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Abstract 

We aim to develop the reaction diffusion equation for different types of mechanism of the predator-prey 

interactions with quasi chemical approach. The chemical reactions representing the interactions obey the mass 

action law. Since the cell-jump models may be considered as the proper diffusion models by themselves, the 

territorial animal like fox is given a simple cell as its territory. Under the proper relations between coefficients, 

like complex balance or detailed balance, this system demonstrated globally stable dynamics. 
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1 Introduction 

The Lotka Voltera equations are a pair of first order non linear differential equations these are also known as the 

predator prey equations .i.e. when the growth rate of one population is decreased and the other increased then the 

populations are in a predator-prey situation. The Lotka–Volterra equations are frequently used to describe the 

dynamics of biological in which two species interact, one as a predator and the other as prey. 

In this review paper, we aim to study the interactions between the territorial animals like foxes and the 

rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator 

and its prey are represented by the chemical reactions which obey the mass action law. In this sence, we aim to 

study the mass action law for Lotka-Volterra predator prey models and consider the quasi chemical approach 

for the interactions between the predator and its prey. We also aim to develop the reaction diffusion equation 

for different types of mechanism of the predator prey interactions. The principle of detailed balance, however 

can also be introduced in some cases. Since the cell-jump models may be considered as the proper diffusion 

models by themselves, the territorial animal like fox is given a simple cell as its territory. The sense in which 

the discrete equations for cells converge to the partial differential equations of diffusion is that the cell models 
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give the semi-discrete approximation of the partial differential equations for diffusion which result in a system 

of ordinary differential equations in cells. There are jumps of concentrations on the boundary of cells. The 

system of semi discrete models for cells with “no-flux” boundary conditions has all the nice properties of the 

chemical kinetic equations for closed systems. Under the proper relations between coefficients, like complex 

balance or detailed balance, this system demonstrated globally stable dynamics.  

Here in this review paper, we will give background of the development of the different models of 

Lotka-Volterra types of reaction-diffusion equation along with different approaches that were acquired by the 

different scientist in the ecology and mathematical biology. Then we come to our goals, where we borrowed 

the properties of the chemical reactions for our approach to develop the reaction-diffusion equation of Lotka 

Volterra type. 

The Lotka Volterra predator prey models were originally introduced by Alfred J. Lotka (1920) in the 

theory of autocatalytic chemical reactions in 1910 this was effectively the logistic equation which was 

originally derived by Pierre Francois Verhulst. In 1920 Lotka extended the model to "organic systems" using a 

plant species and an herbivorous animal species as an example and in 1925 he utilized the equations to analyze 

predator-prey interactions in his book on biomathematics arriving at the equations that we know today. 

In 1926, Vito Volterra (Voltera, 1926), made a statistical analysis of fish catches in the Adriatic 

independently investigated the equations. V. Voltera applied these equations to predator prey interactions; 

consist of a pair of first order autonomous ordinary differential equations.  

Since that time the Lotka–Voltera model has been applied to problems in chemical kinetics, population 

biology, epidemiology and neural networks. These equations also model the dynamic behavior of an arbitrary 

number of competitors. The Lotka–Volterra system of equations is an example of a Kolmogorov model, which 

is a more general framework that can model the dynamics of ecological systems with predator-prey 

interactions, competition, disease, and mutualism. 

Lotka Volterra is the most famous predator prey model. According to Volterra if ( )x t  is the prey 

population and ( )y t that of the predator at time t  then Volterra’s model is (Murray, 2003), 

  ( )
dx

x a by
dt

                                           (1) 

( )
dy

y cx d
dt

                                           (2) 

where a, b, c and d are positive constants. Often some necessary modifications are possible here e.g. for an 

absent predator a limited growth of prey can be introduced. The assumptions in the model are: 

  In the absence of any predation the prey grows unboundedly in a Malthusian way; this is the ax  term 

in equation (1). 

 The effect of the predation is to reduce the prey’s per capita growth rate by a term proportional to the prey 

and predator populations; this is the bxy  term. 

 In the absence of any prey for sustenance the predator’s death rate results in exponential decay, that is, the 

dy  term in equation (2). 

 The prey’s contribution to the predators’ growth rate is cxy ; i.e. it is proportional to the available prey as 

well as to the size of the predator population. 

 The xy  terms are representing the conversion of energy from one source to another.  

 bxy is taken from the prey and cxy  accrues to the predators.  
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The model (1) and (2) are known as the Lotka–Volterra model but this model has serious drawbacks. 

Nevertheless it has been of considerable value in posing highly relevant questions and is a jumping-off place 

for more realistic models; this is the main motivation of study here (Murray, 2003). 

 

2 Interacting Population Models  

The population dynamics of each species is affected whenever two or more species interact. Generally there 

consist whole webs of interacting species; those webs which consist structurally for complex communities are 

called a trophic web. The dynamics outcomes of the interactions are very sensitive to initial data and parameter 

values. The interactions lead to the following possible outcomes, 

 Competitive exclusion; 

 Total extinction, i.e., collapse of the whole system; 

 Coexistence in the form of positive steady state; 

 Coexistence in the form of oscillatory solutions;  

  A better and friendly competitor can save a otherwise doomed prey species. 

Two or more species models consist in case of concentrating particularly on two-species systems. There are 

three main types of interactions. 

 If the growth rate of one population is decreased and the other increased the populations are in a 

predator–prey situation. 

 If the growth rate of each population is decreased then it is competition. 

 If each population’s growth rate is enhanced then it is called mutualism or symbiosis (Murray, 2003). 

 

3 The Effect of Complexity on Stability 

To explain the relationship between structural complexity and stability of ecosystems an extensive literature is 

available. Theoretical study reviews shows that the term stability is mostly used to mean the condition that 

whereby species densities, when perturbed from equilibrium, again return to that equilibrium. Analytically this 

condition can be made tractable by assuming that the populations are perturbed slightly so that linear 

approximations can be made to the nonlinear equations. 

To  know the effect of complexity on stability briefly let us take the generalized Lotka–Volterra 

predator–prey system where there are n  prey species and n  predators, which prey on all the prey species 

but with different severity. Then in place of (1) and (2) it can be written as, 

    
1

1

n
i

i i ij j
j

n
i

i ij j i
j

dx
x a b y

dt

dy
y c x d

dt





 
  

 
 

  
 




      1,2,3,...,i n                 (3) 

and all of the , ,i ij ij ia b c and d  are positive constants (Murray, 2003). 

4 Realistic Predator–Prey Models 

Though the Lotka–Volterra model is unrealistic because one of the unrealistic assumption is that growth of the 

prey population is unbounded in the absence of predation and the other is that there is no limit to the prey 

consumption but it suggests that simple predator–prey interactions can result in periodic behaviour of the 

populations. Since it is not unexpected that if a prey population increases then it encourages growth of its 

predator and more predators consume more prey due to which its population starts to decline. With the less 
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food around the predator population declines and when it is low enough, this allows the prey population to 

increase and the whole cycle starts over again. Depending on the detailed system such oscillations can grow or 

decay or go into a stable limit cycle oscillation or even exhibit chaotic behaviour, although in the latter case 

there must be at least three interacting species, or the model has to have some delay terms. A limit cycle 

solution is a closed trajectory in the predator–prey space which is not a member of a continuous family of 

closed trajectories. A stable limit cycle trajectory is such that any small perturbation from the trajectory decays 

to zero.  

One of the unrealistic assumptions in the Lotka–Volterra models, (1) and (2), and generally (3), is that the 

prey growth is unbounded in the absence of predation. 

In the form we have written the model (1) and (2) the bracketed terms on the right are the 

density-dependent per capita growth rates. To be more realistic these growth rates should depend on both the 

prey and predator densities as, 

     ( , ), ( , ).
dx dy

x F x y y G x y
dt dt

                             (4) 

where the forms of  F and G depend on the interaction, the species and so on. A more realistic prey 

population equation might take the form, 

     ( , ), ( , ) 1 ( ).
dx x

x F x y F x y r y R x
dt k

     
 

                (5) 

where ( )R x is one of the predation term and K  is the constant carrying capacity for the prey when 0.P   

The predator population equation, the second of (5), should also be made more realistic than simply having 

G d cx     as in the Lotka–Volterra model (2). Possible forms are, 

     ( , ) 1 , ( , ) ( )
hy

G x y k G x y d eR x
x

      
 

                 (6) 

where k, h, d and e are positive constants. The first of (6) says that the carrying capacity for the predator is 

directly proportional to the prey density (Murray, 2003). 

 

5 Competitioning Models 

Here, for a common food source two species compete to each other. For example, competition may be for 

territory which is directly related to food resources. Mathematically, carrying capacity of one species is 

reduced by the other species and vice versa. When two or more species compete for the same limited food 

source or in some way inhibit each other’s growth, a very simple competition model which demonstrates a 

fairly general principle which is observed to hold in nature is that in the competition for the same limited 

resources one of the species usually becomes extinct. The basic two species Lotka–Volterra competition model 

with each species 1n and 2n  have logistic growth in the absence of the other. Inclusion of logistic growth in 

the Lotka–Volterra systems makes them much more realistic, but to highlight the principle the simpler model 

which nevertheless reflects many of the properties of more complicated models, particularly as regards 

stability. 

 

1 1 2
1 1 12

1 1

1
dx x x

r x b
dt k k

 
   

 
                                   (7) 
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2 2 1
2 2 21

2 2

1
dx x x

r x b
dt k k

 
   

 
                                  (8) 

where 1 1 2, 2, 12, ,r k r k b  and 21b  are positive constants and r’s are the linear birth rates and the k’s are the 

carrying capacities. The 12b and 21b measure the competitive effect of 2n  on 1n  and 1n  on 2n  respectively 

and they are not equal generally (Murray, 2003). 

Note that the competition models (7) and (8) are not a conservative system like its Lotka–Volterra 

predator–prey counterpart and if we non dimensionalise this model by writing 

       

1 2 1
1 2 1

1 2 1

2 1
12 12 21 21

1 2

, , , ,

,

t

x x r
u u r

k k r

k k
a b a b

k k

    

 
                        (9) 

(6) and (8) become 

      

1
1 1 12 2 1 1 2

2
2 2 21 1 2 1 2

(1 ) ( , ),

(1 ) ( , ),

du
u u a u f u u

d
du

pu u a u f u u
d





   

   
                     (10) 

The steady states, and phase plane singularities are the solutions of 1 1 2 2 1 2( , ) ( , ) 0f u u f u u  (Murray, 

2003). 

 

6 Mutualism or Symbiosis 

In these cases, the two species benefit from each other. To some extent it is the opposite of the competition 

model here carrying capacity of each species is increased by the other species. 

There are many cases where the interaction of two or more species is to the advantage of all. In promoting 

and even in maintaining such species mutualism or symbiosis often plays a very crucial role. Plant and seed 

dispersal is an example. If the survival is not at stake even in those situations the advantage of mutualism or 

symbiosis can have its own importance. As a topic of theoretical ecology, even for two species, this area has 

not been as widely studied as the others even though its importance is comparable to that of predator–prey and 

competition interactions (Lotka, 1920). This is in part due to the fact that simple models in the Lotka–Volterra 

vein give silly results. The simplest mutualism model equivalent to the classical Lotka–Volterra predator–prey 

one is, 

       1 2
1 1 1 1 2 2 2 2 2 1. ,

dx dn
r x a x x r n a n n

dt dt
     

where 1 2 1 2, ,r r a and a  are positive constants.  

Since 1 0
dx

dt
 and 2 0,

dx

dt
  1n  and 2n  simply grow unboundedly (Murray, 2003). 

7 Threshold Phenomena 

With the exception of the Lotka–Volterra predator–prey model, the two species models, which have either a 
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stable steady states where small perturbations die out, or unstable steady states where perturbations from them 

grow unboundedly or result is produced in limit cycle periodic solutions. There is an interesting group of 

models which have a nonzero stable state such that if the perturbation is sufficiently large or it is of the right 

kind, then before returning to the steady state population densities undergo large variations. Such models are 

said to exhibit a threshold effect (Murray, 2003). One such group of models is studied here. The model 

predator–prey system is 

 

 

( ) ( , ),

( ) ( , )

dx
x F x y f x y

dt
dy

y x G y g x y
dt

  

  
                                 (11) 

where for convenience all the parameters have been incorporated in the F and G by a suitable rescaling. 

 

8 Discrete Growth Models for Interacting Populations 

Now taking the two interacting species, each have the non overlapping generations and each species affect the 

other’s population dynamics. In the continuous growth models, there are some main types of interaction, such 

as, predator–prey, mutualism and competition. Nowhere near to the same extent as for continuous models for 

which, in the case of two species, there is a complete mathematical treatment of the equations. In view of the 

complexity of solution behaviour with single-species discrete models it is not surprising that even more 

complex behaviour is possible with coupled discrete systems (Murray, 2003). 

  The interaction between the prey ( )x  and the predator ( )y  to be governed by the discrete time (t) 

system of coupled equations as, 

     1  , ,( )t t t tx rx f yx                                          (12) 

     1  g( ,),t t t txy x y                                           (13) 

where r > 0 is the net linear rate of increase of the prey and f and g are functions which relate the 

predator-influenced reproductive efficiency of the prey and the searching efficiency of the predator 

respectively. 

 

9 Detailed Analysis to Predator Prey Models 

Predator-dependent predator-prey model is of the form 

                                                          

( , ), (0) 0,

( , ) , (0) 0,

dx x
xg yP x y x

dt k

dy
cyP x y dy y

dt

    
 

  
                            (14)                                   

when  ,
x

P x y
y

 
  
 

 then model (14) is strictly ratio dependent. The traditional or prey-dependent model 

takes the form  
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( , ), (0) 0,

( ) , (0) 0,

dx x
xg yP x y x

dt k

dy
cyP x dy y

dt

    
 

  
                            (15) 

Mathematically both the traditional prey-dependent and ratio-dependent models as a limiting cases i.e. for the 

former 0c   and for the later 0a   of the general predator-dependent functional response 

       ( , )
x

P x y
a bx cy




 
 

when ( )
x

P x
x m





 and ( ) 1

x x
g r

k k
   
 

 becomes 

       1 , (0) 0
dx x xy

rx x
dt k m x

       
 

where , , , , ,r k m f d  are positive constants and the population density of prey and predator at time t is 

represented by ( ), ( )x t y t  respectively. 

In the absence of predation the prey carrying capacity K and grows with intrinsic growth rate r. The 

predator consumes the prey with functional response of type 
( )

cxy

m x
 and contributes to its growth with rate 

( )

fxy

m x
. The constant d  is the death rate of predator. According to model (15) in a predator-prey system 

enrichment will cause an increase in the equilibrium density of the predator but not in that of the prey, and will 

destabilize the positive equilibrium, that is according to (15) a low and stable prey equilibrium density is not 

possible. Another prediction that can be made from model (15) is that the mutual extinction between the prey 

and predator cannot extinct simultaneously. 

Recently by both mathematicians and ecologists the rich dynamics provided at the boundary and close to 

the origin by the strict ratio-dependent models is ignored. If there is a positive steady state in ratio dependent 

models both prey and predator will go extinct i.e., the collapse of the system. The extinction may occur in two 

different ways. One of the way is that regardless of the initial densities both species become extinct and the 

other way is that both species will die out if the initial prey/predator ratio is too low. In the first case, 

extinction often occurs as a result of high predator efficiency in catching the prey and in the second way there 

are interesting implications. For example, it indicates that altering the ratio of prey to predators through 

over-harvesting of prey species may lead to the collapse of the whole system and the extinction of both species 

may occur. In many aspects the richest dynamics is provided by the ratio-dependent models while in the 

prey-dependent models the least in dynamical behavior is provided.  

In ratio dependent models there are still some controversial aspects. A specific main controversial aspect 

is that in the ratio dependent models the high population densities of both prey and predator species are 

required while the most interesting dynamics of ratio-dependent models occurs near the origin. If the area of 
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the population interaction is large certainly it is a valid concern because in such cases rather than interfering 

each other most efforts are spent by the predators in searching the prey hence the functional response is likely 

to be much more sensible to prey density than predator density. However, if the area of the population is 

small for the prey and even the densities are low since predators can remain interfering effectively each other 

then certainly in such cases ratio dependence formulation may remain valid for very small field or patch, even 

when the numbers of individuals of prey and predators are low while their densities may remain high. In such 

cases, ratio dependence models are a valid mechanism which suggests that there is a high possibility of mutual 

extinction.  

Some interesting and new dynamics are revealed by the analysis of the ratio dependent models. For 

competing predators competitive exclusion principle still holds for most parameter values, it is very often that 

through the result of the parameter values both can go extinct. In fact, for certain choices of initial values and 

parameters even the prey species can go extinct it in turn cause the extinction of both predators. Coexistence is 

possible for some parametric values in both the forms of positive steady state and oscillatory solutions. Most 

surprisingly when a predator is in a position of driving the prey and itself to extinction, the introduction of a 

predator which is more friendly to prey and is a stronger as compared to the existing one competitor the prey 

species may be saved (Berezovskaya et al., 2001). 

 

10 The Law of Mass Action. Basic Concepts (Gorban et al., 2011) 

Heat energy flows from a higher temperature region to  a lower temperature region. There is no net heat 

energy flow in the case when both the regions have a same temperature. For example a covered cup of tea will 

not be colder or warmer then the room temperature after it has been there for a few hours. This phenomenon is 

known as equilibrium. Equilibrium happens in phase transition. The chemical equilibrium and the law of mass 

action are the two fundamental concepts of classical chemical kinetics. In a chemical process chemical 

equilibrium is the state in which concentrations of the reactants and the products have no net change over time. 

The law of mass action is the mathematical model that explains and predicts the behaviours of the solutions in 

dynamic equilibrium. This law  provides an expression for a constant  for all reversible reactions and 

concerns with the composition of reactions at equilibrium and the rate equitions for elementery reactions. 

Gulberg and waage (1864-1879) has proved that chemical equilibrium is a dynamic process in which rate of 

reactions for the forward and backward reactions must be equal. For a chemical reaction the law of mass action 

was first stated as follows: 

 “ when two reactants A and B react together at a given temperature in a sub situatin reaction the affinity or 

chemical force between them is proportional to the active masses [ ]A  and [ ]B  each raise to a particular 

power”. 

     Affinity = [ ] [ ]a bA B                                        (16) 

Here , ,a b were regarded as emperical constants to be determined. In 1867, the rate expression were 

simplified as the chemical force was assumed  to be directly proportional to the product of the active 

masseses of the reactants. 

     Affinity = [ ][ ]A B                                         (17) 

In 1879 this assumption was explained in trems of collision theory so that the general condition for the 

equilibrium could be applied to any orbitrary chemical equilibrium. 
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     Affinity = [ ] [ ]k A B                                         (18) 

The exponents , ,   and  are explicity defined as the “stoichiometric coefficients” for the reactions so 

that  for a general reaction of the type , 

     ... ...A B S T                                     (19) 

     Forward reaction rate [ ] [ ] ...k A B 
                           (20) 

     Backward reaction rate [ ] [ ] ...,k S T 
                        (21) 

where [ ],[ ],[ ]A B S and [ ]T are active masses and k and k are called affinity constants or rate constants. 

Since at equilibrium the affinities and reaction rates for the forward and backward reactions are equal, so  

     
[ ] [ ] ...,

[ ] [ ] ...

k S T
K

k A B

 

 





                                     (22) 

The equilibrium constant K was obtained by setting the rates of forward and backward reactions to be equal. 

Today the expression for the equilibrium constant  is derived by setting the chemical potential of forward and 

backward reactions to be equal. The units of K  depend on the units used for concentrations. If M is used fo 

all concentrations then K  has the units “ ( ) ( )M       ” if the system is not at equilibrium, the ratio is 

different from equlibrium constants. In such cases the tatio is called “reaction quotient” denoted by Q , 

[ ] [ ]
.

[ ] [ ]

c D
Q

A B

 

                                              (23) 

A system which is not at equilibrium tends to reach at equilibrium and any changes in the system will 

cause changes in Q  so that the value of the reaction quotient approaches the value of the equilibrium 

constant K , i.e., .Q K  

For a list of components 1 2, ,..., ,nA A A where each comoponent has a real variables of particles, and for 

concentrations 1 2, ,..., ,nc c c we have algebra of reactions, 

    1 1 1 1,..., , ,..., ,n n n nA A A A                               (24) 

where , 0.   we can write the stoichiometric equation for this algebra of reactions as , 

    ,i
r r i

i

R k c                                               (25) 

With stoichiometric vector, ,ri ri ri     

                                  

, , , ,I I I II II II

I II

A C N A C N

 

   Fig. 1 Cell jump model. 
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11 A Simple Cell Jump Model  

The standard form of reaction diffusion equation is, 

     ( ) ,i
i

c
f c d c

t


  


                                       (26) 

where 0,id  is diffusion coefficient and c should be literally small for very dialuted media (Gorban et al., 

2011). 

The thermodynamic ideality is the general requirement of a system to apply the law of mass action. 

Let us consider our space divided on cells, a system represented as a chain of cells each with homogeneous 

composition and elementary acts of transfers on the boundary (for us there are only two cells). On each cell we 

have some concentration for these processes. Let ,Ic is the vector concentration in the first cell I and ,IIc is 

the vector of concentration in the second cell II .using the general secheme of the formal kinetics which is 

considered to be complete if we work with  list of macroscopic variables with balanced equations, a 

mechanism of transformation (elementary process) and the functions of the rates of these elementary processes. 

The mechanism of diffusion is defined as  a list of elementary transitions between cells described by their 

stoichiometric equation. Since diffusion is a sort of jumping reaction on the border, so for these jumps the 

stoichiometric equation is written as, 

    ,I I II II I I II II
ri i ri i ri i ri i

i i i i

A A A A                          (27) 

where r is the number of processes, , ,I II
ri and ,I II

ri are the stoichiometric coefficients which indicate the 

number of particles in cells involved in the process, where each  process is is compared with the components 

of the stoichiometric vector defined by ,I I I
ri ri ri    also there should be sysymmetry between these cells, 

i.e. I II
i iA A , and diffusion coefficient id depends on the cell. Each elementary process is characterized by 

an intensive quantity, termed as velocity function  ( , )I II
r c c , (the number of elementary acts in a unit time 

per unit surface of the cell). In the absence of convection and any chemical transformation the equation of 

kinetics for the vector quantities, in isotropic and isothermal enviroment, is written as the equation of rate of 

reaction, 

     ,
I II

r r
r

dN dN
S

dt dt
                                     (28) 

where S  is the area of the boundary between two cells. The i-flux density of a substance through a unit 

surface of section is, 

     ( , ) ( , ).I II
ri ri rJ I II c c                                   (29) 

As a result of elementary acts of diffusion (27), the density of the total flux of the i-substance will be, 

     ( , ) ,i ri ri r
r

J J I II                                   (30) 

And the velocity function in the form of mass action law can be written as, 

     ( , ) ( ) ( ) ,
I II
ri riI II I II

r i i
i

c c k c c                                (31) 

where 0rk  is the rate constant depending upon the kinetic factors of the investigated system and its 
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thermodynamic properties. It is necessary to fulfil the no advection condition: 

      ( , ) 0,r r
r

c c                                          (32) 

which means the absence of flux at ,I IIc c in a homogeneous composition enviroment. Introducing flux 

riJ  as the first approximation of the Taylor series expansion in   Subject to the condition (0.2.47), 

      
( , )

. .

( )

I II
r

ri ri jII
j j I II

c c
J c

c
c c c x

 
  


 


 

              (33) 

This expression represents the transition from flux density between the cells to the vector of the flux density. It 

should be noted that model  will work well, especially in the selection of the suitable relationship between 

size of unit cell and diffusion zone (Gorban et al., 2011).  

Gorban et al. (2011), Kuttler (2011), and Murray (2003) discussed a few diffusion reactions mechanisms 

for cell jump models and determined their reactions rates, vectors of total flux density, and their diffusion 

equations by using the law of mass action along with principle of detailed balance. Some of the mechanisms 

are presented here. 

 

12 Models of Non Linear Diffusion 

The simplest mechanism of diffusion between any two cells is the process of jumping from one cell to another. 

This type of mutually inverted and mutually inverse process can be written as (Gorban et al., 2011), 

        
I II

II I

A A

A A




                                                       (34) 

12.1 Mechanism of sharing place 

The simplest mechanism of diffusion with interaction of n different substances of a multi component system is 

given by stoichiometric equation of the form (Gorban et al., 2011): 

        

I II I II
i j j i

II I I II
i j i j

A A A A

A A A A

  

  
                                       (35) 

12.2 Diffusion of mechanisms of attraction and repulsion 

The diffusion mechanisms leading to the inhomogeneous structures can be described by the multi solution 

immersed into the external conditions under which non linear mechanisms are possible with the stoichiometric 

equations, describing the mechanism of attraction (Gorban et al., 2011): 

Repulsion:                                              

2

2

I I II

II I II

A A A

A A A

 

 
                                                 (36)  

Attraction:                                                   

2

2

I II I

I II II

A A A

A A A

 

 
                                        (37) 
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12.3 Autocatalysis mechanisms 

A process where a chemical is involved in its own production is called autocatalysis. Feedbacks controls exist 

into many biological systems. One must be familiar with how to model them because they have enormous 

importance. In 1978, Tyson and Othmer introduced the dynamics of metabolic feedback control systems and a 

theoretical models review. A process when the product of one step in a reaction sequence has an effect on 

other reaction steps in the sequence. The effect is generally nonlinear and may be to activate or inhibit these 

reactions. A very simple pedagogical example is, 

                                                                             

1

2

2 ,
k

k
A Y Y                                          (38) 

where a molecule of Y combines with one of A to form two molecules of Y (Murray, 2003).   

 

13 Foxes and Rabbits Interaction- A Non-Linear System  

The humans are and they make open systems. Open systems interactions with the other open systems in an 

immeasurable set of connections of open systems. Open systems become accustomed to these connections such 

that their behaviour is non linear in general. It is difficult to predict the behavior of our artificial systems when 

they are introduced into some operational atmosphere. 

It is a constant battle among the animals on a daily basis to survive. They have to find their food and avoid 

becoming a food. These species can be  divide up on the basis that how they get their food, if they provide it 

they are producers (prey), if they need to find it they are consumers (predator) and if they breakdown dead 

material they are decomposers. 

This correlation between predator and prey intertwines into a complex food chain. In the ecosystem there 

are various species and every one play a significant role in maintaining populations near the carrying capacity 

and in keeping the system in balance.  In the ecosystems Predator and prey assist them through particular 

adaptations to compete for food resources.  Predator and prey populations are directly related and they cannot 

survive without each other.  Here this relationship is illustrated by using foxes and rabbits. 

In artificial world and in the social systems non-linear behaviors are the order of the day. Rabbits and foxes 

share some behaviors but vary in others and their interaction is non-linear in nature. 

The rabbits are proverbially very good in reproduction. In case when more rabbits are there, the more foxes 

will prey on them, so that the number of foxes will increase, when more foxes will predate a lot such that the 

number of rabbits start to decrease, swiftly it follows by falling fox numbers as there are a small amount of 

rabbits to sustain them therefore it is observed that the populations of rabbits and foxes are locked together in an 

interactive population 'dance.' This system is non-linear in its behavior. In mathematics non-linear simultaneous 

equations are used to represent these interactions for which there exist an infinite number of solutions.  

Between the fox and rabbit populations here is a complicated and natural predator-prey relationship, since 

rabbits thrive in the absence of foxes and foxes thrive in the presence of rabbits. Foxes like to occupy a 

combination of forest and open fields. Foxes usually define their territory zones and use the transition zone or 

"edge" between these habitats as hunting areas. Foxes do not interfere in the defined areas of each others. 

13.1 Predator prey interactions  

In this idealized ecological system, two populations are considered of which one may be hunted by the second.  

 Each prey gives rise to a constant number of off-spring preys each year. 

 A constant proportion of the prey population is hunted by each predator each year. 

 Predator reproduction is directly proportional to the constant proportion of the prey population hunted by 

each predator. 
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where 0R  is the initial population of the rabbits (prey) at time 0t   . This model is also called exponential 

growth model due exponential factor involved. The exponential growth rate will be positive if births are more 

than deaths and negative if deaths are dominant. 

The exponential model is not very realistic because with a negative exponential growth rate, there will not 

be any life left on the island. On the other hand, if the growth rate is positive, the rabbits will cover the entire 

island with enough time. This will not happen actually because rabbits will run out of space and food due to 

maximum carrying capacity of island. This kind of problem was handled through the law of population growth 

derived by Alfred J. Lotka in 1925 by adding the concept of carrying capacity K to the exponential model. 

This model is called logistic model formalized by the differential equation: 

1
dx x

rx
dt k

   
 

                                            (42) 

Clearly when ,R K  and R k   the equation (42) is close to the equation (40) and rabbit population 

stops growing. If ,R K  then there will be a crowding of rabbit population on the island and from equation 

(42) a negative sign will reduce the population growth to a manageable level. The behaviour of the model can 

be predicted through the growth rate r . 

13.3 Fox as a predator  

In the presence of hundreds of different animals on the island, the modeling of the interaction among these 

animals is not an easy task. However, the interaction between two species is possible taking one as a prey and 

the other as a predator. The same single population growth model can be used for predators (foxes), if prey 

(rabbits) is considered as an unlimited food supply to foxes. But Foxes are territorial animals, and in general 

each fox claims its own territory by marking their territories with signals that other foxes will recognize e. g., 

by leaving their droppings in prominent positions. They pair up only in winter. So it will be difficult for the 

foxes to cover the whole island without defining their own territories. 

In order to describe the interaction between a predators (foxes) and its prey (rabbits), introduce a small 

number of fox population on the island with rabbits having unlimited food supply and following the equation 

(42). If R represents the rabbit’s population and F  is the fox’s population, then population rates for each 

species will be affected and described by the following equations as: 

,

.

dR
aR bRF

dt
dF

cRF dF
dt

 

 
                                           (43) 

where , ,a b c  and d  are parameters as defined for predator (fox) and its prey (rabbits). The additional terms 

will now be defined as: 

 bRF  Rabbits hunted by the foxes, reducing the rabbit population 

 cRF  Fox population growth by eating the rabbits 

Since some of the rabbits will be hunted by the foxes (as a food), so the birth rate r  is not the only factor 

describing the rabbit population. Without the presence of foxes, i.e., 0,F   the equation (43) will reduce to 
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3. Now in the case of rabbits, when two rabbits, one male ( )mR and the other  female rabbit 

( )fR  interact, let n be the number of rabbits which born as the result of that interaction, they can be males, 

females or a combination of both sexes ( )m fR  , this circle repeats itself; in this case the possible mechanism 

will be, 

     ( ) ( ) ( )( )m f m fR R n R                                        (47) 

 

13.5 Mechanism of circulation 

The simplest mechanism of circulation between any two foxes or rabbits is the process of moving one fox or 

rabbit from area defined for it, to the area defined for another fox or rabbit and vise versa. This type of mutually 

inverted and mutually inverse processes for the case of foxes can be written as, 

       
I II

II I

F F

F F




                                                        (48) 

This mechanism for the case of rabbits will be written as, 

        
I II

II I

R R

R R




                                                           (49) 

As it is stated in the early lines that foxes are territorial and stay in their own territorial zones, the above 

mechanism may not be possible in practical in the case of foxes, but rabbits move freely in nature without any 

restrictions so this mechanism may or may not be possible in that case. 

13.6 Mechanism of sharing place  

1. The mechanism of sharing place with interaction of n different foxes or rabbits i.e. when a fox I
iF is in 

territory one and another fox II
jF is in territory two and then fox I

iF moves from territory one to territory two 

and vise versa, in a multi component system is given by stoichiometric equations of the form:   

        

I II I II
i j j i

II I I II
i j i j

F F F F

F F F F

  

  
                                             (50) 

Practically in the case of foxes the above mechanism seems to be almost impossible because foxes usually define 

their territory zones and use the transition zone or "edge" between these habitats as hunting areas. Foxes do not 

interfere in the defined areas of each other’s and foxes fight other foxes if they find them in their territory. 

2. In the case of rabbits it may or may not be possible because rabbit’s movement is free naturally without any 

restrictions. In that case the possible mechanisms will be, 

       I II I II
i j j iR R R R                                                 (51) 

II I I II
i j i jR R R R                                         (52) 

3. Now in the case of mix situation i.e. by taking foxes and rabbits case together, 

        I II I I I
i j i j iF R F R F                                          (53) 
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II I II II II
i j i j iF R F R F                                  (54) 

As the foxes are territorial while the rabbits move freely, in the above mechanism (53) it is described that when a 

fox is in territory one and a rabbit is in territory two, if rabbit move from territory two to territory one, the fox in 

that area will prey that rabbit and a similar case happens in mechanism (54) for second territory.  

13.7 Mechanism of attraction and repulsion 

1. Foxes are solitary and necessitate quite huge hunting areas. A fox constantly patrols its territory looking 

for food, using its urine to mark places it has completed searching. Foxes are territorial and fight other foxes 

that they find on their territory. Because they wander over such a wide area, foxes maintain several burrows 

and dens across their territory. The possible mechanisms of attraction and repulsion for the foxes and rabbits 

can be;  

Repulsion:   

        
2

2

I I II

II I II

F F F

F F F

 

 
                                              (55) 

Attraction:    

      
2

2

I II I

I II II

F F F

F F F

 

 
                                        (56) 

Both the mechanisms of attraction are unnatural in the case of foxes because foxes are territorial and fight other 

foxes that they find on their territory so two or more foxes cannot stay in the same territory thus we will have 

to move towards mechanisms of repulsion consequently there will be no attraction in the case of foxes. 

2. Now taking the mechanisms of attraction and repulsion for the case of rabbits the following mechanisms 

are possible, 

Attraction:     

      
2

2

I II I

I II II

R R R

R R R

 

 
                                             (57) 

Repulsion:       

        
2

2

I I II

II I II

R R R

R R R

 

 
                                              (58) 

In this case the above stated both the mechanisms of attraction and repulsion may or may not be possible because 

rabbits move freely in nature without any restrictions. If two rabbits are in two different territories and they both 

move in the same territory then it is described by mechanisms of attraction and if two rabbits are in the same 

territory and one of them leaves that territory and moves to another territory in that case, it is described by 

mechanisms of repulsion. 

3. Now for the mix situation i.e. when in any territory the mechanisms of attraction and repulsion are 

considered for both, the foxes and the rabbits at a time, the following mechanisms for attraction and repulsion are 

possible, 

Attraction:  

         
I I I

II II II

R F F

R F F

 

 
                                      (59) 
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In attraction mechanism when both the rabbit and the fox are in the same territory, then fox will prey the rabbit 

and the result will be the fox. 

Repulsion:            

           
I I I II

II II II I

R F F R

R F F R

  

  
                                   (60) 

In repulsion mechanism when both the rabbit and the fox will be in the same territory then it is possible that a 

rabbit may change its territory but fox does not do so because foxes are territorial. When rabbit in the first 

territory will change its territory then the fox of that territory will not be in a position to prey that rabbit so it will 

survive that fox but fox present in that territory will be in a position to prey that rabbit and vise versa. 

13.8 Pair wise interaction  

In pair wise interaction the following mechanisms are possible because foxes are territorial while rabbits move 

freely in nature and rabbits change their territories regularly while foxes does not do so. In this situation the 

possible mechanisms will be; 

      ( ) ( ) ( ) ( )I I II II II I I IIR F R F R F R F                    (61) 

      ( ) ( ) ( )I I II II I I I IIR F R F R R F F                      (62) 

      ( ) ( ) ( )I I II II I II II IIR F R F F R R F                     (63) 

In the above mechanism (61) a rabbit and a fox are present in territory one and a similar situation is in the 

territory two.  In mechanism one, rabbit from territory one moves to territory two and vise versa. Other 

possibilities are that both the rabbits move to territory one or both of them move to territory two. These 

possibilities are described in mechanism (62) and (63) respectively. 

13.9 Autocatalysis mechanisms 

Autocatalysis is the procedure whereby a chemical is involved in its own production. In the following 

mechanisms, in the case of foxes, when two foxes, a male fox ( )mF and a female fox ( )fF interact, let n  be  

the number of foxes which born as the result of that interaction, they all  can be males, females or a 

combination of both ( )m fF  , this circle repeats itself; in this case the possible mechanism will be, 

      ( ) ( ) ( )( )m f f mF F n F                                        (64) 

Now in the case of rabbits, when two rabbits, one male ( )mR and the other  female rabbit ( )fR  interact, let n 

be the number of rabbits which born as the result of that interaction, they can be males, females or a 

combination of both s ( )m fR  , this circle repeats itself; in this case the possible mechanism will be, 

      ( ) ( ) ( )( )m f m fR R n R                                       (65)                                  

 

14 The Observations   

The sense in which the discrete equations for cells converge to the partial differential equations of diffusion is 

that the cell models give the semi-discrete approximation of the partial differential equations for diffusion. 
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They result in a system of ordinary differential equations in cells. Such approximation appears often in finite 

element methods and cells are discontinuous finite elements. There are jumps of concentrations on the 

boundary of cells. The Taylor expansion of the right hand sides of the discrete system of ordinary differential 

equations for cells produces the second order in the cell size approximation to the continuous diffusion 

equation (the standard result for the central differences). 

Significant difference from the classical finite elements is in construction of right hand sides of the 

ordinary differential equations for concentrations in cells: there are flows in both directions: from cell 1 to cell 

II and from cell II to cell I. These flows have a simple mass action law construction and the resulting diffusion 

flow is the difference between them. The kinetic constants should be scaled with the cell size to keep kl d  

(k is the kinetic constant, l is the cell size, d is the diffusion coefficient for the particular mechanism). 

This is the approximation of the right hand sides. The approximation of solutions is a more difficult 

problem and depends upon the properties of solutions of PDE. It seems a good hypothesis that for obtained 

diffusion systems with convex Lyapunov functional and “no-flux” boundary conditions in bounded areas with 

smooth boundaries the cell model gives the uniform approximation to the solution of the correspondent PDE. 

The system of semi-discrete models for cells with “no-flux” boundary conditions has all the nice 

properties of the chemical kinetic equations for closed systems. Under the proper relations between 

coefficients, like complex balance or detailed balance, this system demonstrated globally stable dynamics. This 

global stability property can help with the study of the related PDE.  

Finally, the cell-jump models may be considered as the proper diffusion models by themselves, for the 

finite physically reasonable cell size, without limit. This size may be quite large for the coarse-grained models 

(it depends on the medium microstructure and on the smoothness of the concentration fields). 

14.1  For mechanisms of circulation 

For this mechanism, 

             

I II

II I

I II

II I

F F

F F

R R

R R









 

It is stated in the early lines that the above stated mechanism is not possible in the case of foxes because the foxes 

are territorial and does not change their territory while it may or may not be possible in the case of rabbits 

because their movement is free naturally and if this mechanism occurs  in their case, then the equation of 

kinetics for the above mechanism the condition of absence of flux in a homogenous environment with the rate of 

constant of direct and inverted processes as i i ik k k    give the following form of the diffusion equation, 

              .i
i i

c
k c

t


 


 

14.2 For sharing place mechanism 

Sharing place mechanism is also not possible in the case of foxes due to the fact that the foxes are territorial 

and does not change their territory while it may or may not be possible in the case of rabbits because their 

movement is free naturally and if this mechanism occurs  in their case, then for the mechanisms of sharing 

place the diffusion equations for the above mechanism using stoichiometric vectors ,ri


 fluxes of the 

substances iF  and jF  and the functions 1w and 2w for the first and second elementary process are 
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calculated as, 

For process:                            I II I II
i j j iF F F F    

                                          1 1i            1 1j           1 1( , )I II I II
i jw c c k c c  

                                          1 1i i jJ k c c


 


        1 1i i jJ k c c


  


       

                                      1 1 1 ( , )i j i j i jw div k c c k c c c c
              

   
 

 

For process:                         II I I II
i j i jF F F F    

2 1i        2 1j         1( , )I II I II
k j iw c c k c c  

2 2i j iJ k c c


  


    1 2i j iJ k c c


 


 

                                      2 2 2 ( , )j i j i i jw div k c c k c c c c
              

   
                                   

The equation for mutual diffusion for ith and jth substances was determined as, 

( )

( )

i
j i i j

j
i j j i

c
k c c c c

t
c

k c c c c
t


   




   


 

The above equation describes the diffusion on the surface of the catalyst for the mechanism of jumping to a 

neighboring free space (Gorban et al., 2011).  

 

15 Our Objectives 

Our goals are:  

(a) To build up a brief study of complex biological systems by taking a study case of foxes and rabbits. 

(b) To tackle key research questions about our case study by proposing new techniques and algorithms that are 

inspired by those complex biological systems.  

Further for our case study we want to study, and aim to extend these ideas to all other possible mechanisms 

complete in all aspects between foxes and rabbits.  We aim a comparative study for all the possible mechanisms 

like, mechanism of attraction and repulsion, pair wise attraction, and for autocatalysis mechanisms between 

foxes and rabbits and want to determine their reactions rates, vectors of total flux density, and their diffusion 

equations by using the law of mass action along with the principle of detailed balance and aim to check their 

stability for these interactions. 
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