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Abstract 

Immunization of complex network with minimal or limited budget is a challenging issue for research 

community. In spite of much literature in network immunization, no comprehensive research has been 

conducted for evaluation and comparison of immunization algorithms. In this paper, we propose an evaluation 

framework for immunization algorithms regarding available amount of vaccination resources, goal of 

immunization program, and time complexity. The evaluation framework is designed based on network 

topological metrics which is extensible to all epidemic spreading model. Exploiting evaluation framework on 

well-known targeted immunization algorithms shows that in general, immunization based on PageRank 

centrality outperforms other targeting strategies in various types of networks, whereas, closeness and 

eigenvector centrality exhibit the worst case performance. 
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1 Introduction 

The threat of global epidemic spreading has resulted in widespread investigations on how to predict and 

control epidemics through populations (Gallos et al., 2007; Hadidjojo and Cheong, 2011; Hartvigsen et al., 

2007; Salathé and Jones, 2010; Schneider et al., 2012, 2011). Vaccination is one of the most effective solutions 

which not only protects vaccinated people, but also can prevent transmitting disease among their friends 

(Cornforth et al., 2011). The traditional vaccination strategy, mass vaccination, might not always be feasible 

due to its high cost or scarce vaccination resources (Gallos et al., 2007; Hartvigsen et al., 2007; Vidondo et al., 

2012). That’s the reason why targeted immunization strategies are of the current interest in public health area 

(Bishop and Shames, 2011; Chen et al., 2008; Cohen et al., 2003; Cornforth et al., 2011; Dezső and Barabási, 

2002; Eames et al., 2009; Gallos et al., 2007; Gao et al., 2011, 2010; Hadidjojo and Cheong, 2011; Hartvigsen 
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et al., 2007; Hébert-Dufresne et al., 2013; Masuda, 2009; Miller and Hyman, 2007; Niu et al., 2009; Peng et al., 

2010; Restrepo et al., 2006; Salathé and Jones, 2010; Schneider et al., 2012, 2011; Vidondo et al., 2012; 

Yamada and Yoshida, 2012; Yoshida and Yamada, 2012). Targeted immunization strategies vaccinate 

intercommunal individuals whose immunization prevent infectious propagation among different communities 

(Masuda, 2009; Salathé and Jones, 2010).  

 Impact of close contacts on disease transmission has led to new studies on infectious propagation using 

social network analysis (Cornforth et al., 2011; Gallos et al., 2007; Hartvigsen et al., 2007; Salathé and Jones, 

2010; Weerasinghe, 2013). In these investigations, relations are modeled as an undirected graph whose nodes 

represent individuals and links represent their relationships (Salathé and Jones, 2010). Node centrality is one of 

the most studied concepts in social network analysis which determines nodes influence on network flows 

(Borgatti, 2005; Christley et al., 2005; Freeman, 1978). Accordingly, Applying node centrality measures into 

targeted immunization have resulted in high performance of vaccination strategies (Chen et al., 2008; Cohen et 

al., 2003; Dezső and Barabási, 2002; Eames et al., 2009; Gao et al., 2011; Hébert-Dufresne et al., 2013; 

Masuda, 2009; Miller and Hyman, 2007; Niu et al., 2009; Restrepo et al., 2006; Salathé and Jones, 2010; 

Schneider et al., 2012, 2011; Vidondo et al., 2012). Several centrality measures have been used in targeted 

immunizations. Vaccinating highest degree node is the most common strategy (Chen et al., 2008; Cohen et al., 

2003; Dezső and Barabási, 2002; Eames et al., 2009; Gallos et al., 2007; Gao et al., 2011, 2010; Miller and 

Hyman, 2007; Niu et al., 2009; Schneider et al., 2012; Vidondo et al., 2012), whereas, immunizing nodes with 

highest betweenness centrality is acknowledged as most effective targeted immunization (Chen et al., 2008; 

Hébert-Dufresne et al., 2013; Salathé and Jones, 2010; Schneider et al., 2012, 2011). Moreover, the 

relationship between largest eigenvalue of network adjacency matrix and epidemic threshold (Chakrabarti and 

Faloutsos, 2003; Chakrabarti et al., 2008; Peng et al., 2010) inspired many researchers to use other centrality 

measures such as eigenvector (Bonacich, 1987; Restrepo et al., 2006) and PageRank (Miller and Hyman, 2007; 

Page et al., 1999). 

Several investigations have been carried out to assess ability of centrality measures in identification of 

influential spreaders or high risk individuals (see Table 1). In spite of implicit relevance between these 

problems and network immunization, they are inherently different (Zhang, 2012a, 2012b). Influential spreaders 

are nodes that lead to faster and wider spreading in complex networks (Chen et al., 2011; Kiss and Bichler, 

2008). The high-risk individuals are people with high probability of being infected (Christley et al., 2005). In 

contrast, targeted node for immunization are nodes whose removal results in the maximum reduction of 

epidemic spreading in a network (Habiba et al., 2010). As seen in Table 1, the only known research about 

impact of centrality measures in targeted immunization is conducted by Habiba who compared centrality 

measures efficiency in identifying spread blockers based on simulation of independent cascade model (Habiba 

et al., 2010). Regarding this experiments, local centrality measures such as degree are good indicators of 

blockers. Unfortunately, this research only considered independent cascade model which is not reliable on 

other epidemic spreading models such as SIR. Additionally, the simulation of epidemic model requires high 

computational cost (Ventresca and Aleman, 2013). 

In spite of many literatures in targeted immunization algorithm, a comprehensive analysis on performance 

of immunization algorithms has never been reported to our knowledge (See Table 2). Although several 

experiments have been conducted in order to evaluate immunization algorithms, they have significant 

shortcomings. First, a small number of efficient immunization algorithms are included (Holme et al., 2002; 

Schneider et al., 2012, 2011). Second, the experiments are conducted based on a single network (Eames et al., 

2009; Miller and Hyman, 2007; Ventresca and Aleman, 2013) or network structure (Hartvigsen et al., 2007). 

Third, limited number of structural properties are considered (Holme et al., 2002; Masuda, 2009; Schneider et 
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al., 2012; Ventresca and Aleman, 2013). Fourth, the goal of immunization algorithms is not discussed. Fifth, 

the time complexity of the immunization algorithms is mostly ignored. Finally, above all, only simulation of 

special epidemic model has been considered which is not extensible to other epidemics. 

 

     Table 1 Centrality measures evaluation in the literatures of epidemic spreading. 

Purpose Authors Centrality measures Best measure Approaches 

influential 

spreader 

Kiss and Bichler, 

2008 

In/out Degree, 

Betweenness, 

Closeness, 

PageRank, 

SenderRank 

SenderRank

Out Degree 

Measuring number of reached 

customers in marketing message 

spreading initiated by each 

measures 

Chen et al., 2011 

Degree, 

Closeness, 

Betweenness 

Closeness 

Measuring the number of infected 

nodes at different time  in SIR 

simulation initiated by each 

measure 

high-risk 

individuals 

Christley et al., 

2005 

Degree, 

Closeness, 

Betweenness, 

Random Betweenness 

Degree 

Exploring the relation between 

node centralities and risk of 

infection in SIR simulation 

Spread 

blockers 

Habiba et al., 2010 

 

Degree, 

Closeness, 

Betweenness, 

PageRank, 

Clustering Coefficient 

Degree 

Measuring reduction in number of 

infected individuals in simulation 

of independent cascade model 

spreading 

 

 

The contributions of this paper are as follows: 

 We propose a new evaluation framework regarding amount of available vaccination resources, goal of 

immunization program and time complexity. Considering available amount of immunization resources, we 

assess immunization algorithms in case of limited and flexible amount of resources. Largest eigenvalue of 

network adjacency matrix, size of the largest connected component, and, sum of square partitions. Additionally, 

immunization threshold and network robustness are measures of evaluating immunization algorithms in case 

of unlimited or flexible amount of vaccination resources. The measures evaluate immunization algorithms 

regarding different goal of immunization program which is discussed later. 

 

 We exploit the introduced evaluation framework to study the impact of well-known centrality measures 

(i.e. degree, betweenness, closeness, eigenvector, and PageRank) on targeted immunization algorithms in 

various real and artificial networks. Then, we suggest the most preferred immunization algorithms with regard 

to the network structure. 

This paper is organized as follows: In section 2, we introduce our evaluation framework for evaluating the 

efficiency of immunization algorithms in case of limited amount of vaccination resources. Then, we review 

network centrality measures and investigate their relationship to epidemic spreading in section 3. Then, in 

section 4, our simulation setting and numeric result of applying is described. Finally, we conclude the whole 

paper in section 5. 
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 Table 2 Evaluation of targeted immunization algorithms in literatures. 

Literatures 
Immunization 
algorithms 

Networks Efficiency Measures 

Real 
 

Model Structural 
Epidemic 
parameter b 

Holme et al., 
2002 

Betweenness, 
Degree 

HEP 
Computer 
network 

Small-world, 
Scale-free, 
Erdös-Renyi 

 
LCC a, 
Distance 

× 

 
Miller and 
Hyman, 2007 

Degree, 
PageRank 

Episims × × 
SIR 
T=1; 
0<α<1 

 
Hartvigsen,et 
al., 2007 

Degree, 
Clustering 
coefficient 

× Small-world × 

SIR 
Simulation of 
Influenza 
R0=2 
T=3 

Chen et al, 
2008 

Degree, 
Betweenness 
 

HEP 
AS 
Workplace 
AS 
Metabolic 

Scale-Free, 
Random-regular,
Erdös-Renyi 

Immunizati
on 
threshold , 
LCC 

SIR 
Simulation 
α= 0.2 
β=0.05 

Masuda, 2009 
Degree, 
Eigenvector 
 

HEP 
PGP 
WWW 
email-based 

Erdös-Renyi LCC × 

Eames et al., 
2009 

Degree, 
Weight, 
Secondary case 

networks 
generated 
based on a 
conducted 
survey 

× × 

SIR 
Simulation 
With different 
parameters 

Schneider et 
al., 2012 

Degree, 
Betweenness 

HEP 
AS 

Scale-free, 
Erdös-Renyi, 
Random-regular

LCC, 
Robustness 

× 

Ventresca and 
Aleman, 2013 

Degree, 
PageRank, 
Total weight 

Toronto 
social 
networks 
based on 
2006 census 
data 

× 

LCC, 
Degree 
distribution, 
Clustering 
coefficient 

× 

a LCC: Largest connected component of network. 
b Epidemic parameters (α: infectious rate, β: recovery rate , R0: reproduction number, T= infectivity Time). 

 

 

2 Evaluation Framework 

To study impact of centrality measures in targeted immunization algorithms, we propose a framework to 

assess their efficiency in case of limited or flexible amount of vaccination resources regarding different goal of 

immunization program and time complexity (see Fig. 1). To evaluate immunization algorithms in limited 

amount of vaccination resources, the framework estimates expected epidemic growth in different situations. To 

assess their efficiency in case of flexible amount of vaccination resources, it captures their overall efficiency in 

case of unknown amount of vaccination resource in addition to their ability to minimize total cost of 

immunization. In the following, we describe this evaluation framework in details. 

In case of limited vaccination resources, an immunization algorithm targets and vaccinates appropriate 
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limited set of nodes whose immunization minimize the expected growth of epidemics. In this section, we talk 

about how to evaluate efficiency of immunized sets by targeted immunization algorithms 

 Recent investigation showed a strong relationship between epidemic spreading parameters and network 

structural properties(Ames et al., 2011; Aspnes et al., 2006; Chakrabarti and Faloutsos, 2003; Chakrabarti et al., 

2008; Chen et al., 2008; Schneider et al., 2012, 2011; Ventresca and Aleman, 2013). Most important of 

structural properties are largest eigenvalue of network adjacency matrix, largest connected component of 

network, and, sum of square partitions. Details of our metrics are elaborated in the following. 

2.1 Limited amount of vaccination resources 

2.1.1 Increment of network epidemic threshold 

Epidemic threshold is a parameter which determines whether an infection dies out over time or becomes an 

epidemic (Chakrabarti and Faloutsos, 2003; Chakrabarti et al., 2008; Kitchovitch and Liò, 2011; Masuda, 2009; 

Peng et al., 2010; Restrepo et al., 2006). Epidemic threshold of network is equal to inverse largest eigenvalue 

of network adjacency matrix (λ) (Chakrabarti and Faloutsos, 2003; Chakrabarti et al., 2008). Thus, an efficient 

immunization algorithm should reduce λ in order to reduce risk of outbreak contagious (Chakrabarti and 

Faloutsos, 2003; Chakrabarti et al., 2008; Masuda, 2009; Restrepo et al., 2006). To assess their ability to aim 

this, we measure the reduction of largest eigenvalue by calculating ܧ ൌ ఒሖ

ఒ
 where λ is the largest eigenvalue of 

the initial network and ߣሖ  is the largest eigenvalue of the immunized network. Formulation of this problem is 
shown in Table 3. 

 

 
Table 3 Formulation of immunization program with goal of increasing epidemic threshold in case of limited amount of 
vaccination resources. 

Input  
Social network (G),number of 

immunization resources (k)  
G, k 

Output Subset of k nodes  S ك V(G) such that ||S||=k  

Goal  Reducing largest eigenvalue of matrix   Minimize ߣ(G/S)a  

aߣ(G/S) is largest eigenvalue of residual network after removal of S. 

 

 

2.1.2 Reduction of worst expected epidemic size 

A network connected component is defined as the set of all nodes which all are reachable from each other. 

Therefore, an infection that starts in a component cannot propagate to other components. Accordingly, in case 

of single source of infection, the worst case epidemic size is equal to size of largest connected component of 

network (LCC)(Chen et al., 2008; Gallos et al., 2007; Hadidjojo and Cheong, 2011; Masuda, 2009; Niu et al., 

2009; Restrepo et al., 2006; Schneider et al., 2012, 2011; Ventresca and Aleman, 2013; Yamada and Yoshida, 

2012; Yoshida and Yamada, 2012). Hence, the fraction of largest connected component of network is another 

important factor to assess efficiency of immunization algorithms. The formulation of this problem is shown in 

Table 4. 
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Table 4 Formulation of immunization problem with goal of minimizing worst expected epidemic size in case of limited 
amount of vaccination resources. 

Input  
Social network (G),number of 

immunization resources (k)  
G, k 

Output Subset of k nodes  S ك V(G) such that ||S||=k  

Goal  
Reducing largest connected 

component(LCC)  
Minimize LCC(G/S)a  

aܥܥܮ(G/S) is largest connected component of residual network after removal of S. 

 

2.1.3 Reduction of mean expected epidemic size 

In addition to worst case epidemic size, we estimate expected mean number of infected persons; if all 

individuals have equal probability to be initially infected, the probability of outbreak occurring in ith 

component is obtained by ሺܿ ܰ⁄  ሻwhere ܿ  is size of the component and N is network size. Therefore, the 

expected mean number of infected person (i.e. mean epidemic size) is ሺ∑ |c୧|ଶ N⁄ ሻ called sum of square 

partition (Aspnes et al., 2006).  The formulation of this problem is shown in Table 5. 

 

 
Table 5 Formulation of immunization problem with goal of minimizing mean expected epidemic size in case of limited 
amount of vaccination resources 

Input  
Social network (G),number of 

immunization resources (k)  
G, k 

Output Subset of k nodes  S ك V(G) such that ||S||=k  

Goal  Reducing sum  of square partition  Minimize SSP(G/S)a  

aܵܵܲ(G/S) is largest connected component of residual network after removal of S. 

 

2.2 Flexible amount of vaccination resources 

To compare efficiency of immunization algorithms in case of flexible amount of vaccination resources, two 

metrics are provided: "immunization threshold" and "robustness". Immunization threshold and Robustness are 

numeric measures capturing overall efficiency of immunization algorithms where different amount of 

vaccination resources are available. We consider these measures on artificial networks with different size and 

degree. 

2.2.1 Reduction of whole immunization cost  

If sufficient amount of vaccination is available, an efficient immunization algorithm should minimize 

immunization cost of whole population. In other word, Immunization algorithm should suppress epidemics in 

very small component by removing minimal number of nodes (i.e. immunization cost). This ability of 

immunization algorithms is evaluated by their immunization threshold (ݍ) which is the fraction of removal 

nodes when size of largest connected component is zero (Chen et al., 2008). The formulation of this problem is 

shown in Table 6. 
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   Table 6 formulation of immunization problem with goal of minimizing immunization cost. 

Input  Social network (G)  G 

Output
A subset of nodes whose removal 

eradicate epidemic spreading  
S ك V(G) such that LCC(G/S)=0  

Goal  
Minimize number of immunization 

resource   
Minimize ||s||  

 

 

2.2.2 Reduction of worst case epidemic size in case of unknown amount of vaccination resources 

If the supply of immunization doses is not known, an immunization algorithm is required which prioritize 

nodes such that average growth of epidemic during the whole immunization process is minimized (Schneider 

et al., 2012). Formulation of this problem is shown in Table 7. 

 

 
Table 7 formulation of immunization problem with goal of minimizing worst case epidemic in case of unknown amount of 
vaccination resources. 

Input  Social Network (G)  G 

Output An ordering of node (O)  O={൏ ,ଵ ,…,ଶ } 

Goal  
Minimizing epidemic spreading in different 

amount of vaccination resources 

Minimize Rൌ ଵ


∑ ܥܥܮ ሺ ܩ/
ୀଵ

ሺଵ:ሻሻ   

 

 

To measure efficiency of nodes ranking,  Robustness (R), is defined by (Schneider et al., 2011) to capture 

overal efficiency of algorithm in case of unknown amount of vaccination resouces. This metric is calculated by 

Eq.(1) where L(Q) is the fraction of largest component of network when the fraction of immunized nodes is 

equal to Q. 

 

ܴ ൌ 1 ܰ⁄ ሺ∑ ሺܳሻேܮ
ொୀଵ )        (1) 
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Fig. 1 Evaluation framework for immunization algorithms regarding amount of vaccination resource, goal of immunization 
program, and, time complexity. 

 

3 Centrality Measures for Targeted Immunization 

Regarding various aspects of nodes influence on epidemic spreading, different centrality measures are used in 

targeted immunization. In this paper, we study various centrality measures including degree, betweenness, 

closeness, eigenvalue and PageRank which are more applicable in epidemic spreading and targeted 

immunization (Chakrabarti et al., 2008; Chen et al., 2008; Christley et al., 2005; Cohen et al., 2003; Dezső and 

Barabási, 2002; Eames et al., 2009; Gao et al., 2011; Habiba et al., 2010; Hébert-Dufresne et al., 2013; Kiss 

and Bichler, 2008; Masuda, 2009; Miller and Hyman, 2007; Niu et al., 2009; Restrepo et al., 2006; Salathé and 
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Jones, 2010; Schneider et al., 2012, 2011; Ventresca and Aleman, 2013; Vidondo et al., 2012; Zhang, 2012a, 

2012b).   

To target and immunize nodes based on their centrality, two kinds of algorithms are generally proposed: 

initial and adaptive. Initial algorithms calculate node centrality in original networks and immunize k most k 

central nodes where k is number of available vaccination resource. On the other hand, adaptive algorithms 

recalculate node centralities in a network of non-immunized nodes after immunizing the most central node. 

This procedure is iterated until k node is immunized (Masuda, 2009; Restrepo et al., 2006; Schneider et al., 

2012, 2011). Since the time complexity of initial algorithms is k time less than adaptive algorithms, the former 

one is more applicable for real networks. In this paper, we only consider the initial type algorithms. 

 A social network is an undirected network represented by adjacency matrix denoted by A; Aij =1 when 

node i and node j are adjacent, and Aij =0 otherwise. In the following, we review these centrality measures and 

their relationship with epidemic spreading. 

3.1 Degree centrality 

Degree centrality which is defined as number of connected links to a node, estimates immediate impact of 

node infection (Borgatti, 2005). Immunizing highest degree nodes (HD) minimizes network density which is 

an influential factor in growth rate of epidemic diseases (Hadidjojo and Cheong, 2011). Furthermore, 

vaccinating high degree nodes is exceedingly effective in scale-free (Dezső and Barabási, 2002) and sparse 

(Hébert-Dufresne et al., 2013) networks which in high degree nodes play an important role to connect other 

nodes.  

 

݀ሺ݅ሻ ൌ ∑ ܣ

ୀଵ              (2) 

3.2 Betweenness centrality 

Betweenness centrality of each node is the proportion of times it lies on the geodesic paths between other 

nodes (Christley et al., 2005; Freeman, 1978).The betweenness centrality of node i is given by  

 

ሺ݅ሻܥܤ ൌ ∑ ሺ݃,
 ݃,ሻൗ௨ஷ௩ஷ௪        (3) 

 

where ݆݃,݇is the number of geodesic paths from j to k, and ݃,
 is the number of these geodesics that pass 

through node i. 

Since nodes with high betweenness centrality bridge network communities (Habiba et al., 2010; Salathé 

and Jones, 2010), their immunization fragments network to smaller parts. Hence, an epidemic starts in a 

component cannot infect nodes in other components. Additionally, betweenness centrality is an effective 

measure to identify high risk individuals as it calculates volume of flow passing through each node (Borgatti, 

2005). That is the reason why highest betweenness immunization (HB) is supposed as most effective targeted 

immunization algorithms.  

3.3 Closeness centrality 

Closeness centrality of a node is calculated by inverse sum of shortest distances of the node from all other 

ones.  

 

ሺ݅ሻܥܥ   ൌ ∑ ݀ீሺ݅, ݆ሻא/௩        (4) 
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where dG(v, t) is the geodesic distance between v and t (Borgatti, 2005; Freeman, 1978). If all nodes have 

equal probability to initiate an infection, nodes with highest closeness centrality are more prone to get infected 

(Borgatti, 2005; Christley et al., 2005). Besides, their infection result in faster epidemic spreading through 

network (Borgatti, 2005) . Therefore, highest closeness immunization (HC)not only vaccinates high risk 

individuals, but also postpones epidemic spreading through networks. 

3.4 Eigenvector centrality 

Eigenvector centrality provides a model of nodal infectious risk according to the risk level of its neighbours 

(Borgatti, 2005). Let E(i) be the eigenvector centrality of node i and ߬ሺ݅ሻ set of its netighbours, then  

 

ሺ݅ሻܧ ൌ ሺ1  λሻ⁄ ∑ ሺ݆ሻܧ ൌא ఛሺሻ ሺ1  λሻ⁄ ∑ ሺ݆ሻܧܣ
ே
ୀଵ     (5) 

 

This equation can be rewritten in vector form such as Eq.(6) where E ={E(1),E(2),…,E(n)} and  is the 

largest eigenvalue of network adjacency matrix. 

 

ܧ ൌ ሺ1  λሻ⁄  (6)                     ܧܣ 

λܧ ൌ  (7)                      ܧܣ

 

Therefore, eigenvector centralityis defined as the principal eigenvector of the adjacency matrix of network 

(Bonacich, 1987). Moreover, it determines impact of removing nodes on epidemic threshold increment (i.e. 

reduction of )(Masuda, 2009; Restrepo et al., 2006).Let Eq.(8) be the linearized eigenequation after removal 

of node k 

 

ሺλ  ∆λሻሺܧ  ሻܧ∆ ൌ   ሺܣ  ܧሻ ሺܣ∆   ሻ         (8)ܧ∆

 

It has been provedby (Restrepo et al., 2006) that  

 

ܫ ൌ െ ሺ∆λ λሻ⁄ ؆ ܧ
ଶ ∑ ܧ

ଶே
ୀଵ⁄                (9) 

 

where ܫ is impact of removing node kon epidemic threshold and ܧ ݅ݏ eigenvector centrality of node k. 

Accordingly, immunization of nodes with highest eigenvector (HE) centrality reduces risk of infection through 

the network.  

3.5 PageRank centrality 

PageRank centrality, introduced by Google for webpage ranking, determines probability of visiting a node in a 

random walk (Page et al., 1999). In term of epidemic spreading, nodes with high PageRank centrality are more 

likely to be infected or infect others along many paths (Miller and Hyman, 2007). Therefore, their 

immunization eliminates lots of disease transmission routes. Since nodes with high PageRank centrality have 

many neighbours with low degree, highest PageRank (HP) immunization vaccinate influential nodes whose 

immunization strongly protects their neighbours (Miller and Hyman, 2007). 

4 Experiments and Results 

Here, we study the impact of centrality measures in initial targeted immunization using proposed evaluation 

framework. The proposed framework has been applied to various artificial and real networks to compare 

efficiency of different targeted immunization algorithms. Table 8 illustrates details of our experiments. We 

used igraph (Csardi and Nepusz, 2006) package in R.2.15.1 to generate artificial networks, compute nodes 
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centrality, and evaluation metrics. 

 

      Table 8 Evaluation framework parameter settings. 

Immunization 

algorithm 

Vaccinatio

n resource 
Efficiency measures Datasets 

 

Highest degree 

immunization (HD) 

Highest betweenness 

immunization (HDB 

Highest closeness 

immunization (HC) 

Highest eigenvector  

immunization (HE 

Highest PageRank 

immunization (HP) 

Limited 

 

Largest eigenvalue of network 

adjacency  matrix (λ) 

Largest connected component 

of network (LCC) 

Sum of square partitions (SSP)

Real (HEP, FBL, AS) 

Artificial(SF, ER, SW) 

 

Flexible 
Immunization threshold (qୡ) 

Robustness (R) 

Artificial withsize=104 and 

varying degree 

Artificial with average 

degree of 4 and varying size 

(102, 103, 104, 105) 

 

 

 

4.1 Limited amount of vaccination resources 

In case of limited vaccination resources, we compare ability of immunization algorithms in reduction of 

epidemic growth in various real and artificial networks. To aim this, we calculate evaluation criteria including 

largest eigenvalue of network adjacency matrix, largest connected component of network, and, sum of square 

partition.In the following, we describe datasets and numeric result. 

4.1.1 Datasets 

In order to evaluate efficiency of targeted immunization algorithms in case of limited budget, various real and 

artificial network datasets are used. Our real networks includes HEP (Gehrke et al., 2003; Leskovec et al., 

2005) , AS (Shavitt and Shir, 2005), and Facebook-like (FBL) (Opsahl and Panzarasa, 2009), networks which 

are commonly used in immunization literature(Chen et al., 2008; Gao et al., 2011; Hu and Tang, 2012; Masuda, 

2009; Mirzasoleiman et al., 2012; Niu et al., 2009; Schneider et al., 2012, 2011). The artificial network 

datasets include scale-free (SF) (Cho et al., 2009; Chung and Lu, 2002; Goh et al., 2001), Erdös-Renyi (ER) 

(Erdos, P. and Renyi, 1959) and small-world (SW) (Watts and Strogatz, 1998) networks. The structural 

properties of these networks are shown in Table 9. 

Real datasets includes HEP, AS, and FBL networks. The HEP network represents citation network of 

high-energy physics theory derived from e-print Arxiv. It contains 27,770 nodes representing published paper 

and 352,285 undirected links representing citation between two papers (Gehrke et al., 2003; Leskovec et al., 

2005). AS networks containing 25,367 nodes and 75,004 edges captures information of the Internet network at 

autonomous systems on June 2012 (Shavitt and Shir, 2005). The FBL includes information of 13,838 

messaging on an online community of 1,899 students at University of California, Irvine (Opsahl and Panzarasa, 

2009).  

In addition to the real network, we generate artificial networks of scale-free (SF), small-world (SW) and 

Erdös-Renyi (ER) models based on parameters mention in(Chen et al., 2008). The SF network is generated 

using the algorithm presented in (Cho et al., 2009; Chung and Lu, 2002; Goh et al., 2001) by the following 

settings: network size is 10,000, edge number is 20,000 and γ is 2.5. We construct SW network by 
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Watts-Strogatz algorithm (Watts and Strogatz, 1998) such that network size is 10,000, mean degree is 4 and 

switching probability is 0.01. Finally, “G(n,m)” implementation of Erdös-Renyi algorithm (Erdos, P. and 

Renyi, 1959) is used to generate ER network containing 10,000 nodes and 20,000 edges.  

 

 

   Table 9 Dataset properties. 

Network Na Mb <d>c Std(d) d CC e λ f 

HEP 27,770 352,285 14.57 25.371 0.11 111.25 

AS 25,367 75,004 5.91 48.03 0.01 103.35 

FBL 1899 13,838 12.68 24.46 0.05 48.14 

SF 10,000 20,000 4 4.40 0.001 9.90 

ER 10,000 20,000 4 1.98 0.000 5.22 

SW 10,000 20,000 4 0.27 0.46 4.08 

a N : Number of vertices  b M : Number of edges   
c <d>: Average degree   d Std(d): Standard deviation of degree  
e CC: Clustering coefficient  f λ: Largest eigenvalue of network adjacency matrix 
 
 

 

 

Fig. 2 The fraction of largest eigenvalue (E=ࣅሖ  / λ) vs. fraction of immunized nodes (V). (a) HEP network. (b) AS network. (c) FBL 
network. (d) SF network. (e) ER network. (f) SW network. 
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4.1.2 Results 

To assess their ability to decrease largest eigenvalue of network adjacency matrix, we calculated E ൌ
λሖ

λ
 where 

λ is the largest eigenvalue of the initial network and λሖ  is the largest eigenvalue of the immunized network 

(Fig. 2). HP outperformed other strategies in all networks. HB and HD exhibited the next best performance in 

all networks. Their efficiency was very close to each other in all networks except HEP (Fig. 2a) where the 

initial largest eigenvalue is larger than other network (Table 9). Additionally, our experiments showed that as the 

largest eigenvalue of network decreases, the slope of E curves versus fraction of immunized nodes are also 

reduced (Fig. 2a, 2b, 2c). For instance, all algorithms required to immunize only 20% of FBL network to reduce 

E below 10%, while, they required to immunize more than 67% in order to reduce E to zero (Fig. 2c). This trend 

is also seen in HEP (Fig. 2a) and AS (Fig. 2b) networks. So we can conclude that there is a threshold below 

which λ decreases slowly. That could be the reason why targeted immunization did not perform well in artificial 

networks (Fig. 2d, 2e, 2f). In other words, their λ might be below the threshold. 

Moreover, we evaluated efficiency of immunization algorithms in reducing worst-case epidemic size by 

plotting L versus V where L is fraction of largest connected component of network, and, V is fraction of 

vaccinated nodes (Fig. 3). HP, HD and HB took high advantages of reducing L in all networks. The 

performance of HD and HP were close in all network except SW which is more homogenous than other 

networks. In SW network, the efficiency of HD is reduced in case of immunization coverage more than 10% 

since the degree of 90% of nodes have equal degree.On the other hand, HB exhibited high performance in SW 

networks (Fig. 3f). The high efficiency of HB and HP in this network is explained by high clustering 

coefficient and low average distance properties of small-world networks (Watts and Strogatz, 1998) (Table 9). 

In the other word, there are few nodes with high PageRank and betweenness centrality lying on the paths 

between different clusters of networks. HC and HE performed weaker than other strategies in all network but 

their weakness is less in HEP (Fig. 3a) and FBL (Fig. 3c) networks which are denser than others (Table 9). 

 

 

Fig. 3 Fraction of largest connected component (L) vs. fraction of vaccinated nodes (V). (a) HEP network. (b) AS network. (c) FBL 
network. (d) SF network. (e) ER network. (g) SW network. 
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 In Fig. 4, we plotted S, the fraction of expected worst-case epidemic size (i.e. sum of square partitions), 

versus V, the fraction of vaccinated nodes in Fig. . It is obvious that changes of S are similar to the changes in 

worst case epidemic size (Fig. 4) but has a little shift to left. This is because of the fact that expected mean 

number of infected persons is proportional to sum of square of component size. In the other words, sum of 

square partitions highlights larger connected components in contrast to smaller ones more clearly. Therefore, 

the similar trends of S and L means all centrality measures failed to fragment networks to balanced partitions.  

Regarding all criteria, HP exhibited the best performance, while, HE and HC exhibited the worst performance 

in all networks. HD and HB exhibited an acceptable performance in all networks. HD performed better in 

sparse and heterogeneous networks such as SF network, while, HB performed well in modular and 

homogenous networks such as SW network. 

 

 

 

Fig. 4 Fraction of sum of square partitions (S) vs. fraction of vaccinated nodes (V). (a) HEP network. (b) AS network. (c) FBL 
network. (d) SF network. (e) ER network. (g) SW network. 

 

 

4.2 Flexible amount of vaccination resources 

We evaluate immunization algorithms in case of flexible amount of vaccination resources by computing their 

"immunization threshold" and "robustness" in artificial networks with different size and degree. The 

description of datasets and results are explained in the following. 

4.2.1 Datasets 

In order to assess efficiency of immunization algorithms in case of flexible amount of vaccination resources, 

artificial networks with different size and degree are generated. We generate scale-free, small-world, and, 

Erdös-Renyi networks with different size and degree. To compare efficiency of immunization algorithms in 

networks with different size, each type of artificial networks is generated with 100, 1000, 10,000, and, 100,000 

nodes and average degree of 4. Additionally, artificial networks are generated in size of 10,000 and degrees up 

to 20 to evaluate immunization algorithms in networks with different density. 
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4.2.2 Results 

To compare efficiency of centrality measures in minimizing immunization threshold (ݍ), we plotted it as a 

function of network size (N) or average degree (<d>) for all artificial network models. Our experiments 

showed a directed relationship between network degree and ݍ for all algorithms in majority of networks (Fig. 

5). That is because of the weak connectivity in sparse networks in contrast to strong relations in dense network. 

In the other words, sparse networks can be fragmented to small component by removing only a few nodes, 

while, it is impossible to fragment dense networks. 

 

 

 
Fig. 5 Immunization threshold (ࢉ) vs. network average degree (<d>). (a). Scale-free networks (b) Small-world networks. (c) 
Erdös-Renyi networks. Average degree of all networks is 4. Each point is averaged on 10 different networks. 

 

 

 Considering immunization threshold of networks with different size, HP outperformed other strategies 

especially in small-world network (Fig.6c). For instance,ݍ of HP in largest small-world network is 12% less 

than HB, 59% less than HC, 71% less than HE, and 85% more than HD. Despite of weak performance of HD 

in small-world networks, it performed well on scale-free and Erdös-Renyi networks (Fig. 6) such that the 

maximum difference between its immunization threshold and HP is about 7%. That is because of 

heterogeneous degree distribution in scale-free and Erdös-Renyi networks compared to homogenous degree 

distribution in all small-world networks. 

 

 

 

 
Fig. 6 Immunization threshold (ࢉ) vs. network size (N). (a). Scale-free networks (b) Small-world networks. (c) Erdös-Renyi 
networks. Average degree of all networks is 4. Each point is averaged on 10 different networks. 
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 In addition to immunization threshold, we calculate network "robustness", R, of each algorithm. Our 

experiment showed that impact of degree increment on robustness is similar to its impact on immunization 

threshold in all networks (Fig. 7). It can be also explained by strong connectivity in dense networks which 

make it hard to fragment them.  

 

 

 
Fig. 7 Network Robustness (R) vs. network average degree (<d>). (a). Scale-free networks (b) Small-world networks. (c) Erdös- 
Renyi networks. All networks contain 10,000 nodes. Each point is averaged on 10 different networks. 

 

  

Increasing the network size in scale-free networks reduced R about 10% to 14% (Fig. 8a), while, 

robustness of Erdös-Renyi networks fluctuated about 1% around a fixed value for all algorithms (Fig. 8b). This 

result is explained by random structure of Erdös-Renyi networks leading to emergence of a giant component 

which is hardly fragmented. On the other hand, efficiency of algorithms are much better in large scale-free 

networks compared to small ones with constant degree since central node plays an important role in connecting 

majority of nodes in large scale-free networks. Increasing small-world networks size had different impacts on 

robustness of algorithms; the robustness was reduced more than 22% for HP and HB, whereas, increased 

slightly for HE and HC when network size exceed 1,000 (Fig. 8c). 

 

 

 
Fig. 8 Network Robustness (R) vs. network size (N). (a). Scale-free networks (b) Small-world networks. (c) Erdös-Renyi networks. 
Average degree of all networks is 4. Each point is averaged on 10 different networks. 
 

5 Conclusion and Suggested Future Work 

Due to high cost and limited resources of vaccination, there is a growing interest in targeted immunization 

strategies. Targeted immunization strategies vaccinate a subset of individuals whose vaccination minimize 
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epidemic spreading through population. Regarding impact of contact networks on disease transmission, 

majority of immunization strategies use network centralities to prioritize nodes for vaccination. 

In this paper, we first proposed an evaluation framework to study targeted immunization algorithms 

regarding amount of vaccination resources, goal of immunization program, and time complexity. The 

framework assesses efficiency of immunization algorithms in case of limited or flexible amount of vaccination 

resources based on network properties. The evaluation metrics for limited resources consist of the largest 

eigenvalue (i.e. immunization threshold), the largest connected component of network (i.e. worst case 

epidemic size), and, sum of square partitions (i.e. mean worst epidemic size. Metrics for flexible resources 

include immunization threshold (i.e. cost of complete immunization) and robustness (i.e. overall efficiency of 

immunization algorithms in case of unknown amount of vaccination resource).Next, we studied impact of five 

centrality measures including degree (HD), betweenness (HB), closeness (HC), eigenvector (HE) and 

PageRank (HP) in initial targeted immunizations based on the proposed evaluation framework.  

In case of limited budget, HP exhibited the best performance, but, HC and HE exhibited the worst 

performance regarding all criteria. In heterogeneous networks such as AS and scale-free networks, efficiency 

of degree immunization was very close to PageRank immunization, whereas, it exhibited a weak performance 

in homogenous networks (e.g. small-world networks). Hence, degree immunization is more preferred in 

heterogeneous networks (e.g. AS and scale-free networks) due to its lower time complexity in comparison to 

PageRank immunization (Table 10). Closeness and eigenvector centralities were too weak in comparison to 

other algorithms in all networks. Additionally, comparing sum of square partitions and largest connected 

component of immunized network showed that all targeted immunization were unsuccessful to fragment 

network to balanced component. Furthermore, it should be noted that all immunization algorithms failed to 

reduce largest eigenvalue of artificial network adjacency matrix. Surprisingly, despite of relationship between 

eigenvector centrality and largest eigenvalue (Masuda, 2009; Restrepo et al., 2006), it did not show any 

advantages in comparison to other strategies. Therefore, these algorithms are not given preference in none of 

networks. 

 

 

Table 10 Time complexity of node centrality calculation. 

Centrality Complexity a 
Execution Time b 

FB AS HEP SF SW ER 

Degree O(N) 0 0.02 0.05 0 0 0 

Betweenness O(MN) 0.40 174.15 401.46 10.01 9.61 11.93 

Closeness O(MN) 0.77 58.98 170.31 5.65 5.08 6.70 

Eigenvector O(M+N)c 0 0.11 0.25 0.06 0.36 0.07 

PageRank O(M)d 0.02 0.27 0.74 0.07 0.06 0.06 
a The Complexity times are based on implementation of  igraph package where N is network size and M is number of edges. 
b The execution times are measured in millisecond  on  a  computer  running  an  Intel core i7- i2670QM  processor  at  
2.20Hz  with  8GB  of  RAM.   
c Depends on the input graph, usually it is O(|M|+|N|). 
d Depends on the input graph, usually it is O(M). 

 

 

 In case of flexible amount of vaccination resources, we evaluated immunization threshold and robustness 

of algorithms in artificial networks with different degree and size. Considering both metrics, our experiments 

showed that PageRank outperforms other strategies in all networks except dense small-world network which in 
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betweenness overtook it; nevertheless, betweenness immunization is still not an appropriate strategy for these 

networks due to its high time complexity. The best implementation of betweenness calculation of networks 

with N nodes and M edges goes as complexity of O (MN) (Brandes, 2001) that converges to ܱሺܰଷሻ for 

dense network which is far more than PageRank time complexity (Table 10). Therefore, PageRank 

immunization is strongly recommended for all networks especially in dense, homogenous, and clustered 

networks. Our recommendation for each model network considering time complexity and goal of 

immunization is given in Table 11.  

 

 

 Table 11 Recommended algorithm for artificial networks considering evaluation framework. 

 Limited amount of vaccination resources 
Flexible amount of vaccination 

resources 

Goal 

Maximizing 

epidemic 

threshold 

(λ) 

Minimizing 

worst-case 

epidemic 

(LCC) 

Minimizing 

expected worst 

epidemic size 

(SSP) 

Minimizing 

immunization 

cost 

(qୡ) 

Minimizing 

average growth of 

epidemic in case of 

unknown amount 

of resources 

(R) 

Scale-Free HP HD HD HD HD 

Erdös-Renyi HP HP HD HP HD 

Small-World HP HP HP HP HP a 
a HB is more preferred than HP in small dense small-world network. 

 

 

Although, these targeted immunization algorithms show high advantages of lowering cost in comparison 

to mass and random vaccination, their performance is still so far from an optimal solution especially in dense 

networks where strong connectivity makes it hard to fragment. Therefore, it is a new line of research to present 

immunization algorithms to optimize evaluation criteria. Additionally, it is necessary to study about the 

reasons why immunization algorithms failed to reduce largest eigenvalue of artificial network adjacency 

matrix. Furthermore, it is valuable for future research to evaluate targeted immunization in improving 

epidemic parameters (e.g. epidemic period and size) by simulating epidemics model (e.g. SIR, SIS, and SI) 

models. Finally, it is helpful to suggest the most preferred immunization algorithms with regard to network 

structure and epidemic spreading model 
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