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Abstract 

Robust models are pivotal to the prediction of future climate change impacts on biodiversity. A move must be 

made away from individualistic models of single species toward the implication of synergistically interacting 

species. The focus should be on the indirect effects due to biotic interactions. Thanks to these kinds of models, 

counterintuitive results for species could be achieved, emerging from complex biotic feedbacks involving that 

species-specific expectations are not of necessity consistent with those of their community. In this paper, the 

proposed approaches can tackle some important limitations of commonly-used individualistic models, as they 

can: a) deal with an optionally large number of species, b) take into account biotic interactions, c) forecast 

indirect effects caused by climate change. 

 

Keywords biotic interactions; climate impact models; ecological communities; indirect effects; scenarios 

simulations. 

 

 

 

 

 

 

 

 

1 Introduction 

Over the next decades, climate change will be one of the major drivers affecting diversity, composition, 

structure and functioning of ecological communities. Specific changes will include shifts in ecologically 

crucial factors, such as temperature, rainfall, solar irradiance and wind (Zhang and Chen, 2011). These aspects 

of climate change are likely to have deep effects on natural communities, with also potential feedbacks from 

communities to climate (Wu and Zhang, 2012).  

Global surface temperature has increased by 0.74 °C on average over the last century with greater warming 

on land surfaces than on oceans (IPCC, 2001). Future warming is likely to be between 1.1 °C and 6.4 °C by the 

end of the 21th century, depending on the projection scenario (IPCC, 2001).  

An urgent issue is predicting the effects of increased temperature on ecological communities across the 

globe. Climate change will affect patterns and processes of species and food webs in a variety of ways such as 

alteration of dispersal rates, spatial uncoupling of interactions and shifted phenology resulting in a 

rearrangement of species mutual interactions. Studies investigating the consequences of future climate changes 
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on species distributions often apply the assumption that species respond to climate changes in an 

individualistic way (Baselga et al., 2009; Heegaard and Vandvik, 2004; Tylianakis et al., 2007). Instead, 

climate-induced scenarios may cause unobvious local-scale alterations to the network of interactions among 

species, and biotic interactions may complicate the broad-scale control that the environment has on a species’ 

distribution (Suttle et al., 2007). The indirect effects that are potentially sensitive to global climate change and 

the complex feedbacks that exist among species implicate that species-specific previsions are not necessarily 

consistent with those of their communities (Ferrier et al., 2006). Accordingly, single-species studies should be 

expanded to include a more general multi-species assessment based on some kind of synthesis of 

individualistic models (Ellis et al., 2007).  

Changing individual species models to account for complex biotic interactions is challenging. Doing it 

without data hungry models is even tougher, and inevitably requires some kind of scaling from single species 

to whole interaction networks. In this paper, several network approaches are proposed that can tackle some 

important limitations of commonly-used individualistic models, as they can: a) deal with an optionally large 

number of species, b) take into account biotic interactions among species, c) forecast indirect effects caused by 

climate change. 

 

2 Four Increasingly Complex Solutions 

A full understanding of the effects of climate-induced scenarios on biotic communities necessarily requires the 

consideration of the whole interaction network among species (Ferrarini, 2012). This requires a 

methodological approach as follows (Fig. 1): climate change scenario direct impact on each species  

indirect impacts on all linked species  feedback impacts at community level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The proposed conceptual framework for predicting climate change impacts on biodiversity. 

 

 

This requires a n × n “climate-induced” interaction matrix whose off-diagonal elements wij take into 

account the inter-specific effects of species i upon species j as primed by a climate change scenario, instead 

elements wjj take into account intra-specific effects (on growth, phenology and reproduction) of climate 

warming on single species. 

In order to do this, I propose here the following methodological framework (Fig. 2) for network modelling 

of climate change impacts on ecological communities. 
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Fig. 2 The proposed framework for the network modeling of climate-induced impacts on biodiversity. 

 

 

A quantitative network model of interacting species requires a precise estimate of the strength of species 

interactions induced by climate change, that could be unavailable for most species. On the other hand, a 

qualitative network model would lose information about strength of interactions. Moreover, a semi-

quantitative model could encapsulate “hard” data (e.g., species coverages) based on precise statistical estimates, 

with “soft” data (e.g., theorized effect of temperature increase on single species), resulting in an overall 

parsimonious model of the community dynamics under a climate change scenario. The qualitative and semi-

quantitative approaches are also worthy where the climate parameters required to feed into the network model 

are lacking or limited. This often happens for limited-in-size study areas whose extension is smaller or 

comparable to the spatial resolution of available climatic maps. Instead, most broad-scale studies use coarse 

resolution (e.g. 50 km × 50 km) data, and can be fed with quantitative climate projections (e.g. Worldclim 

data). 

2.1 Qualitative networks 

If precise predictions are not a requirement, I suggest that qualitative models could offer an alternative and 

cost-effective method for predicting biotic responses to climate change. A qualitative approach, like loop 

analysis (LA; Puccia and Levins, 1985), would provide predictions on the probable direction of change in 

species abundances, and would be suitable if only the direction of the effects of climate perturbations is 

required, not their magnitude (Ferrarini, 2012). The strength of this approach would be in its generality, and its 

ability to address the complex, nonlinear effects that feedbacks among species determine on single species and 

on the whole network of species. 

LA uses signed digraphs to represent networks of interacting variables. System variables are depicted as 

nodes in the graph, and each connection between two nodes represents a non-zero coefficient of the 
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community matrix. Press perturbations may act by changing one or more parameters in the growth rate of the 

variables. Taking the inverse of the community matrix provides an estimate of the direction of change in the 

equilibrium level of variables in response to these parameter changes. The element aij of the matrix represents 

the effect of variable j on the growth variable i, when the following equation is solved for a moving 

equilibrium: 

1 2 n 1 2 h(X , X ,..., X ; C , C ,..., C )i
i

dX
f

dt
            (1) 

where X1…Xn represent the variables and C1…Ch the parameters. Responses of abundances or biomass are 

arranged in a table of predictions whose signs show the predicted direction of change. The entries in a table 

denote variations expected in all the column variables when parameter inputs affect each row variable.  

For the purposes of this paper, interacting variables (nodes) would represent species, while sign (+, 0, -) of 

induced connections among species could emerge from the following schema: let’s suppose that climate 

change favors species i and disfavor species j, this causes species i to likely expand its niche hindering species 

j, in case they are in contact. Since each species can undergo 3 kinds of climate-induced effects (positive, 

negative, null), a couple of species can undergo: (+1, -1) interaction when one species is favorite and the other 

one disfavored; (-1, -1) interaction when they are both favorite or disfavored; (0, 0) represents no interaction 

(when the 2 species are both indifferent to climate change). Furthermore, there might be self-damped terms 

associated to density-dependent control (organisms with spatial limitations) or continuous supply of the 

species from outside the system. 

2.2 Semi-quantitative networks 

Fuzzy cognitive maps (FCM; Kosko, 1986) are particularly useful for applications where relationships 

between concepts cannot be expressed in exact mathematical equations (Ferrarini, 2011a; Ferrarini, 2011b). 

Biological and environmental quantities and their causal interactions are often described in relative and vague 

terms. A large proportion of the ecological information is represented in this way, and cannot be used as an 

input to data-driven mathematical or statistical models. The main advantage of FCM relies in its ability to 

represent such fuzziness.  

FCM are semi-quantitative networks which describe the behaviour of a system in terms of concepts 

(nodes); each concept represents a variable (e.g., species' abundances) or a characteristic of the system. Values 

of nodes change over time, and take values in the interval [0, 100]: a value of 0 means that the factor is absent, 

a value of 100 means that the factor is present to the maximum possible extent, while a value of 50 represents 

the actual level of system variables. The causal links between nodes are represented by directed weighted 

edges that illustrate how much one concept influences the interlinked concepts, and the causal weights of the 

interconnections belong to the [-1, +1] interval. The strength of the weight wij indicates the degree of influence 

between concept Ci and concept Cj. The value of each concept at every simulation step is calculated as follows: 

( ) ( 1) ( 1)*j j i ij
i

A t A t A t w                  (2) 

where Aj(t) is the value of concept Cj at time t,  Aj(t-1)  is the value of concept Cj at time t-1, wij is the weight 

of the interconnection from concept Ci to concept Cj.  

For the purposes of this paper, while values of the generic i-th species Ci at time T0 (actual surface cover) 

and diagonal values wjj (direct effects due to climate change) might be assessed through in situ monitoring, off-

diagonal wij values (climate-induced indirect effects) could be stochastically simulated. Instead of just using 

<+1, 0, -1> values as depicted above for quantitative networks, off-diagonal might be simulated using n 

simulations by varying off-diagonal values of a random increase up to 100% for favored species, and a random 
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decrease up to 100% for disfavored species, subsequently achieving both the average expected dynamic and 

the expected deviations.  

2.3 Quantitative networks 

If also the strengths of induced interactions among species are known, a dynamical system of n interacting 

species under climate change impact behaves as follows: 

( , )
dS

S t
dt


 

                 (3) 

where Si is the number of individuals (or the total biomass) of the generic i-th species. If we also consider 

inputs and outputs from outer ecosystems, we must write: 

( , )
dS

S t I O
dt

  
  

              (4) 

This can be modelled and simulated using a system of canonical linear equations, as follows: 

1
11 1 1 1 1

1 1

...

...

...

n n

n
n nn n n n

dS
a S a S I O

dt

dS
a S a S I O

dt

     



     


        (5) 

that can also be written in a compact form 

*
dS

A S I O
dt

  
  

             (6) 

where 

11 1

1

...

... ... ...

...

n

n nn

a a

A

a a

 
   
 
 

             (7) 

is the matrix of the unitary-time effect on Si due to unitary Sj, with initial values 

0 1 2 nS =<S (0), S (0)...S (0)>


         (8) 

and co-domain limits  

1min 1 1max

nmin nmax

S ( ) S

...

S ( ) Sn

S t

S t

  


  

         (9) 

The parameters of such equations could be determined through in situ experiments specifically for each 

study area, or through laboratory experiments where climate variables are accelerated and parameters are 

extracted specifically for each species and for each kind of interaction. 

2.4 Quantitative networks incorporating spatial dimension 

If also spatial arrangements of species are known, we need partial differential equations (PDEs). Let 

( , , , )S x y z t measure species’ biomass (or number of individuals) at time t and at the generic location <x, y, z>, 
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the climate-induced dynamical system of n spatially-explicit interacting species becomes: 

1
11 1( , , ) 1 ( , , ) 1( , , ) 1( , , )

1 1( , , ) ( , , ) ( , , ) ( , , )

...

...

...

x y z n n x y z x y z x y z

n
n x y z nn n x y z n x y z n x y z

S
a S a S I O

t

S
a S a S I O

t







     



     


   (10) 

While this kind of network modelling is data hungry, it allows to achieve spatially-explicit predictions of 

climate change impacts on biotic communities. 

 

3 Conclusions 

Animals and plants are embedded in complex networks of interactions with other organisms, and the ways in 

which climate change works across the whole community is much more complex than the simple direct effects 

on single species. Local biotic interactions among species complicate the broad-scale control that climate has 

on species dynamics, and climate change scenarios is likely to cause unobvious alterations to the network of 

interactions among species. This is particularly true at local scale, where biotic interactions are cardinal to the 

community response (Trivedi et al., 2008).   

Hence, the proposed approaches to the prevision of climate change effects on biotic communities focus on 

the importance of ecological indirect effects (Krivtsov, 2004; Salas and Borrett, 2011) based on the rationale 

that climate change determines direct effects on single species, thence inducing complex feedbacks at 

community-level and leading to indirect effects and unexpected outcomes as well.  
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