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Abstract 

In this paper, we study qualitative behavior of a network of two genes repressing each other. More precisely, 

we investigate the boundedness character and persistence, existence and uniqueness of positive steady-state, 

local asymptotic stability and global behavior of unique positive equilibrium point of this model. 
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1 Introduction 

In case of systems biology it is very crucial impression of modeling the qualitative behavior of biological and 

biochemical networks where molecules are represented as nodes and the molecular interactions are so called 

edges. Due to scope and complicated behavior of these networks it is very important to discuss and study their 

dynamical behavior. An interaction dynamics can be used instead of an explicit mathematical description of 

these biological networks and computer simulations can be used to study the dynamical behavior of these 

complex biological networks. It is well known fact that dynamics is related to the study of changes with 

respect to time. For example in case of classical mechanics an apple falling to the ground, or the growth of the 

human population. Particularly, in case of systems biology dynamics is related to the changes in concentrations 

of molecules (or numbers) within a cell. Differential equations and difference equations are main tools for 

modeling these biological networks. 

A dynamical system is defined by a set of variables describing the state of the system and the laws for 

which the values of these variables change with respect to time. Variables can be regarded as discrete-time 

variables where the state of the variable can be described by a distinct set of values, or continuous variables in 

which any real value can be used. The option of differential equations or difference equations depends upon 

the time and on the state of all variables. Furthermore, it can be deterministic where the time and variable 

states uniquely defines the state at next time point, or it can be stochastic where the time and variable state 

defines the probability of how the variable values changes over time. The goal when dealing with a dynamical 

system is to describe and analyze the behavior of the individual variables and also of the complete system, and 
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to be able to make predictions. A dynamical system can be in equilibrium where variables do not change, it 

can oscillate in a repeating fashion, or it can be more complicated and even chaotic. 

In this paper, we study the qualitative behavior of construction of a genetic toggles witch in Escherichia 

coli. The dynamical behavior of the toggle switch can be described by using the following planar system of 

nonlinear differential equations: 

ௗ௫

ௗ௧
ൌ

௔

ଵା௬ഀ
െ ,ݔ

ௗ௬

ௗ௧
ൌ

௕

ଵା௫ഁ
െ  (1.1)                                         ,ݕ

where ݔ, ,ܽ ,are concentrations of the two repressors ݕ ܾ are the rates of synthesis of repressors, respectively. 

Moreover, ߙ,  are cooperativity factors. For further detail of system (1.1) we refer interested readers to ߚ

(Gardner et al., 2000). As it is pointed out in (Zhou and Zou, 2003; Liu, 2010) the discrete time models 

governed by difference equations are more appropriate than the continuous ones when the populations are of 

non-overlapping generations. The study of discrete-time models described by difference equations has now 

been paid great attention since these models are more reasonable than the continuous time models when 

populations have non-overlapping generations. Discrete-time models give rise to more efficient computational 

models for numerical simulations and also show rich dynamics compared to the continuous ones (Ahmad, 

1993; Tang and Zou, 2006). It is very interesting mathematical problem to discuss qualitative behavior of 

discrete dynamical systems. For more results for the qualitative behavior of discrete dynamical systems, we 

refer the reader to (Papaschinopoulos et al., 2011; Din, 2013, 2014; Din and Donchev, 2013). 

Using the Euler’s method the discretization of (1.1) can be obtained, where the discretization preserves 

the property of convergence to the equilibrium, regardless of the step size. 

Let ݐ௡ ൌ ݄݊, where  is step size. Applying Euler’s method, we obtain 

௡ାଵݔ ൌ
௔௛

ଵାሺ௬೙ሻഀ
൅ ሺ1 െ ݄ሻݔ௡, ௡ାଵݕ ൌ

௕௛

ଵାሺ௫೙ሻഁ
൅ ሺ1 െ ݄ሻݕ௡.                  (1.2) 

Re-scaling the parameters in (1.2)by݄ܽ ՜ ,ܣ ܾ݄ ՜ ,ܤ 1 െ ݄ ՜  we obtain the following discrete dynamical ,ܥ

system: 

௡ାଵݔ ൌ
஺

ଵାሺ௬೙ሻഀ
൅ ,௡ݔܥ ௡ାଵݕ ൌ

஻

ଵାሺ௫೙ሻഁ
൅    ௡.                            (1.3)ݕܥ

In this paper, our aim is to study the boundedness and persistence, existence and uniqueness of positive 

equilibrium point, local asymptotic stability and global asymptotic behavior of unique positive equilibrium 

point of discrete dynamical system (1.3). 

 

2 Main Results 

Theorem 2.1: Assume that ܥ ൏ 1, then every positive solution of (1.3) is bounded and persists. 

Proof: Let ሼሺݔ௡,  ௡ሻሽ be any arbitrary positive solution of (1.3), then one hasݕ

௡ାଵݔ ൑ ܣ ൅ ,௡ݔܥ ௡ାଵݕ ൑ ܤ ൅  ௡ݕܥ

for all ݊ ൌ  :Furthermore, consider the following system of linear difference equations .ڮ,0,1,2

௡ାଵݑ ൌ ܣ ൅ ,௡ݑܥ ௡ାଵݒ ൌ ܤ ൅  ௡ݒܥ

for all ݊ ൌ  Then solution of this linear system is given by .ڮ,0,1,2

௡ݑ ൌ
ሺ1ܣ െ ௡ሻܥ
1 െ ܥ

൅ ,଴ݑ௡ܥ ௡ݒ ൌ
ሺ1ܤ െ ௡ሻܥ
1 െ ܥ

൅  ଴ݒ௡ܥ

for all ݊ ൌ ,଴ݑ and where ,ڮ,1,2 ܥ ଴ are initial conditions. Assume thatݒ ൏ 1, then it follows that  

௡ݑ ൑
ܣ

1 െ ܥ
൅ ,଴ݑ ௡ݒ ൑

ܤ
1 െ ܥ

൅  ଴ݒ
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for all ݊ ൌ ଴ݑ Taking .ڮ,1,2 ൌ ,଴ݔ ଴ݒ ൌ   ଴, then it follows by comparison thatݕ

௡ݔ ൑
ܣ

1 െ ܥ
, ௡ݕ ൑

ܤ
1 െ ܥ

 

for all ݊ ൌ  Furthermore, it follows from (1.3) that .ڮ,1,2

௡ାଵݔ ൒
஺

ଵାሺ௬೙ሻഀ
൒

஺

ଵାቀ ಳ
భష಴

ቁ
ഀ ൌ  ,ଵܭ

௡ାଵݕ ൒
ܤ

1 ൅ ሺݔ௡ሻఈ
൒

ܤ

1 ൅ ቀ
ܣ

1 െ ቁܥ
ఈ ൌ  .ଶܭ

Hence, we obtain 

ଵܭ ൑ ௡ݔ ൑
ܣ

1 െ ܥ
ଶܭ, ൑ ௡ݕ ൑

ܤ
1 െ ܥ

 

for all ݊ ൌ  ■.This completes the proof .ڮ,1,2

. 

Theorem 2.2: Assume that ܥ ൏ 1, then for every positive solution of (1.3) the set ቂܭଵ,
஺

ଵି஼
ቃ ൈ ቂܭଶ,

஻

ଵି஼
ቃ is an 

invariant set. 

Proof: Let ሼሺݔ௡, ,଴ݔ௡ሻሽ be any arbitrary positive solution of (1.3) such that the initial conditions ሺݕ ଴ሻݕ א

ቂܭଵ,
஺

ଵି஼
ቃ ൈ ቂܭଶ,

஻

ଵି஼
ቃThen it follows from system (1.3) that   

ଵܭ ൑ ଵݔ ൌ
஺

ଵାሺ௬బሻഀ
൅ ଴ݔܥ ൑

஺

ଵି஼
, ଶܭ ൑ ଵݕ ൌ

஻

ଵାሺ௫బሻഁ
൅ ଴ݕܥ ൑

஻

ଵି஼
. 

From mathematical induction, we obtain that 

ሺݔ௡, ௡ሻݕ א ൤ܭଵ,
ܣ

1 െ ܥ
൨ ൈ ൤ܭଶ,

ܤ
1 െ ܥ

൨ 

for all ݊ ൌ  ■.ڮ,1,2

Theorem 2.3: Suppose that ܥ ൏ 1, then (1.3) has unique positive equilibrium point  

ሺݔҧ, തሻݕ א ቂܭଵ,
஺

ଵି஼
ቃ ൈ ቂܭଶ,

஻

ଵି஼
ቃ, if the following conditions are satisfied: 

ଵܭ ൏
஻

ሺଵି஼ሻቂଵା൫௙ሺ௄భሻ൯
ഀ
ቃ
, 

ߚߙ ቀ
஺

ଵି஼
ቁ
ఉ
ሾܣ െ ሺ1 െ ଵሿܭሻܥ ൏ ܣ ቀ1 ൅ ଵܭ

ఉቁ, 

where ܭଵ ൌ
஺

ଵାቀ ಳ
భష಴

ቁ
ഀ and ݂ሺxሻ ൌ

஻

ሺଵି஼ሻሺଵା௫ഁሻ
. 

Proof: Consider the following system of algebraic equations 

ݔ ൌ
஺

ଵାሺ௬ሻഀ
൅ ,ݔܥ ݕ ൌ

஻

ଵାሺ௫ሻഁ
൅  (2.1)                              .ݕܥ

Then, it follows from (2.1) that ݔ ൌ
஺

ሺଵି஼ሻሺଵା௬ഀሻ
 and ݕ ൌ

஻

ሺଵି஼ሻሺଵା௫ഁሻ
. Assume that  

ሺݔ, ሻݕ א ቂܭଵ,
஺

ଵି஼
ቃ ൈ ቂܭଶ,

஻

ଵି஼
ቃ. 

Set 
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ሺxሻܨ ൌ
஺

ሺଵି஼ሻቂଵା൫௙ሺ௫ሻ൯
ഀ
ቃ
െ  ,ݔ

where ݂ሺxሻ ൌ
஻

ሺଵି஼ሻሺଵା௫ഁሻ
. Then it follows that ܨሺܭଵሻ ൌ

஻

ሺଵି஼ሻቂଵା൫௙ሺ௄భሻ൯
ഀ
ቃ
െ ଵܭ ൐ 0  for all ܥ ൏ 1 . 

Furthermore, ܨ ቀ
஺

ଵି஼
ቁ ൌ

஺

ሺଵି஼ሻ൦ଵାቌ ಳ

ሺభశቀ
ಲ
భష೎ቁ

ഁ
ሻሺభష೎ሻ

ቍ

ഀ

൪

െ
஺

ଵି஼
൏ 0 if and only if 

ଵ

ଵାቌ ಳ

ሺభశቀ ಲ
భష೎ቁ

ഁ
ሻሺభష೎ሻ

ቍ

ഀ ൏ 1, that is, ൭
஻

ሺଵାቀ ಲ
భష೎

ቁ
ഁ
ሻሺଵି௖ሻ

൱

ఈ

൐ 0. Hence, ܨ ቀ
஺

ଵି஼
ቁ ൏ 0 for all ܥ ൏ 1.   

 

Thus ܨሺxሻ has a root in ቂܭଵ,
஺

ଵି஼
ቃ.  Furthermore, we have 

ሻݔᇱሺܨ ൌ െ1 െ
ሻݔሻିଵାఈ݂ᇱሺݔሺ݂ߙܣ
ሺ1 െ ሻሺ1ܥ ൅ ݂ሺݔሻఈሻଶ

, 

݂ᇱሺݔሻ ൌ െ
ߚଵାఉିݔܤ

ሺ1 െ ሻሺ1ܥ ൅ ఉሻଶݔ
. 

Let ݖ be a solution of ܨሺݔሻ ൌ 0, then ݖ ൌ
஺

ሺଵି஼ሻቂଵା൫௙ሺ௭ሻ൯
ഀ
ቃ
. Hence it follows that 

ሻݖᇱሺܨ ൌ െ1 ൅
ଵାఉିݖܣ ൬

ܤ
ሺ1 െ ሻሺ1ܥ ൅ ఉሻݖ

൰
ଵାఈ

ߚߙ

ܤ ൬1 ൅ ൬
ܤ

ሺ1 െ ሻሺ1ܥ ൅ ఉሻݖ
൰
ఈ

൰
ଶ  

ൌ െ1 ൅
ܣఉሺݖߚߙ െ ሺ1 െ ሻݖሻܥ

ሺ1ܣ ൅ ఉሻݖ
 

൏ െ1 ൅
ߚߙ ቀ

ܣ
1 െ ቁܥ

ఉ
ሾܣ െ ሺ1 െ ଵሿܭሻܥ

ܣ ቀ1 ൅ ଵܭ
ఉቁ

൏ 0, 

which completes the proof.■ 

Lemma 2.1 (Sedaghat, 2003): Assume that ܺ௡ାଵ ൌ , ሺܺ௡ሻܨ ݊ ൌ 0,1, …be a system of difference equations 

and തܺis an equilibrium point of ܨ. If all eigenvalues of the Jacobian matrix ܬிabout the fixed point തܺ lie 

inside the open unit disk |ߣ| ൏ 1, then തܺ is locally asymptotically stable. If one of them has absolute value 

greater than one, then തܺ is unstable.  

Lemma 2.2 (Grove and Ladas, 2004): Consider the following equation 

ଶߣ ൅ ߣܽ ൅ ܾ ൌ 0,                                               (2.2) 

whereܽ and ܾ are real numbers. Then, the necessary and sufficient condition for both roots of the equation 

(2.2) to lie inside the open disk |ߣ| ൏ 1 is  

|ܽ| ൏ 1 ൅ ܾ ൏ 2. 

Theorem 2.4: The unique positive equilibrium point of system (1.3) is locally asymptotically stable, if the 

following condition is satisfied: 

ܥ2 ൅ ଶܥ ൅
ఈఉ஺ഁ஻ഀ

ሺଵି஼ሻഀశഁషమ
൏ 1. 

Proof. The Jacobian matrix of linearized system of (1.3) about the fixed point ሺݔҧ,   തሻ is given byݕ
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,ҧݔ௃ሺܨ തሻݕ ൌ ൦
ܥ െ

஺ఈ௬തഀషభ

ሺଵା௬തഀሻమ

െ
஻ఉ௫ҧഁషభ

ሺଵା௫ҧഁሻమ
ܥ

൪. 

The characteristic polynomial of ܨ௃ሺݔҧ,  തሻis given byݕ

ܲሺߣሻ ൌ ଶߣ െ ߣܥ2 ൅ ଶܥ െ
஺஻௫ҧഁషభ௬തഀషభఈఉ

ሺଵା௫ҧഁሻమሺଵା௬തഀሻమ
.                             (2.3) 

From (2.1) it follows that 

ҧݔ ൌ
஺

ሺଵି஼ሻሺଵା௬തഀሻ
തݕ ,  ൌ

஻

ሺଵି஼ሻሺଵା௫ҧഁሻ
.                                  (2.4) 

Using relations (2.4) in (2.3), the characteristic polynomial of ܨ௃ሺݔҧ,  തሻ can be written asݕ

ܲሺߣሻ ൌ ଶߣ െ ߣܥ2 ൅ ଶܥ െ
ఈఉሺଵି஼ሻర௫ҧഁశభ௬തഀశభ

AB
.                           (2.5) 

Let ߶ሺߣሻ ൌ ሻߣଶand ߰ሺߣ ൌ ߣܥ2 െ ଶܥ ൅
ఈఉሺଵି஼ሻర௫ҧഁశభ௬തഀశభ

AB
. Furthermore, assume that |ߣ| ൌ 1, then it follows 

that 

|߰ሺߣሻ| ൏ ܥ2 ൅ ଶܥ ൅
ሺ1ߚߙ െ തఈାଵݕҧఉାଵݔሻସܥ

AB
 

൏ ܥ2 ൅ ଶܥ ൅
ఈఉ஺ഁ஻ഀ

ሺଵି஼ሻഀశഁషమ
൏ 1. 

 

Lemma 2.3 (Grove and Ladas, 2004): Supposes thatܫଵ ൌ ሾߙ, ଶܫ ሿ  andߚ ൌ ሾߛ,  ,ሿ be intervals of real numbersߜ

and assume that ଵ݂: ଵܫ ൈ ଶܫ ื  ଵܫ and ଶ݂: ଵܫ ൈ ଶܫ ื ଶܫ  are continuous functions. Assume the following 

system 

௡ାଵݔ ൌ ଵ݂ሺݔ௡, ,௡ሻݕ ௡ାଵݕ ൌ ଶ݂ሺݔ௡,  ௡ሻ                                                                         (2.6)ݕ

where initial conditions ሺݔ଴, ଴ሻݕ א ଵܫ ൈ  :ଶ.Let the following conditions are trueܫ

(i) ଵ݂ሺݔ,  .ݕ and non-increasing in ݔ ሻ is non-decreasing inݕ

(ii) ଶ݂ሺݔ,  .ݕ and non-decreasing in ݔ ሻ is non-increasing inݕ

(iii)  If ሺ݉ଵ,ܯଵ,݉ଶ,ܯଶሻ א   1ଶܫ ൈ 2ܫ
ଶ be a solution of the system: 

݉ଵ ൌ ଵ݂ሺ݉ଵ,ܯଶሻ, ଵܯ ൌ ଵ݂ሺܯଵ,݉ଶሻ 

݉ଶ ൌ ଶ݂ሺܯଵ,݉ଶሻ , ଶܯ     ൌ   ଶ݂ሺ݉ଵ,ܯଶሻ 

such that ݉ଵ ൌ ଵ and ݉ଶܯ ൌ ,ҧݔଶ. Then, there exists exactly one fixed point ሺܯ  തሻ of the system (2.6) suchݕ

that lim௡՜ஶሺݔ௡, ௡ሻݕ ൌ ሺݔҧ,  .തሻݕ

Theorem 2.5: The unique positive equilibrium point of the system (1.3) is a global attractor, if the following 

condition is satisfied: 

ሺ1 െ ሻଶఈሺ1ܥ ൅ ଵܮ
ఈሻሺ1 ൅ ଶܮ

ఈሻଶ ൐  ሻఈ,                          (2.7)ܤܣଶሺߙ

where ܮଵ ൌ
஺

ଵି஼
ቆ

ଵ

ଵାቀ ಳ
భష಴

ቁ
ഀቇ and ܮଶ ൌ

஻

ଵି஼
൭

ଵ

ଵାቀ ಲ
భష಴

ቁ
ഁ൱. 

Proof: Let  ଵ݂ሺݔ, ሻݕ ൌ
஺

ଵା௬ഀ
൅ ,ݔand  ଶ݂ሺ , ݔܥ ሻݕ ൌ

஻

ଵା௫ഁ
൅ ,ݔThen it is simple to see that ଵ݂ሺ . ݕܥ  ሻ isݕ

non-decreasing in ݔ and non-increasing in ݕ .Moreover, ଶ݂ሺݔ,  and non-decreasing ݔ ሻis non-increasing inݕ

in ݕ. Let ሺ݉ଵ,ܯଵ,݉ଶ,ܯଶሻ  be a positive solution of the system 

݉ଵ ൌ ଵ݂ሺ݉ଵ,ܯଶሻ, ଵܯ ൌ ଵ݂ሺܯଵ,݉ଶሻ 

݉ଶ ൌ ଶ݂ሺܯଵ,݉ଶሻ , ଶܯ     ൌ   ଶ݂ሺ݉ଵ,ܯଶሻ 
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Then,   

݉ଵ ൌ
஺

ଵାெమ
ഀ ൅ ଵܯ    ,ଵ݉ܥ ൌ

஺

ଵା௠మ
ഀ ൅                                     ଵ,           (2.8)ܯܥ

and 

݉ଶ ൌ
஻

ଵାெభ
ഁ ൅ ଶܯ    ,ଶ݉ܥ ൌ

஻

ଵା௠భ
ഁ ൅   ଶ.              (2.9)ܯܥ

Then it follows from (2.8) and (2.9) that 

ଵܮ ൌ
஺

ଵି஼
ቆ

ଵ

ଵାቀ ಳ
భష಴

ቁ
ഀቇ ൑ ݉ଵ ൑ ଵܯ  ൑

஺

ଵି஼
,                           (2.10) 

ଶܮ ൌ
஻

ଵି஼
൭

ଵ

ଵାቀ ಲ
భష಴

ቁ
ഁ൱ ൑ ݉ଶ ൑ ଶܯ  ൑

஻

ଵି஼
.                           (2.11) 

On subtracting (2.8), we obtain 

ሺ1 െ ଵܯሻሺܥ െ ݉ଵሻ ൌ ቆܣ
ଶܯ

ఈ െ݉ଶ
ఈ

ሺ1 ൅ ݉ଶ
ఈሻሺ1 ൅ ଶܯ

ఈሻ
ቇ 

ൌ ఈିଵߠߙܣ
ሺெమି௠మሻ

ሺଵା௠మ
ഀሻሺଵାெమ

ഀሻ
,                                       (2.12) 

where ݉ଶ ൑ ߠ ൑   ଶ. From (2.11) and (2.12), it follows thatܯ

ଵܯ െ݉ଵ ൑
ఈ஺஻ഀషభ

ሺଵି஼ሻഀሺଵା௅మ
ഀሻమ

ሺܯଶ െ ݉ଶሻ.                              (2.13) 

Similarly subtracting (2.9) and using (2.10), we have 

ଶܯ െ݉ଶ ൑
ఈ஻஺ഀషభ

ሺଵି஼ሻഀሺଵା௅భ
ഀሻమ

ሺܯଵ െ ݉ଵሻ.                              (2.14)   

Finally, from (2.13) and (2.14), one has   

ሾሺ1 െ ሻଶఈሺ1ܥ ൅ ଵܮ
ఈሻሺ1 ൅ ଶܮ

ఈሻଶ െ ଵܯሻఈሿሺܤܣଶሺߙ െ ݉ଵሻ ൑ 0.           (2.15) 

Under the condition (2.7), it follows from (2.15) that ܯଵ ൌ ݉ଵ. Similarly, one has ܯଶ ൌ ݉ଶ. 

Lemma 2.4: Under the conditions of Theorem 2.4 and Theorem 2.5 the unique positive equilibrium point of 

system (1.3) is globally asymptotically stable. 
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