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Abstract 

In this work we study the preferential use of carbon sources in the bacterium Escherichia coli. To that end we 

engineered transcriptional fusions of the reporter gene gfpmut2, downstream of transcription-factor promoters, 

and analyzed their activity under several conditions. The chosen transcription factors are known to regulate 

catabolic operons associated to the consumption of alternative sugars. The obtained results indicate the 

following hierarchical order of sugar preference in this bacterium: glucose > arabinose > sorbitol > galactose. 

Further dynamical results allowed us to conjecture that this hierarchical behavior might be operated by at least 

the following three regulatory strategies: 1) the coordinated activation of the corresponding operons by the 

global regulator catabolic repressor protein (CRP), 2) their asymmetrical responses to specific and unspecific 

sugars and, 3) the architecture of the associated gene regulatory networks. 
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1 Introduction 

The way bacteria use different carbon sources (Monod, 1942) has been studied for a long time, in which 

Escherichia coli has been the favorite model organism. We learned from the very beginning that glucose is the 

carbon source supporting the fastest growth on this bacterium (Walker et al., 1934). This sugar is also the 

preferred one if bacteria are exposed to a mixture of carbon sources. It seems that E. coli uses carbon sources 

on the basis of “best food served first”. The molecular mechanisms behind this operating principle are various, 

the best-known ones are: inducer exclusion, local or dedicated transcriptional regulation, global transcriptional 

regulation, small RNAs, and catabolite repression. 

Inducer exclusion (Jones-Mortimer and Kornberg, 1974; Chen et al., 2013) takes place when, in the 

presence of glucose or other PTS sugars, the unphosphorylated EIIAGlc (part of the PTS system) binds to and 
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stabilizes the resting state of non PTS-sugar transporters, inhibiting the transport (and use) of alternative 

carbon sources. 

Local or dedicated transcriptional regulation operates at the initiation of gene transcription of sugars 

catabolic operons. These operons are normally subject to repression by at least one specific regulator, whose 

derepression occurs when the corresponding specific sugar is available and binds to it. This binding causes the 

effector-repressor complex to unbind from the operator zone, which is a necessary condition for the 

corresponding operon to become active (Jacob and Monod, 1961; Sellitti et al., 1987). 

Global transcriptional regulation. The complementary condition for the transcription of sugar catabolic 

genes is given by the activity of the global regulator CRP (catabolic repressor protein or cAMP regulatory 

protein). CRP becomes active when bound by cyclic adenosine monophosphate (cAMP). The cAMP-CRP 

complex is then capable of recruiting RNA polymerase to promoter zones of catabolic operons so their 

transcription is started if no repressor is present. Hence, a condition for the transcription of catabolic operons is 

that high cAMP levels are present. High cAMP levels are in general achieved in the absence of glucose 

although, as mentioned below, it could be the result or a wider physiological status (Gottesman, 1984; 

Martínez-Antonio and Collado-Vides, 2003). 

Small RNAs (sRNA). Arguably, the best known sRNA is the multi-target Spot42, which inhibits the 

translation of at least 14 genes, mostly related to the use of non-PTS sugars. Spot42 is activated by cAMP-CRP 

and together form a coherent feed-forward loop to avoid use of non-PTS sugars when the preferred sugars are 

available (Beisel and Storz, 2001; Wright et al., 2013). 

Catabolite repression (Magasanik, 1961; Görke and Stülke, 2008), a physiological concept so-named by 

Boris Magasanik as a generalization of the “glucose effect” described many years earlier (Cohn, 1957). It was 

derived after observing the repression, when glucose is present, of catabolic enzymes specific for carbon and 

nitrogen metabolism. This phenomenon was related to cAMP levels that increase when poor carbon sources 

are present in the milieu (Epstein et al., 1975). cAMP is synthesized by the CyaA enzyme, which is activated 

by phosphorylated EIIAglu but requires an additional unidentified factor (Park et al., 2006). It was postulated 

that a derived catabolite of carbon sources (the repressor catabolite) is the responsible to trigger cAMP syntesis. 

Only recently, a high-throughput proteome analysis (studying carbon, nitrogen and sulfur sources metabolism) 

in E. coli revealed that cAMP levels are diminished by α-ketoacids (mainly by oxaloacetate) through the 

inhibition of adenylate cyclase, the enzyme responsible for cAMP synthesis (You et al., 2013). This explains 

how this central metabolite is balancing the overall bacterial physiology throughout the nitrogen/carbon 

metabolism (Rabinowitz and Silhavy, 2013). 

Here we present a study that copes with the activities of the promoters of specific catabolic regulators, 

which in addition to self-regulation, respond to the global regulator CRP (points 2 and 3 above). These locals 

and the global regulator operate together to regulate transcriptional initiation in E. coli catabolic operons for 

the transport and use of carbon sources other than glucose. 

We tackle the question of how bacteria decide to consume alternative carbon sources, focusing in 

L-arabinose, D-sorbitol and D-galactose. The regulation, transport and first catabolic steps in the metabolism 

of these sugars are depicted in Fig. 1. As we can see, not only the corresponding genes are activated by CRP, 

but they are also repressed by specific transcription factors. We investigate in this work the promoter activities 

of these specific regulators. Importantly, all of them use the transported sugars as signal effectors to modulate 

their activities. The signal sugar binds to the repressor and unbinds it from the operator zone, thus allowing 

transcription of the corresponding genes. Finally, all the promoters here analyzed require of the housekeeping 

σ70 to be transcribed so this is not a variable to consider in this study.  
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Fig. 1 Regulatory network controlling the use of the carbon sources employed in this study. It is show the module corresponding 
to the global regulator CRP. cAMP, a co-activator of CRP, is synthesized via CyaA when glucose is absent. The arabinose module 
includes the dual regulator AraC, which transcriptionally regulates the arabinose transporter genes AraE (low affinity) and 
AraFGH (high affinity). AraC also regulates the genes of enzymes isomerase (AraA), ribolukinase (AraB) and epimerase (AraD), 
which metabolize arabinose to D-xylulose 5-P. The galactose module has two repressors, GalR and GalS, in different 
transcription units. In absence of galactose they repress the genes for galactose transporters GalP (low affinity) and MglBAC 
(high affinity), as well as those for the enzymes GalK (galactokinase), GalT (uridiltransferase), and galM (epimerase), which 
metabolize galactose to glucose 1-P. The sorbitol module is also regulated by two transcription factors, SrlR and GutM, encoded 
in the same operon, which also includes genes for high affinity transporter (SrlAEB) and for the enzymes SrlD (dehydrogenase) 
and GutQ (isomerase), which transform sorbitol to fructose 6-P. This figure was created using the BioTrapestry software 
(Longabaugh et al, 2009). 

 

 

2 Material and Methods 

2.1 Strains 

In all our experiments we employ Escherichia coli K-12 MG1655 strain and derivatives harboring the different 

transcriptional fusions show in Table 1. Most of the used transcriptional fusions were taken from a collection 

reported previously (Zaslaver et al., 2006). However, we rebuilt the transcriptional fusions for gutM and crp 

promoters in order to include regulatory sites for transcription factors not comprised in fusions from the 

collection. We realized the necessity of such regulatory sites by inspecting the transcription-factor binding sites 

reported in RegulonDB (Salgado et al., 2013). These last fusions were engineered by amplifying (through PCR 

and specific primers) the corresponding regulatory regions, cloning the resulting DNA fragments on pUA66 

with the aid of the BamH1 and XhoI restriction sites, and verifying the construction by means of DNA 

sequencing. 

2.2 Bacterial growth 

For strain maintenance we routinely used LB medium and for experimental tests we used M9 medium, 

supplemented with sugars as indicated. Also when indicated, we added kanamycin (Km) 50 μg ml-1. 

Pre-inoculates were grown overnight in 5 ml of LB medium at 37 ºC with agitation (200 rpm). Next, the 
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cultures were diluted 1 : 100 in 150 μl of fresh M9 media in micro-titer plates of 96 wells and incubated for 12 

h with agitation (250 rpm) at 37 ºC. We supplemented M9 with 0.4% or 0.03% of glucose, and 0.2% of one or 

two alternative sugars as specified. We followed bacterial growth, by measuring OD595nm, and fluorescence 

(535 nm) every hour in a Perkin Elmer Victor X3 plate multi-lector. 

 

 

     Table 1 Regulatory regions employed on the transcriptional fusions. 

Promoter fusions E. coli  
chromosome 
coordinates 

Designed  
primers* 5´-3´ 

Region 
size 

Cloning 
vector 

Reference 

araCp::gfpmut2  69973-70452   479bp pUA66 Zaslaver et al., 2006 

crpp::gfpmut2  3483776-3484200  F:tgatgactcgaggcggatt
c 
R:tggcaatgagacaggatc
ca  

424bp pUA66 This study 

galSp::gfpmut2  2239619-2239844   225bp pUA139 Zaslaver et al., 2006 

galRp::gfpmut2  2973960-2974698   738bp pUA66 Zaslaver et al., 2006 

gutMp::gfpmut2  2823533-2823932  F:cttgctgctcgaggcggca
a 
R:ccatccggatccacacctc
tccgc  

399bp pUA66 This study 

srlRp::gfpmut2  2826905-2827074   169bp pUA66 Zaslaver et al., 2006 

 *Underlined nucleotides define restriction sites for XhoI and BamH1 endonucleases on forward and reverse primers. 

 

 

2.3 Data acquisition and processing 

The raw numerical data obtained from the Victor X3 plate multi-lector consisted of discrete measurements of 

optical density (OD) and fluorescence (GFP) versus time along the growth curves, with a sampling frequency 

of 1 hr-1. Although enough to provide an overview of the time evolution of variables OD and GFP, such 

sampling frequency is too low to perform more refined quantitative analyses. For that, it is necessary to find a 

function that fits the experimental data. Since the generalized logistic function is a widely used sigmoid 

function for growth modeling we decided to employ it. In all cases we found that it fits both the growth curves 

and the GFP profiles with correlation factors higher than 0.99. The functions used to fit the OD and GFP 

profiles are: 

        (1) 

        (2) 

in which ai, bi, ki, qi, and vi (i = 1, 2) are fitting parameters. Zaslaver et al. (2006) and Martínez-Antonio et al. 

OD(t)  a1 
k1  a1

1 q1e
b2t 1/v1

,

GFP(t)  a2 
k2  a2

1 q2e
b2t 1/v2

,
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(2012) have argued that promoter activity is proportional to (dGFP(t) / dt) / OD(t ). Thus, after finding the best 

fitting parameters we differentiated function (2) and divided the result by eq. (1) to compute the promoter 

activity in each case. 

For every experimental condition and for every transcriptional function we periodically measured the 

values of optical density and green fluorescence in triplicate, computed the corresponding average values, and 

respectively fitted to Eqs. (1) and (2), and computed the promoter activity level as explained above. 

In our experiments we could observe that the crp, galR and srlR promoters were unresponsive under all 

the tested conditions (data not shown). The invariable of crp promoter activity might be explained because it is 

the most global regulator in E. coli. Not only crp regulates itself, but it is also subject to dual regulation by 

another global regulator: FIS (factor for inversion stimulation). In the case of galR and srlR, the reason why 

they present constant low expression levels may be that they are constitutively expressed; up to date no 

regulator is known for these genes. Due this unresponsiveness and for the sake of clarity we excluded the 

results corresponding to these promoters in the fore coming sections. 

 

3 Results  

3.1 Different carbon sources support the grown of E. coli differentially 

Our first objective was to analyze how the different carbon sources under study support the growth of E. coli. 

For this, we followed the progression of E. coli cultures growing in M9 minimal medium added with 

L-arabinose, D-sorbitol and D-galactose, both separately and in dual combinations. The growth profiles show 

in Fig. 2A confirm that glucose is by far the sugar that best supports E. coli growth. The hierarchical order of 

sugars in terms of their capacity to sustain cell growth is as follows: glucose > arabinose > sorbitol > galactose.  

When combinations of two alternative sugars were used, the bacterial growth rate almost equated that of 

glucose during the exponential growth phase. On the other hand, with all the sugar combinations, the maximal 

bacterial population density surpassed that of glucose alone. The decreasing order of alternative sugar 

combinations in terms of the exponential growth rate they are capable of sustaining is: arabinose+sorbitol > 

arabinose+galactose > galactose+sorbitol. In these experiments, glucose was set at a limiting amount (0.03%) 

from the very beginning to clearly distinguish the time at which E. coli starts using alternative carbon sources 

(Fig. 2A). We observed a differential growth of cultures with not limitation as compared with those limited on 

glucose as early as 3.5 hours after the start of the experiment. However, a careful observation on the 

alternative-sugar catabolic-operon promoter activity reveals that they become active after 2 hours of the 

experiment beginning (see below). 

3.2 Glucose limitation triggers foraging alternatives 

Our second objective was to study the dynamics of the alternative-sugar catabolic-operon promoters under 

glucose exhaustion conditions. Specifically, we were interested in the following scenarios: 1) when glucose is 

limiting from the culture at the very beginning and, 2) when glucose is exhausted after a normal period of 

bacterial growth. For that purpose we engineered specific reporters for relevant transcription factors (Table 1). 

These reporters were built by transcriptionally fusing each promoter to gene gfpmut2, and promoter activity 

was estimated by measuring fluorescence along the bacterial growth curves (Zaslaver et al., 2006). We made 

sure that the presence of the vector and genetic constructions were not detrimental for E. coli growth before the 

assays.  
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3.4 Promoter activities reflect carbon-use hierarchy 

We finally performed experiments in which bacteria were grown in the presence of a limiting quantity of 

glucose (0.03%) and a mix of two alternative sugars (0.2% each). The rational behind this experiment was that 

once glucose is exhausted, E. coli should be forced to consume one of the two alternative sugars present in the 

milieu, and that this decision might be evidenced by the activity of the promoter associated to the transcription 

factor regulating the catabolic operon of the sugar of choice. The results of these experiments are reported in 

Fig. 5. 

Notice that whenever bacteria are cultured in the presence of arabinose, promoter araC becomes active 

before the other two. The explanation of this observation is straightforward under the assumption that 

arabinose is preferred by bacteria over sorbitol and galactose.  

Note from the arabinose + galactose experiment (Fig. 5A) that the positive influence of galactose upon 

galS is capable of completely counteracting the negative influence of arabinose. This is consistent with the 

supposition that arabinose is consumed before galactose by bacteria. It is also interesting that the rather small 

positive effects that both arabinose and galactose individually have on gutM boost each other to render a 

combined over-expression of more than 100%. A detailed observation of the curves in Fig. 5B (arabinose + 

sorbitol experiment), reveals that their amplitudes completely agree with the interaction scheme in Fig. 4.  

In Fig. 5C (sorbitol + galactose experiment) we can see that the negative effect of sorbitol on galS is fully 

counteracted by the positive effect of galactose. However, the maximum activity of promoter galS is posterior 

to that of promoter gutM. This suggests that sorbitol is consumed before than galactose by bacteria. 

Furthermore, the maximal expression levels correspond to what one would expect from the interaction scheme 

in Fig. 4. 

In summary, our results suggest that the investigated alternative sugars are consumed in the following 

order: arabinose, sorbitol and galactose. Moreover, the maximum expression levels in the experiments with 

two alternative sugars agree with the interaction scheme reported in Fig. 4, except for the expression of 

promoter gutM in the arabinose + galactose experiment. It seems that arabinose and galactose synergically 

make promoter gutM increase its expression level by more than 100%. 

3.5 CRP as a global coordinator for carbon metabolism 

All the transcription-factor operator regions here analyzed include a DNA-binding site for CRP, in addition to 

being self-regulated. In the previous sections we studied the contribution of specific catabolite signals to the 

activity of their local regulators. Thus, to have a complete picture it is necessary to test the effect of CRP (and 

indirectly that of cAMP) on the promoter activities of these local regulators. To this end we used a CRP mutant 

strain (Baba et al., 2006) as a receptor of the transcriptional fusions analyzed before, and measured growth and 

promoter activities when glucose is limiting at the beginning (0.03%) and at the end of the culture (0.4%), see 

Fig. 6. A first observation is that deletion of crp, although not essential, has negative effects on the bacterial 

growth rate (Figs. 6B vs 6A). Note that the culture final OD decreases as compared with that of the strain with 

an intact crp gene (comparable on 0.4% glucose). This could be explained by taking into consideration that 

CRP is a global coordinator of E. coli physiology, which regulates more, that 30% of all the genes with known 

regulation in this bacterium. However, the negative effect on growth is more pronounced in the strains 

harboring the transcriptional fusions of gfp with galS and gutM promoters that that with araC. We do not have 

a consistent explanation for this observation. 

Regarding the promoter activities in the absence of crp, when glucose is depleted at the beginning of the 

culture (0.03%), the promoters activities changed as follows, as compared with the intact-crp strain: the araCp 

activity profile changed neither its amplitude nor the time at which the maximum value was achieved, yet the 

profile is now narrower; the maximal gutMp activity level was doubled, although it was retarded by more than 
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4 Conclusions 

It has been known for a long time that E. coli preferably consumes glucose over other carbon sources. 

However, we lack a complete knowledge of how this is achieved and regulated at the molecular level. In this 

work we present a proof of principle that permits to track the hierarchical use of carbon sources by following 

bacterial growth and promoter activities of the regulatory proteins that respond to specific sugars. We were 

able to identify the following order for the preferential use of carbon sources by E. coli: glucose > arabinose > 

sorbitol > galactose. A detailed analysis of regulator promoters for the corresponding catabolic operons 

indicates that this behavior can be due to at least three factors: 1) the coordinated activation of local regulators 

by the global regulator CRP, 2) the asymmetrical responses of transcription factors for specific and unspecific 

sugars and, 3) the architecture of promoters and operon-regulatory circuits. However, many questions remain 

open regarding the control mechanisms leading to this hierarchical behavior. Answering them will require a 

large amount of both experimental and mathematical modeling work. Finally, E. coli can consume more 

carbon sources than the ones here studied. It is still pending to test them to have a more complete scheme 

regarding the preferential use of carbon source in this bacterium. 
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