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Abstract  
To explore secrets of metastatic cancers, individual expression of true sets of respective genes must spread 

across the tissue. In this study, meta-analysis for transcriptional profiles of oncogenes was carried out to hunt 

critical genes or networks helping in metastasizing cancers. For this, transcriptomic analysis of different 

cancerous tissues causing leukemia, lung, liver, spleen, colorectal, colon, breast, bladder, and kidney cancers 

was performed by extracting microarray expression data from online resource; Gene Expression Omnibus. A 

newly developed bioinformatics technique; Dynamic Impact Approach (DIA) was applied for enrichment 

analysis of transcriptional profiles using Database for Annotation Visualization and Integrated Discovery 

(DAVID). Furthermore, oPOSSUM (v. 2.0) and Cytoscape (v. 2.8.2) were used for in-depth analysis of 

transcription factors and regulatory gene networks respectively. DAVID analysis uncovered the most 

significantly enriched pathways in molecular functions that were ‘Ubiquitin thiolesterase activity’ up 

regulated in blood, breast, bladder, colorectal, lung, spleen, prostrate cancer. ‘Transforming growth factor 

beta receptor activity’ was inhibited in all cancers except leukemia, colon and liver cancer. oPOSSUM 

further revealed highly over-represented Transcription Factors (TFs); Broad-complex_3, Broad-complex_4, 

and Foxd3 except for leukemia and bladder cancer. From these findings, it is possible to target genes and 

networks, play a crucial role in the development of cancer. In the future, these transcription factors can serve 

as potential candidates for the therapeutic drug targets which can impede the deadly spread. 
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1 Introduction  
Cancer is not a single disease, it is a phrase used to identify immense number of similar diseases resulting 

from the interplay of gene(s) and environmental factors (Emilsson et al., 2008). Although, cancer can affect 
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every organ or tissue in the human body, the basic pathology remains the same. As abnormal proliferation 

and failure to cell death in cancer occurs due to the accumulation of mutations in oncogenes or tumor 

suppressor genes. 
The great majority of cancer deaths occur due to the ability of the cancer to metastasize to other organs. 

Over the last century, biological research has generated a wealth of knowledge about the cellular structural 

and functional attributes of cancer that lead to initiation and metastasis. Cancerous cells acquire metastatic 

abilities due to alterations that surpass their physiological barriers as they separate from their original 

developmental fate and environment (Nguyen and Massague, 2007). Thus, tumor cells proliferate and 

penetrate into new tissues, which eventually result in organ dysfunction and death. Understanding the 

metastatic process is far more challenging than early phases of cancer due to its complex cell-to-cell 

interaction and microenvironment that promote the process (Bardelli et al., 2003). Application of 

bioinformatics can help to uncover the molecular processes involved in metastatic cancer in a more systems 

oriented fashion.  
Gene expression profiling and other high throughput technologies have helped in understanding and 

performing systematic analyses of many complex diseases (Schadt et al., 2005). Microarrays put forth a 

platform to identify biomarkers along with mechanisms of toxicity and pathogenicity (Waring et al., 2002) 

and disease subtypes (Mootha et al., 2003; Schadt et al., 2003; van 't Veer et al., 2002). Bioinformatics tools 

further allow to re-construct gene networks by the integration of genetic data with gene expression to 

decipher the cellular dynamics during tumorigenesis (Zhu et al., 2004).  
Rhodes et al. (2004) have attempted to recognize cancer type-independent gene expression signatures and 

their corresponding transcriptional factors by comparative meta-profiling of microarrays of a wide range of 

cancers. They have characterized universally regulated transcriptional profiles in both well-differentiated and 

undifferentiated cancers. In another study, Wang et al. (2009) have identified gene-to-gene co-expression 

networks in liver among multiple species by performing semi-parametric meta-analysis strategy to study 

relationships among common human diseases. Using meta-profiling, researchers have revealed that down 

regulated genes in Duchenne Muscular Dystrophy (DMD) are involved in a single shared pathway that is 

responsible for creating disruption in activity of muscle related transcription factors (TF), which contribute to 

the severity of DMD and these TF can be potential candidates for drug targets (Kotelnikovaet al., 2012).  
In this study, we have identified tissue specific and conserved molecular pathways in different metastatic 

cancerous tissues e.g., lung, prostate, colorectal, kidney, breast, spleen, liver, colon, bone and bladder based 

on freely available gene expression data of these cancers from the GEO data base using the newly-developed 

‘Dynamic Impact Approach (DIA) (Bionaz et al., 2012). Furthermore, for in-depth analysis of the identified 

molecular mechanisms, their association with differentially expressed TFs was evaluated as a means to 

potentially uncover potential drug targets (Blancafortet al., 2004; Dunker andUversky, 2010; Smith andBirrer, 

1996). We speculate that simultaneous analysis of pathological events of cancers in different tissues can 

reveal conserved networks across different tissues that can highlight the main biological processes involved in 

pathogenesis and metastatic abilities of cancer. 

 
2 Methods  
Gene Expression Omnibus database (GEO) at National Centre for Biotechnology Information (NCBI) stores 

high throughput functional genomics datasets (Edgar and Barrett, 2006) and was created by adopting both 

microarray and sequence technologies. For this study, the data for different cancers were extracted from GEO 

on the basis of population, gender, age, pathological grade and primary site (Online material, file S1). All 

selected microarray experiments were performed on human genome U133 plus 2.0. The list of differentially 
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expressed genes (DEGs) with the cut off P-value was <0.001 and FDR 0.05 was used for all the down stream 

analysis. All the supplementary information is available at http://www.ncbi.nih.gov/geo of colon 

(GSM38055), lung(GSM38058), spleen (GSM38056), liver (GSM46848), breast (GSM38109), papillary 

renal cell carcinoma (GSM46847) and prostate cancer. The clinical parameters of the samples are reported in 

Table S1, file S1 (Supplementary material). The data for bladder leukemia and bladder cancer was extracted 

from Savli et al. (2012) and Zhu et al. (2011).  
The scheme of the study is presented in Fig. 1. The data analysis was divided into three parts, which 

include the following: (1) Enrichment Analysis by DIA (2) Transcription Factor Analysis performed by using 

the web server oPOSSUM (v.2.0) and (3) Gene Regulatory Networks generated by Cytoscape (v.2.8.2). 

Enrichment analysis was performed by using the DIA with the help of a freely available webserver, DAVID 

(v.6.7) (The Database for Annotation, Visualization and Integrated Discovery (DAVID version 6.7; http:// 

david.abcc.ncifcrf.gov/) to identify affected pathways, biological processes, and molecular functions within 

the DEGs. The detailed method for the analysis has been published previously (Bionaz et al., 2012). Briefly, 

the entire microarray data sets with associated statistical P-values were imported into DAVID. The ‘Impact’ 

refers to the absolute perturbation in a biological process (i.e., overall dynamics within a term/pathway). It 

gives the magnitude of change that occur (due to treatment) within a pathway/function in either direction 

weighted by the percent DEGs that hit the term/pathway. The ‘Flux’ (activation or inhibition) refers to the 

overall direction in which a term/pathway is impacted after treatment (Bionaz et al., 2012). The length of the 

bars depicts the degree of the impact, and the intensity of the color (e.g., from dark green denoting highly 

down regulated to dark red denoting highly upregulated) was used to highlight the degree of activation or 

inhibition of pathways and terms. As DIA is not a statistical approach; thus, it is not possible to apply cut-offs 

in order to determine if terms have a biological significance. Furthermore, the results (i.e., the impact) can be 

considered an indication of the effect of changes in the transcriptome on the biological terms. In this sense, 

the impact between two terms can be compared (i.e., one term being more impacted than another) in a 

relative fashion. Because the impact is an ‘absolute’ value, the same term also can be compared between two 

different experiments. As an example, biological terms that have an impact over 100 were considered as 

substantially affected by the treatment (i.e., a pathway with an impact of 100 needs to have on average 25% 

of protein-genes being significantly affected with a minimum of 2-fold change and 10−4 P-value) (Bionaz et 

al., 2012).  
For the analysis of sequences and key regulatory networks that regulate transcriptional responses under 

specific environment, oPOSSUM version 2.0 Human Site Analysis (link: http://www.cisreg.ca/cgi-

bin/oPOSSUM/opossum/) (Huang et al., 2006) and Cytoscape (Lopes et al., 2010) were used. oPOSSUM has 

been reported to identify the TFs that can mediate changes in gene expression through the detection of over-

represented TFBSs in a set of differentially expressed genes in comparison with the pre-compiled background 

gene sets. The identification of over-represented transcription factor binding sites (TFBS) from sets of co-

expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. 

oPOSSUM calculates two statistical measures for binding site over-representation, one at the gene level 

(Fisher exact test) and the other based on the ratio of TFBSs to nucleotides (Z-score). oPOSSUM accepts 

input in the form of gene identifiers e.g. Entrez ID. Against the background set, oPOSSUM compares number 

of hits for each selected TFBS in the target gene set. The database applies two statistical significance 

measures, which are Z-score and Fisher-score. Target gene hits and their respective TFs are retrieved through 

oPOSSUM. Cytoscape version 2.8.2 was used to create networks of the over expressed TF and their target 

gene list for the network analysis. 
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Fig. 1 Scheme of the study. 
 
 
 

3 Results  
Meta-analysis of transcriptional profiles of different cancers was performed to examine the expression of 

genes in response to cancer. A total of differential upregulated and downregulated genes with the cutoff as 

defined above fromselected microarray experiments are presented in Table 1. The aggregated number of 

DEGs identified in blood, lung, prostate, colorectal, papillary renal, breast, spleen, liver, colon and bladder 

cancers was160, 1015, 314, 610, 1823, 307, 309, 278, 220, 2018, respectively. For computational analysis 

with the DIA approach, we used all the 28 categories within DAVID but only Molecular Function 

(GOTERM_ MF_FAT) are reported here (Online material, file S2). Details of these categories were already 

reported elsewhere (Bionaz et al., 2012). 
 
 
 

Table 1 Number of differentially expressed genes in different cancer tissues with cut offp-value<0.001 and FDR 0.05. 
 
 DEGs Lung Prostate Colorectal Renal Breast Spleen Liver Colon Leukemia Bladder
            

 Up 200 200 312 201 201 201 201 201 71 1026

 Down 815 114 298 1622 106 108 77 19 89 992

 Total 1015 314 610 1823 307 309 278 220 160 2018
            

 
 
 

With the cut off value stated above, our analysis clearly showed that cancer in all the different tissues 

sharesseveral molecular events. The most enriched molecular functionsin all the selected cancer profiles are 

reported in Fig. 2. A global pattern of transcriptional responses in all the cancers, as determined from analysis 

of cancers in different tissues is shown in file S1 in the form of heat map. The top-most GO terms uncovered 

by DIAwere ‘Extracellular matrix structural constituent’, ‘Lipase inhibitor activity’, ‘Collagen binding’, 

‘Integrin binding’, Metalloendopeptidase inhibitor activity’, ‘Metalloenzyme regulator, ‘Metalloenzyme 
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inhibitor’‘Fibroblast growth factor 2 binding’, ‘Fibrinogen binding’, ‘Oxidoreductase activity, NAD or 

NADP’, ‘Alcohol dehydrogenase activity, zinc dependent’ and ‘Fibronectin binding’ (Fig. 2). 

 
Molecular Functions Lung Prostate Colorectal Renal Breast Spleen Liver Colon Leukeima

extracellular matrix structural constituent         
lipase inhibitor activity         
cyclin‐dependent protein kinase inhibitor activity         
extracellular matrix structural constituent conferring tensile strength         
fibronectin binding         
collagen binding         
integrin binding         
metalloendopeptidase inhibitor activity         
metalloenzyme regulator activity         
metalloenzyme inhibitor activity         
glycoprotein binding         
opsonin binding         
cytoskeletal adaptor activity         
oxidoreductase activity, acting on the CH‐NH2 group of donors         
heparin binding         
low‐density lipoprotein receptor activity         
glycosaminoglycan binding         
WW domain binding         
sulfuric ester hydrolase activity         
transforming growth factor beta binding         
pattern binding         
calcium‐dependent phospholipid binding         
snRNA binding         
oxidoreductase activity, acting on the CH‐NH2 group of donors         
oxygen transporter activity         
transaminase activity         
serine‐type endopeptidase inhibitor activity         
peptidase inhibitor activity         
peroxidase activity         
oxidoreductase activity, acting on peroxide as acceptor         
antigen binding         
glutathione transferase activity         
small conjugating protein binding         
lipoprotein binding         
lipopolysaccharide binding         
oxygen binding         
adenyl nucleotide binding         
transcriptioncorepressor activity         
endonuclease activity         
insulin‐like growth factor receptor binding         
amino acid binding         
acid‐amino acid ligase activity         

 
Fig. 2 The most impacted gene ontology terms (GO)as depicted by Dynamic Impact Approach (DIA) in different cancer 
tissues.On the extreme left are reported the most impacted biological terms. On the right of the column with the biological term 
is the column of the each tissue typeconsidered in this study. The column presents two sub-columns. In the left sub-column it is 
reported the horizontal blue bar that denotes the overall impact of the differentially expressed genes on the biological term. 
Larger the horizontal bar larger the impact. In the right sub-column it is reported a colored square that denotes the direction of 
the impact (green=inhibited; red=activated). Darker the color larger the activation (if red) or inhibition (if green) of the 
biological term. 
 
 
 

The most impacted GO term identified in all cancers was ‘Extracellular matrix structural constituent’. 

‘Extracellular matrix structural constituent’ is strongly induced in lung, breast spleen liver and colon cancer 

while inhibited in others. ‘Collagen binding’ that is involved in induction of cellular proliferation in many 

cancers is namely up regulatedin lung, prostate, colorectal, breast, spleen, liver, and colon cancer. ‘Integrin 

binding’ was induced in lung, renal, breast, spleen, liver, and colon cancer. ‘Metalloendopeptidase inhibitor 

activity’, metalloenzyme regulator, ‘Metalloenzyme inhibitor’ and ‘Insulin-like growth factor binding’ was
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inhibited in most of the cancers including lung, prostate, colorectal, renal, spleen, liver, and colon cancer. The 

pathways of ‘Metalloendopeptidase inhibitor activity’, metalloenzyme regulator, ‘metalloenzyme 

inhibitor’were induced in prostate, colorectal, liver, and colon cancer, however, they were inhibited in lung, 

renal, leukemia, breast, and spleen cancer. The GO term ‘Transaminase activity’was found induced in six 

cancer namely prostate, colorectal, spleen, liver and colon cancer. Moreover, ‘Transforming growth factor 2 

beta receptor activity (TGFB2)’ was inhibited in five cancers namely lung, prostate, colorectal, renal, and 

spleen cancer (Fig. 2).  
Fig.3 represents the up regulated molecular functions, which were shared among cancer at different sites. 

‘Ubiquitin thiolesterase activity’ was observed in seven different cancers namely leukemia, breast,bladder, 

colorectal, lung, prostate, and spleen cancer. ‘Phosphoserine phosphatase’ was identified in only three 

cancers; leukemia, colon, and liver cancer. Fig. 4 depicts the down-regulated molecular functions among all 

cancers. ‘Transforming growth factor beta receptor activity’was the most frequently appearing down 

regulated molecular function, observed in breast, bladder, colorectal, lung, kidney, prostate, and spleen 

cancer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Graph represents the molecular functions, which were up regulated in different cancers. On y-axis, biological terms 
aredisplayed and x-axis represents the expression of molecular function in various cancers distinguished by different colors. 
Legends displayed on the right side of the graph represent the list of cancers. ‘Ubiquitin thiolesterase activity’ is up regulated in 
seven different cancers and on the other hand ‘phosphoserine phosphatase activity’ is up regulated in only threedifferent 
cancers. 
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Fig. 4 Graph represents the molecular functions, which were down regulated in different cancers. On y-axis, biological terms 

aredisplayed and x-axis represents the expression of molecular function in various cancers distinguished by different colors. 

Legends displayed on the right side of the graph represent the list of cancers. Down regulation of ‘Transforming growth factor 

beta receptor activity’ is frequently appearing molecular function observed among seven different cancers. 
 

 
The prediction of over represented TF binding sites (TFBS) and transcription factors (TF) in different 

metastatic cancers was accomplished by using oPOSSUM. A complete list of TFBS for all the cancers is 

provided in file S2. Table 2 enlists the top ranked TFBS in all the cancer with maximum Z scores. Table 3 

gives an overview of all TFBS that were shared (appeared in more than one cancer) and/or appeared uniquely 

(that were tissue specific and found only in one cancer) in all cancers. 
We analyzed the list of DEGs for all cancerous data sets with oPOSSUM and found that the binding sites 

of Broad complex-3 and Broad complex-4, SRY were indeed the most significantly over-represented (Table 

2 and 3). Broad complex-3 and Broad complex-4, SRY sites were identified in most of the target gene in all 

the cancer. Broad complex 3 and Broad complex 4 were present in all the cancers except, leukemia and 

bladder cancer. Hb, MYB.ph3, NKx 2-5 and Sox 2 were shared among seven cancers while Dof2 and Prrx2 

were shared among five cancers. PBF was found unique for colorectal cancer, FOX 11 for renal cancer, and 

NF-kappaB for leukemia. Agamous, AGL3, Hand1-Tcfe2a, SP1 and TBP were listed only in bladder cancer 

(Table 3).  
Network analysis was done by using Cytoscape (v2.8.2). Genes were mapped against their respective TF, 
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represented by two different colors i.e. yellow color for TFsand pink color for genes expressed in different 

cancers. In network analysis, 100 Gene regulatory networks between TF and genes were generated. We have 

displayed the network of leukemia, which shows an apparently different result from other cancers, and a 

network of SRY (spleen cancer). It is a common TF observed among the majority of cancers (Fig. 5-6). 
 

 
Table 2 Statistically over-represented TF binding sites in gene expression data sets of different cancers.  

 TF TF Class Z-score Fisher Score TF TF Class Z-score Fisher Score
 A: Lung Cancer    F: Spleen Cancer    
         

 Broad-complex_3 ZN-FINGER, 51.8 4.66E-17 Broad-complex_3 ZN-FINGER, 36.59 1.1E-10 
  C2H2    C2H2   
 Nkx2-5 HOMEO 49.56 5.14E-08 SRY HMG 33.25 0.0000003 
 SRY HMG 49.42 2.71E-09 Sox5 HMG 32.93 1.55E-08 

 Broad-complex_4 ZN-FINGER, 46.51 2.55E-17 Broad-complex_4 ZN-FINGER, 32.58 1.65E-11 
  C2H2   _ C2H2   

 B: Prostate Cancer    G: Liver Cancer    
         

 Broad-complex_3 ZN-FINGER, 41.67 1.47E-11 Broad-complex_3 ZN-FINGER, 36.98 6.87E-14 
  C2H2    C2H2   
 Nkx2-5 HOMEO 37.63 0.000011 Sox5 HMG 33.48 1.56E-09 

 SRY HMG 37.51 0.000004 SRY HMG 32.77 1.52E-08 

 Broad-complex_4 ZN-FINGER 37.28 3.88E-11 Broad-complex_4 ZN-FINGER 32.29 3.63E-13 
  C2H2    C2H2   

 C: Colorectal Cancer   H: Colon Cancer    
         

 Broad-complex_3 ZN-FINGER, 12.98 0.01 Broad-complex_3 ZN-FINGER, 44.69 2.15E-14 
  C2H2    C2H2   
 SRF MADS 11.84 0.0118 Broad-complex_4 ZN-FINGER 40.12 6.27E-15 
      C2H2   
 NR3C1 NUCLEAR 9.665 0.000568 SRY HMG 39.56 2.11E-08 
  RECEPTOR       
 MYB.ph3 TRP-CLUS- 9.284 0.00396 Nkx2-5 HOMEO 39.18 0.000001 
  TER       

 D: PPRC    I: Leukemia    
         

 SRY HMG 28.69 0.00000185 RREB1 ZN-FINGER 12.43 0.0118 
 Broad-complex_3 ZN-FINGER 26.43 2.38E-09 ELF5 ETS 9.968 0.00459 
  C2H2       
 Nkx2-5 HOMEO 25.06 0.0000118 RELA REL 8.161 0.00008 

 Broad-complex_4 ZN-FINGER 24.04 8.23E-09 REL REL 8.064 0.00931 
  C2H2       

 E: Breast Cancer    J: Bladder Cancer   
         

 Broad-complex_3 ZN-FINGER, 32.5 1.35E-09 SRF MADS 22.4 3.56E-10 
  C2H2       
 Sox5 HMG 28.06 0.0000011 FOXD1 FORKHEAD 18.69 3.37E-08 
 Broad-complex_4 ZN-FINGER 26.54 2.41E-09 TBP TATA-box 17.83 0.000013 
  C2H2       
 SRY HMG 25.66 0.0000136 SRY HMG 16.32 0.0000356  

TFBSs detected by oPOSSUM with the top 4 mostly highly ranked Z-scores or with Fisher P-value < 0.01. TFs over-expressed or 

inhibited in gene expression studies. 
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Table 3 Summary of over-represented TF binding sites in gene expression data sets of all cancers. 
 

List of TF Lung Prostate Colorectal Renal Breast Spleen Liver Colon Leukemia Bladder
           

Agamous - - - - - - - - - Yes

AGL3 - - - - - - - - - Yes

Broad- Yes Yes Yes Yes Yes Yes Yes Yes - -

Complex_3           
Broad Yes Yes Yes Yes Yes Yes Yes Yes - -

Complex _4           
Dl_1 - - - - - - - - Yes -

Dl_2 - - - - - - - - Yes -

Dof2 - Yes Yes - Yes Yes Yes - - -

Dof3 - - - - Yes Yes Yes - - -

ELF5 - - - - - - - - Yes -

FOXD1 - - - - - - - - Yes Yes

Foxd3 Yes Yes Yes Yes Yes Yes Yes Yes - -

FOXF2 - - Yes - - - - - - Yes

FOXI1 - - - Yes - - - - - -

Hand1-Tcfe2a - - - - - - - - - Yes

Hb Yes Yes - Yes Yes Yes Yes Yes - -

MYB.ph3 Yes Yes Yes - Yes Yes Yes Yes - -

NF-kappaB - - - - - - - - Yes -

Nkx2-5 Yes Yes - Yes Yes Yes Yes Yes - -

NR3C1 - - Yes - - - - - - -

PBF - - Yes - - - - - - -

Pdx1 Yes - - Yes - - - - - -

Prrx2 Yes Yes Yes Yes - - - Yes - -

REL - - - - - - - - Yes -

RELA - - - - - - - - Yes -

RREB1 - - - - - - - - Yes -

RUNX1 - - - - - - - - Yes -

Sox5 Yes Yes - Yes Yes Yes Yes Yes - -

SP1 - - - - - - - - - Yes

SQUA - - - - - - - Yes - Yes

SRF - - Yes - - - - - Yes Yes

SRY Yes Yes - Yes Yes Yes Yes Yes - Yes

TBP - - - - - - - - - Yes

 
Set of genes in the included target set from which TFBS was identified is listed under Target gene hits  
Z-score is the possibility that the number of TFBS nucleotides predicted in the included target genes is significant as compared to the 

TFBSnucleotides predicted in the Background set. 
Fisher Score is the possibility that the number of hits vs. non-hits in the included target genes could have occurred in random chance based 

on the number of hits vs. non-hits of the background. 
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A B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
C D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 A, B, C and D networks of leukemia representing association of transcription factors SRF, dl_1, ELF5 and 

FOXD1(yellow color) with its respective genes (pink color), generated by using Cytoscape (v. 2.0) 

 
 
4 Discussion  
According to the objectives of our study, we primarily analyzed the microarray data sets of metastatic cancers 

at different sites to visualize the most impacted biological terms. The analysis revealed not only a set of the 

most impacted biological terms in all selected cancers, but also uncovered a list of TF and their biological 

networks in the datasets. The data further uncovered the biological terms that were shared by most of the 

cancers as well as the set of genes that were unique to a particular tissue. 
Extracellular matrix (ECM) not only contributes to the structural integrity of the tissues but also mediates 

the signal transduction processes that conduct growth, differentiation and cell migration. Expression and 

activation of some tumor related genes is known be associated directly with ECM (Adams and Watt, 1993; 
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Howlett et al., 1994). The exact mechanism of ECM action is still not known, but deregulation of ECM 

promotes metastasis by destabilizing the cell structural organization and basement membrane that allow the 

passage of tumor cell. As the result of such degradation, primary tumor proliferates and penetrates into new 

tissue habitats (Nerenberg et al., 2007). Growth kinetics of the cell highly depends on the type of growth 

factor (GF) that binds the ECM and its microenvironment (Petersenet al., 1992). Upregulation of ECM 

constituents in current study might have promoted the specific set of GFs that might have positively 

influenced the proliferation and cell invasion. Furthermore, collagen is the primary constituent of 

physiological barriers, and it has assumed to be the primary ground upon which biochemical events of 

metastasis take place (Nerenberg et al., 2007). Verhoeven et al. (1993) have reported an increased expression 

of type IV collagen in periductal breast cancer. The induction of collagen binding in most of the cancers might 

be indicative of the fact that important physiological changes occur in non-basement membrane of ECM. 
 

 
A B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 A, B, C and D networks of spleen cancer generated by using Cytoscape (v. 2.0),represents association of 

transcriptionfactors SRY, Broad-complex_3, Broad-complex_4 and Foxd3 (yellow color) with its respective genes (pink color). 
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The function of metalloendopeptidase inhibitor is to inhibit the matrix metalloendopeptidase (MMP) that 

is associated with the extracellular matrix (ECM) turn over. Metalloenzyme regulator and metalloenzyme 

inhibitor are the proteins that regulate and inhibit the metal containing enzymes that can modulate many 

diseases including cancer. These inhibitors play an important role in the homeostasis of ECM, which is a 

crucial player of tumor invasion and metastasis (Jiang et al., 2002). Deregulation of the metallo-

endopeptidase inhibitor activity is reported to be associated with migration of the tumor cell and 

neovascularization. Prolyloligopeptidase activity is elevated in various cancers and plays an important role in 

the promotion of angiogenesis (Christiansen et al., 2013). Transminase activity is the catalyst for stimulating 

the transfer of amino group to acceptor, an aid to detection of liver metastases (Kim et al., 1977).  
Insulin-like growth factor (IGF) binding promotes cell migration and has been shown to either inhibit or 

stimulate growth-promoting effects of Insulin-like Growth Factors (IGFs). They alter the interaction of IGFs 

with their cell surface receptors that triggers the cascade of molecular events, and ultimately lead to 

malignancy (Sala et al., 2005; Samani et al., 2007). Inhibition of IGF binding in most of the cancers in our 

study dictates a diverse role of this pathway in controlling the cell migration and abnormal proliferation 

pathways. Transforming growth factor 2 beta receptor activity (TGFB2) regulates a plethora of physiological 

and pathological processes such as cell cycle arrest in epithelial and hematopoietic cells, control of 

mesenchymal cell proliferation and differentiation, wound healing extracellular matrix production 

immunosuppression and carcinogenesis. TGFB2 plays an important role in tumor invasion and metastasis 

(Ganapathy et al., 2010). Microtubule plus end binding is known as the most crucial player in many cellular 

functions, such as cell migration. The regulation of cell migration is more activated in cancer cells when 

cancer cells become metastatic (Scolz et al., 2012).  
Phosphoserine phosphatase activity plays a fundamental role in the regulation of a number of signaling 

pathways whose deregulation can contribute to cancer (Eichhorn et al., 2009). The most important pathways 

include Notch, Wnt and Hedgehog. Notch signaling is the key regulator of development and cell fate in 

various tissues. Notch signaling activates proto-oncogenes; Notch 1 and -3, they play a crucial role in 

carcinogenesis. Similarly, Wnt signaling produces a proto-oncogene Wnt1 that stimulates oncogenesis. 

Hedgehog signaling is mostly identified in basal cell carcinomas (Malhotra et al., 2011). Threonine type 

endopeptidase activity has associated pathological processes such as carcinogenesis. This endopeptidase 

activity through its upregulation plays a central role in tumor growth and the multistep processes of invasion 

and metastasis, as it destabilize the cell stability (Gialeli et al., 2011; Yu et al., 2010). These evidence 

supports the upregulation of phosphoserine phosphatase activity in many cancers in this study. Upregulation 

of phosphoserine phosphatase activity, threonine type endopeptidase activity in conjunction with down 

regulation of TGF beta-receptor activity that is a tumor suppressor gene, are combined factors that lead to 

malignancy. 
 

Ubiquitin thiolesterase activity is involved in the enhancement of proliferation in multiple types of cells. 

Kabuta et al has probed this activity by using various mutants of ubiquitin thiolesterase. Inhibition of the 

interaction between ubiquitin thiolesterase activity and cell cycle-associated CDK resulted in the destruction 

of ubiquitin thiolesterase-induced enhancement of cell proliferation (Kabuta et al., 2013). Ubiquitin 

thiolesterase activity is observed in the majority of cancers in our study, which emphasizes its important role 

in boosting cellular proliferation. Besides this, phosphoserine phosphatase activity, although identified as up 

regulated in few cancers in our study, because it plays a discrete role in signals pathway regulation, also has 

tumor suppressor characteristic.  
Cadherins are calcium-dependent cell adhesion proteins that trigger loss of cell–cell adhesion; cadherin 

might also deliver signals that actively induce tumor-cell invasion and metastasis (Vleminckx et al., 1991). 
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Cadherin binding that was observed as an up regulated function in bladder, colon, breast, kidney, prostate 
cancer, is pivotal in maintaining epithelial tissue integrity and are the major barrier for epithelial cancer 

metastasis (Imai et al., 2000; Lu, 2010). It has been observed as a key element of tumor progression in many 

studies, serving as a suppressor of invasion and metastasis (Hajra and Fearon, 2002). Cadherin binding is also 

the important molecular function observed in many cancers in our study as it actively induces and supports 

tumor development. 
Major histocompatibility complex I (MHC) Class I and MHC protein binding presented the same 

response in many cancers in our study. These are well known to trigger the immune system in fighting 

against cancerous cells. MHC Class I protein binding is involved in the presentation of foreign antigens to the 

immune system (Watkins et al., 1990). MHC Class I A is commonly expressed in carcinoma cell lines. It is 

phenotypically detected mostly in T cell leukemia cell lines. Proper functioning of MHC I molecules are 

essential in fighting cancer (Evans et al., 1999) for recognition of cancerous cell in order to generate a proper 

immune response (Pende et al., 2002). MHC protein binding plays a role in the natural control of cancer cells. 

Cancer cells contain many mutated proteins that may be presented by MHC to alert the immune system. 

Tumor cells may also express normal proteins but in rare places or in abnormal amounts, providing a 

potential signal to mobilize an immune response (Goodsell, 2005).  
snRNA-binding is a molecular function that plays different yet an important role. It plays a role in 

aggravating cancer by overexpression of genes during splicing. snRNA binding is among the increasing list 

of splicing factors that have been found to be upregulated or downregulated in cancers, as compared with the 

equivalent normal tissues. Cancer-associated genetic instability is likely to have an important role in this 

process. Overexpression of splicing factor like SF2/ASF was reported to associate with amplification of the 

gene encoding these splicing factors, thus, enhancing the genetic instability (Karni et al., 2007), whereas 

reduced expression of many genes like RBM5 in lung cancer correlates with deletion of its gene locus at 

chromosomal region 3p21.3 (Oh et al., 2006).  
Structural constituent of ribosome exhibits its role in biological processes including cell adhesion, 

differentiation, migration, signaling, neurite outgrowth and metastasis (Hao et al., 2004). Ribosomal proteins 

control cell cycle functioning such as checkpoints of cell cycle and cell proliferation. They play a crucial role 

in translational regulation and control of cellular transformation, tumor growth, aggressiveness and metastasis 

(Chattopadhyay et al., 2007). 
Water channel activity includes specific membrane proteins that play important roles in numerous 

physiological processes such as adhesion and migration. Studies indicated that abnormal expression or 

activity of a number of ion channels e.g. voltage-gated K+, Na+, Ca2+ channels, TRP channels, and 

epithelial Na+/degenerin family of ion channels, are involved in the growth/proliferation, migration or 

invasion of cancer cells (Li and Xiong, 2011). In our study, water channel activity is found down regulated in 

many cancers as it enhances abnormal cell growth and expression.  
Vascular endothelial growth factor (VEGF) is associated with tumor angiogenesis and poor prognosis in 

human colorectal cancer. VEGF receptor-1 is a high-affinity receptor for VEGF and is typically considered 

specific to endothelial cells. VEGFR-1 was expressed in all colorectal cell lines. Both VEGF-A and -B led to 

significant induction of cell motility and invasiveness of colorectal cells. VEGF family ligands can activate 

processes involved in tumor progression and metastasis (Fan et al., 2005). VEGF was observed to be 

upregulated in many cancers, however, unexpected down regulation was observed in, colorectal, kidney, lung 

and prostate cancer.  
Transforming growth factor-β (transforming growth factor-β (TGF-β) has emerged as a family of growth 

factors involved in essential physiological processes, including embryonic development, differentiation,  
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tissue repair and cell growth control (Javelaud and Mauviel, 2004). Alterations in the TGF-β signaling 

pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-β-

mediated inhibition of proliferation are frequently observed in human cancers (Elliott and Blobe, 2005). 

Down regulation in our study supports these findings. TGF is down regulated in bladder, colorectal, 

leukemia, prostate and spleen cancer. The role of transforming growth factor beta (TGF-beta) in 

carcinogenesis is quite complex, with tumor suppressor and pro-oncogenic activities depending on the 

particular tumor cell and its stage in malignant progression. Smad2/3, important players in TGF signaling, 

played a prominent role in regulating tumor suppressor effects on well-differentiated breast cancer cell lines 

resulting in the formation of larger tumors with an increased proliferation and more malignant histologic 

features (Tian et al., 2004). VGEF, TGF-beta and SH2 binding are the three important molecular functions 

mentioned above were identified as down regulated in many cancers. This may be due to their almost similar 

role in inhibiting cancer progression because all three highly promote proto-oncogenic activities that’s why 

they need to be down regulated to maintain the balance in a cell.  
Chemokines and their receptors play critical roles in leukocyte trafficking during inflammatory processes. 

Although the role of chemokine receptors (CKRs) in cancer biology is relatively new, the data suggest that a 

number of CKRs, including CXCR4, CCR4, CCR7, and CCR10, may play diverse roles in cancer growth, 

metastasis, and angiogenesis, or the composition of the cancer microenvironment. For example, preclinical 

models of cancer indicate that cancer antagonists, most notably those for CXCR4, can block cancer growth 

either directly or by altering the cancer stroma (Wu et al., 2009). Similar to these observations, chemokines 

activity is identified as down regulated in leukemia, bladder, liver, lung and kidney cancer in our study.  
Src homology-2 (SH2) domain containing phosphatases (Shps) are small, highly conserved subfamily of 

protein-tyrosine phosphatases. It has been identified that mutations in human Shp2 as the cause of the 

inherited disorder Noonan syndrome. Shp2 mutations might also contribute to the pathogenesis of some 

leukemia’s. These domains are the elements that control the interaction of cytoplasmic signaling proteins 

(Neel et al., 2003). SH2 binding is down regulated in bladder, breast, lung, kidney, prostate, and spleen 

cancer. In our study, the SH2 domain binding is observed as down regulated in many cancers because of role 

in controlling the signaling pathways. But with reference to the study described above, our results for 

leukemia were found to be different because in our study leukemia is not reported to be down regulated in 

SH2 binding domain. This may be due to the difference in choosing the cancer type, pathological grade or 

primary site in our study comparable to their study.  
Phosphoinositide kinase 3 binding activity is down regulated in breast, lung, leukemia and spleen cancer. 

It is crucial for cell invasion and migration, not only for physically tethering cells to the matrix, but also for 

sending and receiving molecular signals that regulate these processes (Engelman, 2007). It establishes the 

initiation of an intricate signaling cascade, which eventually results in the mediation of cellular activities such 

as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis (Katso et al., 

2001). Broad-complex (BR-C_3 or 4) belongs to class of zinc finger transcription factors, observed in all 

cancers except leukemia and bladder cancer. It is a primarily ecdysone response gene, which is a key 

regulator of metamorphosis, which enhances cell growth and differentiation (Karim et al., 1993). On the 

contrary, FoxD3 was observed in kidney, lung, prostate, colorectal, spleen, breast, liver and colon cancer. 

FoxD3 belongs to the forkhead family of transcription factors, acts as transcription repressor and activator. 

Important player required for the maintenance of pluripotent cells in the various embryogenesis stages as it 

inhibits migration and invasion of cells (Guo et al., 2002).  
In conjunction with the other shared transcription factors, SRY is a member of transcription factor class 

HMG. SRY is a transcriptional regulator that controls a genetic switch in male development. SRY is also 
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involved in different aspects of gene regulation including activation and repression of tumor. It plays an 

important role in pre-mRNA splicing. Elevated expression of SRY-related HMG box transcription factor has 

been reported in various tumors, comprising colorectal cancer, lung cancer, and breast cancer. SRY plays a 

central role in the development of these malignancies (Vervoort et al., 2013). 
ELF5, NF-kappa B, Dl_1, REL, RELA, RREB1 and RUNX1 are predicted only in leukemia. L_1 and 

dl_1 both belongs to REL family of transcription factors. ELF5 belongs to epithelium specific subclass of the 

ETS transcription factor family (Zhou et al., 1998). ELF5 regulates the later stages of terminal differentiation 

of keratinocytes and regulates a number of epithelium-specific genes found in tissue containing glandular 

epithelium such as salivary glands and prostate (Sharrocks et al., 1997). Likewise, NF-kappa B, REL, RELA 

all belong to REL family, it is a pleiotropic transcription factor which is present in almost all cell types and is 

involved in various biological process such as inflammation, immunity, differentiation, cell growth 

tumorigenesis and apoptosis. NF-kappa B is controlled by various mechanisms of post-translational 

modification and sub cellular compartmentalization as well as by interactions with other co-factors or co-

repressors (Chen et al., 1999). Correspondingly, RREB1 belongs to ZN-FINGER, C2H2 family. RREB1 

binds specifically to the RAS-responsive elements (RRE) of gene promoters it may be involved in Ras/Raf-

mediated cell differentiation by enhancing calcitonin expression and this further leads to the medullary 

thyroid carcinoma (MTC) (Carson et al., 1995). RREB1 represses the angiotensinogen gene. It negatively 

regulates the transcription activity of androgen receptor Stimulates the transcriptional activity of NEUROD1. 

RUNX1 belongs to RUNT family. It is a heterodimeric transcription factor that binds to the core element of 

many enhancers and promoters (Zhang et al., 1997). The protein encoded by RUNX1 is involved in the 

development of normal hematopoiesis. Chromosomal translocations involving this gene were well 

documented and have been associated with several types of leukemia (Ichikawa et al., 2013).  
TBP that was found only in leukemia belongs to TATA-Box family; it is a general transcription factor 

that functions at the core of the DNA binding multi protein factors TFIIT. Binding of TFIIT to the TATA box 

is the initial transcriptional step of the peri-initiation complex, playing a major role in the activation of 

eukaryotic genes transcribed by RNA polymerase II (Peterson et al., 1990). Similarly, SP1 belongs to same 

family of transcription factor as RREB1 i.e. ZN-FINGER, C2H2 family. SP1 can activate or repress 

transcription in response to physiological and pathological stimuli. It binds with high affinity to GC-rich 

motif and regulates the expression of large number of genes involved in a variety of process such as cell 

growth, apoptosis, differentiation and immune response. SP1 highly regulated by post translational responses. 

It may have a role in modulating the cellular response to DNA damage. TBP and SP1 both show expression 

in regulating cellular proliferation and apoptosis (Wimmer et al., 1997).  
NR3C1 that appeared only in colorectal cancer belongs to ZN-FINGER and DOF family. NR3C1 gene 

encodes glucocorticoid response elements in the promoters of glucocorticoid responsive genes to activate 

their transcription, and as a regulator of other transcription factors. This receptor is typically found in 

cytoplasm, but upon ligand binding is transported in to the nucleus. It is involved in inflammatory responses, 

cell proliferation and differentiation in target tissues (Ray et al., 1996).  
In papillary renal cell carcinoma, FOXI1 gene appears unique. FOXI1 belongs to FORKHEAD family of 

transcription factors, which is characterized by a distinct FORKHEAD domain. FOXI1 plays a major role in 

the development of cochlea and vestibulum, as well as embryogenesis (Larsson et al., 1995). Deregulation of 

FOX family transcription factors can alter the cell fate, boost cancer development and progression (Myatt and 

Lam, 2007). FORKHEAD transcription factors are the crucial player in the regulation of cell cycle arrest, cell 

death and DNA damage repair (Yang and Hung, 2011). 
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5 Conclusions  
The use of bioinformatics techniques for a holistic understanding of any biological system needs to be 

addressed with all the biological elements involved in a system like transcriptome, proteome and their 

regulator networks. The use of system biology to study cancer and its pathological effects needs to go beyond 

simple functional analysis of transcriptome. Instability and invasiveness of the cancers reported in this study 

were clearly depicted by deregulation of pathways like extracellular matrix structural constituent, metallo-

endopeptidase inhibitor, insulin-like growth factor (IGF), phosphoserine phosphatase activity and cadherins 

at the transcriptome level. However, to confirm and specify the role of these pathways in the deadly spread of 

cancer, regulator pattern of these pathways have to be identified at protein level as well to screen candidate 

for drug targets. This will bring a deeper understanding of complex microenvironment of cancer with the 

improvement in drug candidates against cancer. 
 

 
References  
Auguste P, Fallavollita L, Wang N, et al. 2007. The host inflammatory response promotes liver metastasis 

byincreasing tumor cell arrest and extravasation. American Journal of Pathology, 170(5): 1781-1792 
Adams JC, Watt FM. 1993.Regulation of development and differentiation by the extracellular 

matrix.Development, 117(4): 1183-1198 
Bardelli A, Saha S, Sager JA, et al. 2003. PRL-3 expression in metastatic cancers. Clinical Cancer Research, 

9(15): 5607-5615 
Bionaz M, Periasamy K, Rodriguez-Zas SL, et al. 2012. A novel dynamic impact approach (DIA) for 

functional analysis of time-course omics studies: validation using the bovine mammary transcriptome. 

PLoS One, 7(3): e32455 
Blancafort P, Segal DJ, Barbas, CF. 2004. Designing transcription factor architectures for drug discovery. 

Molecular Pharmacology, 66(6): 1361-1371 
Carson EB, McMahon M, Baylin SB, et al. 1995. Ret gene silencing is associated with Raf-1-induced 

medullary thyroid carcinoma cell differentiation. Cancer Research, 55(10): 2048-2052 
Chattopadhyay I, Kapur S, Purkayastha J, et al. 2007.Gene expression profile of esophageal cancer in North 

East India by cDNA microarray analysis. World Journal of Gastroenterology, 13(9): 1438-1444 
Chen F, Castranova V, Shi X, et al. 1999. New insights into the role of nuclear factor-kappaB, a ubiquitous 

transcription factor in the initiation of diseases. Clinical Chemistry, 45(1): 7-17 
Christiansen V J, Jackson KW, Lee KN, et al. 2013.Targeting inhibition of fibroblast activation protein-alpha 

and prolyloligopeptidase activities on cells common to metastatic tumor microenvironments.Neoplasia, 

15(4): 348-358 
Dunker AK, Uversky VN, et al. 2010. Drugs for 'protein clouds': targeting intrinsically disordered 

transcription factors. Current Opinion in Pharmacology, 10(6): 782-788 
Edgar R, Barrett T, et al. 2006. NCBI GEO standards and services for microarray data. Nature Biotechnology, 

24(12): 1471-1472 
EichhornPJ, Creyghton MP, Bernards R, et al. 2009. Protein phosphatase 2A regulatory subunits and 

cancer.BiochimicaetBiophysicaActa, 1795(1): 1-15 
Elliott RL, Blobe GC. 2005. Role of transforming growth factor Beta in human cancer. Journal Clinical 

Oncology, 23(9): 2078-2093 

 
IAEES www.iaees.org 

16



Network Biology, 2014, 4(1): 1-20 
 
 
Emilsson V, Thorleifsson G, Zhang B et al. 2008. Genetics of gene expression and its effect on disease. 

Nature, 452(7186): 423-428 
Engelman JA. 2007. The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer. 

Clinical Cancer Research, 13(15 Pt 2): s4637-4640 
Evans DT, Knapp LA, Jing P, et al. 1999. Three different MHC class I molecules bind the same CTL epitope 

of the influenza virus in a primate species with limited MHC class I diversity. Journal of Immunology, 

162(7): 3970-3977 
Fan F, Wey JS, McCarty MF, et al. 2005. Expression and function of vascular endothelial growth factor 

receptor-1 on human colorectal cancer cells. Oncogene, 24(16): 2647-2653 
Ganapathy V, Ge R, Grazioli A, et al. 2010. Targeting the Transforming Growth Factor-beta pathway inhibits 

human basal-like breast cancer metastasis. Molecular Cancer, 9: 122 
Gialeli C, Theocharis AD, KaramanosNK. 2011. Roles of matrix metalloproteinases in cancer progression 

and their pharmacological targeting. FEBS Journal, 278(1): 16-27 
Goodsell DS. 2005. The molecular perspective: major histocompatibility complex. Oncologist, 10(1): 80-81 

Guo Y, Costa R, Ramsey H, et al. 2002. The embryonic stem cell transcription factors Oct-4 and FoxD3 
interact to regulate endodermal-specific promoter expression. Proceedings of the National Academy of 

Sciences USA, 99(6): 3663-3667 
Hajra KM, Fearon ER. 2002. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer, 

34(3): 255-268 
Hao X, Sun B, Hu L, et al. 2004.Differential gene and protein expression in primary breast malignancies and 

their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. 

Cancer, 100(6): 1110-1122 
Howlett AR, Petersen OW, Steeg PS, et al. 1994. A novel function for the nm23-H1 gene: overexpression in 

human breast carcinoma cells leads to the formation of basement membrane and growth arrest. Journal of 

National Cancer Institute, 86(24): 1838-1844 
Huang S, Fulton D, et al. 2006.Identification of over-represented combinations of transcription factor binding 

sites in sets of co-expressed genes. In: Advances in Bioinformatics and Computational Biology (Vol. 3). 

247-256, Imperial College Press, London, UK 
Ichikawa M, Yoshimi A, Nakagawa M, et al. 2013.A role for RUNX1 in hematopoiesis and myeloid 

leukemia. International Journal of Hematology, 97(6): 726-734. 
Imai K, Takada N, Satoh N, et al. 2000. (Beta)-catenin mediates the specification of endoderm cells in 

ascidian embryos. Development, 127(14): 3009-3020 
Javelaud D, Mauviel A. 2004. Mammalian transforming growth factor-betas: Smad signaling and physio-

pathological roles. International Journal of Biochemistry and Cell Biology, 36(7): 1161-1165 
JiangY, Goldberg ID, Shi YE. 2002. Complex roles of tissue inhibitors of metalloproteinases in cancer. 

Oncogene, 21(14): 2245-2252 
Kabuta T, Mitsui T, Takahashi M, et al. 2013. Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel 

potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase 

activity. Journal of Biology and Chemistry, 288(18): 12615-12626 
Karim FD, Guild GM, Thummel CS. 1993. The Drosophila Broad-Complex plays a key role in controlling 

ecdysone-regulated gene expression at the onset of metamorphosis. Development, 118(3): 977-988 
Karni R, de Stanchina E, Lowe SW, et al. 2007. The gene encoding the splicing factor SF2/ASF is a proto-

oncogene. Nature Structural & Molecular Biology, 14(3): 185-193 
 
 
 
IAEES www.iaees.org 

17



Network Biology, 2014, 4(1): 1-20 
 
 

Katso R, Okkenhaug K, Ahmadi K, et al. 2001. Cellular function of phosphoinositide 3-kinases: implications 

for development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17: 615-

675 
Kim NK, YasminehWG, FreierEF, et al. 1977. Value of alkaline phosphatase, 5'-nucleotidase, gamma-

glutamyltransferase, and glutamate dehydrogenase activity measurements (single and combined) in serum 

in diagnosis of metastasis to the liver. Clinical Chemistry, 23(11): 2034-2038 
Kotelnikova E, Shkrob MA, Pyatnitskiy MA, et al. 2012. Novel approach to meta-analysis of microarray 

datasets reveals muscle remodeling-related drug targets and biomarkers in Duchenne muscular dystrophy. 

PLoS Computational Biology, 8(2): e1002365 
Larsson C, Hellqvist M, Pierrou S, et al. 1995. Chromosomal localization of six human forkhead genes, 

freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12). Genomics, 

30(3): 464-469 
Li M, XiongZG. 2011. Ion channels as targets for cancer therapy. International Journal of Physiology, 

Pathophysiology and Pharmacology, 3(2): 156-166 
Lopes CT, Franz M, Kazi F, et al. 2010. Cytoscape Web: an interactive web-based network browser. 

Bioinformatics, 26(18): 2347-2348 
Lu Q. 2010. delta-Catenin dys-regulation in cancer: interactions with E-cadherin and beyond. Journal of 

Pathology, 222(2): 119-123 
MalhotraGK, Zhao X, Band H, et al. 2011. Shared signaling pathways in normal and breast cancer stem cells. 

Journal of Carcinogenesis, 10: 38 
MoothaVK, Lindgren CM, Eriksson KF, et al. 2003. PGC-1alpha-responsive genes involved in oxidative 

phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34(3): 267-273 
Myatt SS, Lam EW. 2007. The emerging roles of forkhead box (Fox) proteins in cancer. Nature Review of 

Cancer, 7(11): 847-859 
Neel BG, Gu H, PaoL. 2003. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell 

signaling. Trends in Biochemical Sciences, 28(6): 284-293 
Nerenberg PS, Salsas-Escat R, Stultz CM. 2007. Collagen--a necessary accomplice in the metastatic process. 

Cancer Genomics Proteomics, 4(5): 319-328 
Nguyen DX, Massague J. 2007. Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8(5): 

341-352 
Oh JJ, Razfar A, Delgado I, Reed R A, et al. 2006. 3p21.3 tumor suppressor gene H37/Luca15/RBM5 

inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis. Cancer Research, 

66(7): 3419-3427 
Pende D, Rivera P, Marcenaro S, et al. 2002. Major histocompatibility complex class I-related chain A and 

UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor 

susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Research, 62(21): 6178-6186 
Petersen OW, Ronnov-Jessen L, Howlett AR, et al. 1992. Interaction with basement membrane serves to 

rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial 

cells. Proceedings of the National Academy of Sciences of USA, 89(19): 9064-9068 
Peterson MG, Tanese N, Pugh BF. 1990. Functional domains and upstream activation properties of cloned 

human TATA binding protein. Science, 248(4963): 1625-1630 
Ray DW, Davis JR, White A, et al. 1996. Glucocorticoid receptor structure and function in glucocorticoid-

resistant small cell lung carcinoma cells. Cancer Research, 56(14): 3276-3280 
 
 
 
IAEES www.iaees.org 

18



Network Biology, 2014, 4(1): 1-20 
 
 
Rhodes DR, Yu J, Shanker K, et al. 2004. Large-scale meta-analysis of cancer microarray data identifies 

common transcriptional profiles of neoplastic transformation and progression. Proceedings of the 

National Academy of Sciences of USA, 101(25): 9309-9314 
Sala A, Capaldi S, Campagnoli M, et al. 2005. Structure and properties of the C-terminal domain of insulin-

like growth factor-binding protein-1 isolated from human amniotic fluid. Journal of Biological 

Chemistry, 280(33): 29812-29819 
Savli H, Sunnetci D, Cine N, et al. 2012. Gene expression profiling of B-CLL in Ukrainian patients in post-

Chernobyl period. Experimental Oncology, 34: 57-63 
Samani AA, Yakar S, LeRoith D, et al. 2007. The role of the IGF system in cancer growth and metastasis: 

overview and recent insights. Endocrine Reviews, 28(1): 20-47 
Schadt EE, Lamb J, Yang X, et al. 2005. An integrative genomics approach to infer causal associations 

between gene expression and disease. Nature Genetics, 37(7): 710-717 
Schadt EE, Monks SA, Drake TA, et al. 2003. Genetics of gene expression surveyed in maize, mouse and 

man. Nature, 422(6929): 297-302 
Scolz M, Widlund PO, Piazza S, et al. 2012. GTSE1 is a microtubule plus-end tracking protein that regulates 

EB1-dependent cell migration. PLoS One, 7(12): e51259 
Sharrocks AD, Brown AL, Ling Y, et al. 1997. The ETS-domain transcription factor family.International 

Journal of Biochemistry & Cell Biology, 29(12): 1371-1387 
Smith LM, BirrerMJ. 1996. Use of transcription factors as agents and targets for drug development. 

Oncology, 10(10): 1532-1538 
Tian F, Byfield SD, Parks L, et al. 2004. Smad-binding defective mutant of transforming growth factor beta 

type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer 

Research, 64(13): 4523-4530 
van 't Veer LJ, Dai H, van de VijverMJ, et al. 2002. Gene expression profiling predicts clinical outcome of 

breast cancer. Nature, 415(6871): 530-536 
Verhoeven D, Bourgeois N, Buyssens N, et al. 1993. Ultrastructural demonstration of type IV collagen 

deposits in periductalelastosis in breast cancer. Pathology-Research and Practice, 189(2): 144-149 
VervoortSJ, van Boxtel R, Coffer PJ. 2013. The role of SRY-related HMG box transcription factor 4 (SOX4) 

in tumorigenesis and metastasis: friend or foe? Oncogene, 32(29): 3397-3409 
Vleminckx K, Vakaet L, Jr. Mareel M, et al. 1991. Genetic manipulation of E-cadherin expression by 

epithelial tumor cells reveals an invasion suppressor role. Cell, 66(1): 107-119 
Wang K, Narayanan M, Zhong H, et al. 2009. Meta-analysis of inter-species liver co-expression networks 

elucidates traits associated with common human diseases. PLoS Computational Biology, 5(12): 

e1000616. 
WaringJF, Gum R, MorfittD, et al. 2002. Identifying toxic mechanisms using DNA microarrays: evidence 

that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon 
nuclear receptor. Toxicology, 181-182: 537-550  

Watkins DI, Chen ZW, Hughes AL, et al. 1990. Evolution of the MHC class I genes of a New World primate 

from ancestral homologues of human non-classical genes. Nature, 346(6279): 60-63 
WimmerEA, Cohen SM, Jackle H, et al. 1997. Buttonhead does not contribute to a combinatorial code 

proposed for Drosophila head development. Development, 124(8): 1509-1517 
Wu X, Lee VC, Chevalier E, et al. 2009. Chemokine receptors as targets for cancer therapy.Current 

Pharmaceutical Design, 15(7): 742-757 
Yang JY, Hung MC. 2011. Deciphering the role of forkhead transcription factors in cancer therapy. Current 

Drug Targets, 12(9): 1284-1290 
IAEES www.iaees.org 

19



Network Biology, 2014, 4(1): 1-20 
 
 

Yu DM, Yao TW, Chowdhury S, et al. 2010.The dipeptidyl peptidase IV family in cancer and cell 

biology.FEBS Journal, 277(5): 1126-1144 
Zhang YW, Bae SC, Huang G, et al. 1997. A novel transcript encoding an N-terminally truncated 

AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 

32Dcl3 myeloid cells. Molecular and Cell Biology, 17(7): 4133-4145 
Zhou J, Ng AY, TymmsMJ, et al. 1998. A novel transcription factor, ELF5, belongs to the ELF subfamily of 

ETS genes and maps to human chromosome 11p13-15, a region subject to LOH and rearrangement in 

human carcinoma cell lines. Oncogene, 17(21): 2719-2732 
Zhu J, LumPY, Lamb J, et al. 2004. An integrative genomics approach to the reconstruction of gene networks 

in segregating populations. Cytogenetic Genome Research, 105(2-4): 363-374 
Zhu J, Jiang Z, Gao F, et al. 2011. A systematic analysis on DNA methylation and the expression of both 

mRNA and microRNA in bladder cancer.PloS ONE, 6(11): e28223 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IAEES www.iaees.org 

20




