology. 

However, the theories and methods of selforganizology should be continuously revised and improved in the 

future. Further researches are needed to promote this fundamental science. 
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