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Abstract 

Local regulatory motifs are identified in the transcription regulatory network of the most studied model 

organism Escherichia coli (E. coli) through graphical models. Network motifs are small structures in a 

network that appear more frequently than expected by chance alone. We apply social network methodologies 

such as כ݌ models, also known as Exponential Random Graph Models (ERGMs), to identify statistically 

significant network motifs. In particular, we generate directed graphical models that can be applied to study 

interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC) computational 

algorithms are implemented to obtain the estimates of model parameters to the corresponding network 

statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription 

regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription 

factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of 

these interaction networks, arc (a directed edge in a directed network) and k-istar (or incoming star structures), 

for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. 

The goodness of fit statistics are provided to determine the quality of these models. 

  

Keywords biological networks; network motifs; transcriptional regulatory network; graphical models; 

exponential random graph models; Markov Chain Monte Carlo algorithms. 

 

 

 

 

 

 

 

 

1 Introduction 

Biological functions depend on complex interactions among the cell’s numerous constituents such as protein, 

DNA, RNA and other small molecules. Thus, for biologists it is important to assess interactions among 

molecules at different levels of hierarchy. In particular, there is a high degree of interest in identifying 

interactions at the gene-gene, gene-protein, and metabolic levels. High-throughput assays that probe cells and 

sub-cellular systems at the genome scale can measure molecular interaction networks and their components at 
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each of these key levels. These may include specific gene sequences, mRNA transcription products, 

protein-protein interactions, protein-DNA interactions, as well as other interactions of interest (Friedman, 

2004). With the advancement of high-throughput data collection techniques such as microarrays and next 

generation sequencing, it is now possible to investigate the status of the interactions of a particular cell’s 

components. Thus scientists can assess complex molecular interactions by implementing proper computational 

methodologies. 

Molecular interactions that are of the most interest include transcription regulatory networks, 

protein-protein interaction, and metabolic interaction. Although one can study each of these interactions 

separately, none of these networks functions independently but instead they form a series of interdependent 

networks (Barabasi and Oltvai, 2004). This large complex global system of cellular networks thus determines 

the major characteristics of a cell and the functions of its sub-cellular regions. In order to better understand 

local features of a complex global network one needs to study each interaction network separately. For 

example, Costanzo et al. (2010) examined the Saccharomyces cerevisiae cellular networks by connecting pairs 

of genes with similar profiles using Pearson correlation coefficients to form global interaction networks. 

Biological networks are characterized as functions of local network features (Saul and Filkov, 2007) using a 

family of statistical models from the social network methodologies, such as Exponential Random Graph 

Models (ERGMs). The ERGMs provide a flexible principle to study global network structure as a function of 

prominent ‘local features’. 

Gene expression is a fundamental process to the survival of an organism, both prokaryotic and eukaryotic, 

as well as the propagation of the various classes of viruses. An overview of the transcription regulatory 

networks of E. coli from basic biology to our current understanding on a global scale has been previously 

well-described by Martínez-Antonio (2011). In particular, core processes of the central dogma of biology 

involve DNA transcription, multi-subunit enzymes, several classes of RNA, and specialized proteins known as 

transcription factors, or TFs. Together these elements produce what is known as the transcriptome of the cell. 

Overall, the steps appear to be simple: induction of transcription or release from repression of transcription, 

initiation of transcription, elongation or synthesis of the RNA species, and termination of the RNA species. But 

in reality, each step involves levels of complexity that we are just beginning to understand. Some genes within 

the genome may require only one to two TFs to activate the transcriptional process at a promoter site, while 

others can require ten or more TFs for overall regulation and attenuation, as seen in the RegulonDB database 

(RegulonDB Release 7.4, 2012) (RegulonDB, 2012).Production of each of these polypedtides that function as 

a TF is, in itself, a highly regulated process. Thus, determination of the key points of regulation within the 

smaller networks that give rise to the major cascades of metabolic activities within the cell will prove to be 

invaluable to our understanding of the system as a whole. 

The examination of transcription regulating network motifs has been attempted with various algorithms 

since the late 1990s. These analyses have attempted to examine gene expression from the perspective of 

circuitry (Thieffry et al., 1998), and smaller network motifs within a global network (Shen-Orr et al., 2002). 

Biological context of the data allows for refinement of the analysis of the inter-relationship of specific features 

within smaller local network features. These features will have both hierarchical and evolutionary implications 

when evaluated for their regulatory roles with a biological system (Balaji et al., 2007) and (Martnez-Antonio, 

2011). Therefore, utilizing the most updated version of the RegulonDB as of the time of analysis (currently 

v7.5, soon to be v8.0) (RegulonDB, 2012) has allowed for access to the most detailed information assembled 

on the E. coli transcriptional regulatory network (Gama-Castro et al., 2011). While it remains important to 

consider the globality of the regulatory networks, closer examination of the unique features of the smaller 

motifs has provided an insight towards mechanisms of control both in vivo and in vitro.  
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2 Materials and Methods 

2.1 Data 

We consider the E. coli K-12 transcriptional regulatory network interactions using RegulonDB (RegulonDB, 

2012). This database contains information about the organization of operons, genes organized into a single 

transcriptional unit, and the composition of operons into transcriptional units among numerous other 

information units within a transcriptional network. In RegulonDB database, an operon is defined as “a set of 

one or several genes and their associated regulatory elements, which are transcribed as a single unit”. However, 

an additional criterion is that one particular gene cannot belong to more than one operon (RegulonDB, 2012). 

A transcription unit is thus defined as a set of one or more genes within an operon transcribed as a set through 

the utilization of a single promoter. The database also provides terminology regarding transcriptional units 

known as a regulon. A regulon in its simplest form involves the regulation of a group of genes regulated by a 

single regulator, hereafter referred to as a transcription factor but is known to exit in a complex form involving 

two or more regulating transcription factors or regulators. It is the information provided by each of the simple 

regulons, complex regulons, and strict complex regulons that differentiates and identifies the unique local 

features of those networks.  

Saul and Filkov (2007) implemented ERGMs to a number of biological networks including the 

transcription regulatory network of Escherichia coli (E. coli) (Shen-Orr et al., 2002). The transcription 

regulatory network of E. coli is updated regularly in the repository RegulonDB. We selected this particular 

network and studied the structure of the interactions closely due to several reasons. First, all regulatory 

networks are the most important biological network due to their role in gene expression. In the previous works 

on this network, direction of the regulation was not addressed properly. We considered two types of regulatory 

networks in E.coli: 1) regulation between transcription factors namely transcription factor - transcription factor 

(TF-TF) interactions, and 2) regulation between transcription factors and the operons that contain TFs. The 

second network is referred to as the transcription factor - operon (TF-Operon) interaction network. In both 

cases, we generated directed exponential random graph models and identified prominent local features. Our 

results are comparable with those obtained by Saul and Filkov (2007) with the additional advantage that our 

approach also addresses the regulatory interactions and places them within their proper biological context. 

The networks for the TF-TF interactions and TF-Operon interactions we observed are presented in Fig. 1. 

The network on the left panel (Fig. 1(a)) is for the TF-TF interactions and the network on the right panel (Fig. 

1(b)) is for the TF-Operon interactions. We implement ERGMs to both types of interaction networks in order 

to identify statistically significant network motifs that can be used to represent these observed networks and 

compare the sets in terms of similarity and uniqueness. In the method section below, we briefly discuss the 

ERGMs and associated computational algorithms.  

2.2 Method 

Biological networks have been investigated using several network models such as the Erdos-Renyi model 

(Erdos and Renyi, 1960), the geometric random network model, exponential random graph models (ERGM), 

and graphical models (Begum et al., 2012; Zhang, 2011, 2012). In particular, the Erdos-Renyi and the 

geometric random network models were used in the study of graphlets in Saccharomyces cerevisiae 

protein-protein interaction (PPI) networks (Przulj et al., 2004), and exponential random graph models have 

been employed to study biological databases such as RegulonDB (RegulonDB, 2012). The ERGMs have also 

been used to study large social networks (Goodreau, 2007; Robins et al., 2007). In order to study two specific 

transcription regulatory networks of E. coli we generate a directed ERGM and identify the statistically 

significant network statistics as prominent ‘local features’.  

The ERGM represents a general and flexible methodology for modeling interactions among a number of 
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actors in a complex network. This methodology originated and had been implemented widely in the literature 

of social networks. ERGMs generalize the Markov random graph models (Frank and Strauss, 1986), and edge 

and dyadic independence models. Briefly we discuss the ERGM, also known as the כ݌model and the 

associated computational algorithms in the following subsections. 

2.2.1 The pכ model 

The כ݌model is a more general model that includes the Markov random graph models and the dyadic 

independence models also known as ݌ଵmodel as special cases. In order to specify a כ݌ model we follow the 

notations of Wasserman and Pattison (Wasserman and Pattison, 1996). Let ௜ܺ௝
ାdenote an adjacent matrix where 

a tie from ݅ ՜ ݆ is forced to be present. That is ௜ܺ௝
ା ൌ ሼܺ௞௟, with  ௜ܺ௝ ൌ 1ሽ. ௜ܺ௝

ି denotes an adjacency matrix 

where a tie from ݅ ՜ ݆ is forced to be absent. That is ௜ܺ௝
ି ൌ ൛ܺ௞௟,  ݄ݐ݅ݓ ௜ܺ௝ ൌ 0ൟ. And finally, ௜ܺ௝

௖  denotes an 

adjacency matrix with complement relation for the tie from ݅ ՜ ݆. That is ௜ܺ௝
௖ ൌ ሼܺ௞௜, ,ሺ݄݇ݐ݅ݓ ݈ሻ ് ሺ݅, ݆ሻሽ. 

The general log-linear form of כ݌ model is expressed as 

ܲሺࢄ ൌ ሻ࢞ ൌ
expሺࢠ′ࣂሺ࢞ሻሻ

ሻࣂሺߢ
                                                   ሺ1ሻ 

here ࣂ is a vector of model parameters, ࢠሺ࢞ሻ is a vector of network statistics, and ߢሺ. ሻ is a normalizing 

constant which is hard to compute for moderate to large networks. In order to ease the estimation process of 

the model parameters, the log-linear model form of the כ݌model can be re-expressed as a logit model. A logit 

model is a special case of generalized linear model where log odds of a binary variable is expressed as linear 

combination of several explanatory variables. The כ݌model in (1) can be converted to a logistic regression 

model by considering the set of binary random variables ሼ ௜ܺ௝ሽ ,where ௜ܺ௝ ൌ 1  implying a tie from 

݅ to ݆ (Strauss and Ikeda, 1990). With the new notations, the log-linear model in (1) can be expressed as a logit 

model as in (4). 

ܲ൫ ௜ܺ௝ ൌ 1หࢄ௜௝
௖ ൯ ൌ  

ܲሺࢄ ൌ ௜௝࢞
ା ሻ

ܲ൫ࢄ ൌ ௜௝࢞
ା൯ ൅ ܲሺࢄ ൌ ௜௝࢞

ି ሻ
                            ሺ2ሻ 

ܲ൫ ௜ܺ௝ ൌ 0หࢄ௜௝
௖ ൯ ൌ  

ܲሺࢄ ൌ ௜௝࢞
ି ሻ

ܲ൫ࢄ ൌ ௜௝࢞
ା൯ ൅ ܲሺࢄ ൌ ௜௝࢞

ି ሻ
                             ሺ3ሻ 

Using expression in (1) and taking the ratio of (2) and (3) one can write 

ܲ൫ ௜ܺ௝ ൌ 1หࢄ௜௝
௖ ൯

ܲ൫ ௜ܺ௝ ൌ 0หࢄ௜௝
௖ ൯

ൌ exp൛ܢൣ′ࣂሺܠ୧୨
ାሻ െ ୧୨ܠሺܢ

ିሻ൧ൟ 

log ቊ
ܲ൫ ௜ܺ௝ ൌ ௜௝܆|1

௖ ൯

ܲ൫ ௜ܺ௝ ൌ ௜௝܆|0
௖ ൯
ቋ ൌ ߱௜௝ ൌ ୧୨ܠሺܢൣ′ࣂ 

ାሻ െ ୧୨ܠሺܢ
ିሻ൧ 

        ߱௜௝ ൌ  ௜௝൯                                                       ሺ4ሻݔ൫ࢾ′ࣂ 

Here ࢾ൫ݔ௜௝൯ is the vector of difference statistics obtained from the network statistics ܢሺ. ሻ when the variable 

௜ܺ௝changes from 1 to 0. The model in (4) is referred to as the logit כ݌ model for single binary relation 

(Wasserman and Pattison, 1996). One can work with either the log-linear form of כ݌model given in (1) or the 

logit form given in (4). However for a sparse or complete network with lack of interactions and strong 

interactions respectively, model in (1) is preferable.  

2.2.2 Computational algorithms 

As observed by Snijders et al. (2006) and Goodreau (2007), models with dyadic independence are good 

candidates for logit form of כ݌models and should employ the method of Maximum Pseudo Likelihood 

Estimation (MPLE) for parameter estimation. Whereas the models with dyadic dependence should be 

expressed as log-linear form as in equation (1). These more general ERGM models do not have closed form 
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expression as the normalizing constant involves sums or integration over a large number of variables (nodes). 

Thus it is impossible to apply the method of maximum likelihood estimation (MLE) for estimating the 

parameters of these models. However, the Monte Carlo approximation of the MLE is often used for such 

models as in Geyer (1991), Geyer and Thompson (1992), and Saul and Filkov (2007). The Monte Carlo 

approximation of the MLE using Markov chains is known as the Markov chain Monte Carlo MLE 

(MCMC-MLE). We adopt the notations of Geyer (Geyer, 1991) in order to describe the basics of the 

MCMC-MLE and MPLE. 

We write the ERGM model in equation (1) with respect to a generic probability measure ߤ (discrete or 

continuous) as follows: 

ఏ݂ሺݔሻ ൌ
1

ሻߠሺߢ
݄ఏሺݔሻ                                                                     ሺ5ሻ 

where ݄ఏሺݔሻ ൌ  exp ሾࢠ′ࣂሺ࢞ሻሿ and ߢሺߠሻ ൌ ׬  ݄ఏሺݔሻ݀ߤሺݔሻ. The integral in (5) is analytically intractable. The 

Markov chain Monte Carlo proceeds as providing a sample ଵܺ, ܺଶ, … from any ߶ in the parameter space 

which can be used to estimate the log-likelihood ratio for an observation x (Geyer, 1991). Here the 

log-likelihood ratio is written as 

݈ሺߠሻ ൌ ݃݋݈  ఏ݂ሺݔሻ

థ݂ሺݔሻ
ൌ log

݄ఏሺݔሻ
݄థሺݔሻ

െ log
ሻߠሺߢ

ሺ߶ሻߢ
                       ሺ6ሻ 

Note that, because the ratio of normalizing constant can be expressed as 

఑ሺఏሻ

఑ሺథሻ
ൌ ఏܧ ൤

௛ഇሺ௫ሻ

௛ഝሺ௫ሻ
൨, 

the log-likelihood ratio in expression (6) can be approximated by replacing the ratio of normalizing constant 

఑ሺఏሻ

఑ሺథሻ
 by its Monte Carlo estimate 

൬
ଵ

௡
∑ ௛ഇሺ௑೔ሻ

௛ഝሺ௑೔ሻ
௡
௜ୀଵ ൰. 

Finally an MCMC-MLE of ߠ is obtained by maximizing the approximate likelihood. The MCMC-ML 

estimation algorithm is implemented to the software package statnet under the statistical computational 

environment R. We use these two packages statnet and ergm to fit the exponential random model given in (1). 

The MPLE method proceeds as maximizing the pseudo-likelihood which is the product of ܲሺ ௜ܺ௝ ൌ ௜௝ࢄ| 1
௖ ሻ in 

equation (2) for all the nodes ሺ݅, ݆ሻ, ݅ ് ݆ . The MPLE of ߠ  is obtained by maximizing the log 

pseudo-likelihood (Besag, 1975). Thus for the logit model derived from (2) and (3) and given in (4), finding 

the MPLE of ߠ is equivalent to fitting a logistic regression model and hence obtaining the parameter 

estimates. One can use the software packages statnet and ergm to obtain MPLE. As discussed earlier if dyadic 

independence assumption is not valid MPLE may produce poor estimates and the method of MCMC-MLE 

should be implemented instead.  

 

3 Results 

The transcription regulation in E. coli is studied with two specific interaction networks, namely the TF-TF 

interaction and the TF-Operon interaction. The observed networks for TF-TF interaction and TF-Operon 

interaction are presented in Fig. 1. There are 175 vertices and 387 edges in the TF-TF interaction network (Fig. 

1(a)). There are 898 vertices and 1702 edges in the observed TF-Operon interaction network (Fig. 1(b)). Both 

of these are directed networks with loops. However, self looping is excluded from these networks as the 

ERGM methodology is unable to handle loops in modeling interaction networks. Each vertex in Fig. 1(a) 

represents a transcription factor (TF) and an arc between two TFs represents a tie. In a directed network an 
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TF when there is an arc in the network can be estimated as 0.0087. These probabilities for TF-TF and 

TF-Operon interaction models in the presence of individual network statistics only are presented in Table 3. 

Models 5-9 include multiple network statistics in order to facilitate conditional impact of one statistic, holding 

the effects of the rest fixed in the model. For example, model 5 considers three network statistics, arc, 2-istar 

and 3-istar. Then the conditional log-odds of a regulation between two transcription factors is െ5.35 ൈ 

change in the number of ties + 0.34 ൈ change in the number of 2-istars + (-.025)ൈchange in the number of 

3-istar. 

 

Table 1a Estimates and standard errors of ERGM parameters for TF-TF interactions: models 1-6 and parts of models 7-9 

 Arc 2-istar 3-istar 4-istar 

Est Sterr Est Sterr Est Sterr Est Sterr 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

-4.74 

 

 

 

-5.35 

-5.22 

-5.26 

-5.26 

-5.35 

0.06 

 

 

 

0.19 

0.4 

0.52 

1.16 

1.76 

 

-2.01 

 

 

0.34 

0.18 

0.26 

0.26 

0.51 

 

0.0544 

 

 

0.09 

0.3 

0.34 

1.47 

2.92 

 

 

-0.9758 

 

-0.025 

0.067 

-0.018 

-0.017 

-0.48 

 

 

0.03389 

 

0.017 

0.135 

0.254 

1.302 

3.637 

 

 

 

-0.5274 

 

-0.0215 

0.029 

0.03 

0.505 

 

 

 

0.0204 

 

0.029 

0.181 

0.737 

2.958 

 
 

Table 1b Estimates and standard errors of ERGM parameters for TF-TF interactions: rest of the network  

statistics of models 7-9. 

 5-istar 9-istar 10-istar 

Est Sterr Est Sterr Est Sterr 

Model 7 

Model 8 

Model 9 

-0.014 

-0.015 

-0.25 

0.057 

0.211 

1.255 

 

0.0004 

0.38 

 

0.022 

1.517 

 

 

-0.69 

 

 

2.665 

 

 

In the absence of 2-istar and 3-istarthelog-odds of regulation is -5.35, in the presence of a 2-istar but no 

3-istar the log-odds of regulation is -5.01, and in the presence of two 2-istar and two 3-istar, the log-odds is 

-4.72 and so on. The corresponding probabilities for regulation with multiple network statistics are calculated 

in Table 4 for both TF-TF and TF-Operon interaction networks.  

3.2 TF- Operon interaction 

We fit eleven ERGMs (Models 1-11 in Tables 2(a) and 2(b)) with varying network statistics to TF-Operon 

interaction network of E. coli. As in TF-TF interaction network we include arc and k-istar as the network 

statistics. Models 1-4 include individual network statistics, such as arc and 2-istar, 3-istar, 4-istar. Models 5-11 

include multiple network statistics. Tables 2(a) and 2(b) present results from the models for which convergence 

criteria are met. The estimates of the model parameters along with their standard errors for models 1-6 are 

presented in Table 2(a). Tables 2(a) and 2(b) jointly contain the parameter estimates and their standard errors 

for models 7-11. The parameter estimates from TF-Operon are unstable compared to those from TF-TF 

network, as the standard errors of the estimates are large. Nonetheless, the interpretation of the estimates is 
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similar as in TF-TF interaction model. The estimates of the parameters in individual network statistics models 

represent log-odds of regulation and those in the multiple network statistics models represent conditional 

log-odds. We present probabilities of regulation for individual network statistics models in Table 3 for both 

TF-TF and TF-Operon interaction networks. Table 4 presents the probabilities of regulation for multiple 

network statistics models for both TF-TF and TF-Operon interaction networks. From these results we see that 

the probability of regulation of one TF by another TF or of one operon by another operon is higher in models 

with higher istar network statistics.  

 

Table 2a Estimates and standard errors of ERGM parameters for TF-Operon interactions: Models 1-6 and parts of models 7-11 

 Arc 2-istar 3-istar 4-istar 

Est Sterr Est Sterr Est Sterr Est Sterr 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

Model 11 

-6.237 

 

 

 

-6.46 

-6.24 

-5.86 

-5.79 

-5.835 

-5.813 

-5.817 

0.0252 

 

 

 

2789 

0.1989 

0.00006

1056.6 

364.01 

37.902 

130.8 

 

-2.88 

 

 

0.01 

-0.17 

-0.08 

-0.83 

-0.95 

-1.05 

-1 

 

0.029 

 

 

3.94 

0.154 

 

895.5 

533.1 

76.68 

392.2 

 

 

-3.84 

 

0 

0.17 

0.09 

1.06 

1.05 

1.55 

1.47 

 

 

0.000009 

 

0.0003 

0.0732 

 

577.48 

638.657 

140.589 

1002 

 

 

 

-1.19 

 

-0.04 

-0.05 

-0.75 

-0.65 

-1.7 

-1.65 

 

 

 

0.017 

 

0.017 

 

265.9 

553.4 

205.8 

1979 

 

 
Table 2b Estimates and standard errors of ERGM parameters for TF-Operon interactions: rest of the network statistics of 
models 7-11. 

 5-istar 6-istar 7-istar 8-istar 9-istar 

Est Sterr Est Sterr Est Sterr Est Sterr Est Sterr 

Model 7 

Model 8 

Model 9 

Model 10 

Model 11 

0.015 

0.337 

0.227 

1.636 

1.668 

 

79.74 

327.25 

230.35 

2966 

 

-0.07 

-0.01 

-1.27 

-1.38 

 

12.03 

122.6 

188 

3353 

 

 

-0.02 

0.682 

0.08 

 

 

22.767 

101.23 

2745 

 

 

 

-0.187 

-2.359 

 

 

 

27.59 

1480 

 

 

 

 

8.68 

 

 

 

 

403.3 

 
 

  Table 3 Estimated probabilities for regulation in individual network statistics models. 

 TF-TF interaction TF-Operon interaction 

Log-odds Prob. Log-odds Prob. 

Model 1 

Model 2 

Model 3 

Model 4 

-4.74 

-2 

-0.976 

-0.5271 

0.00866 

0.1192 

0.27369 

0.37119 

-6.237 

-2.88 

-3.84 

-1.19 

0.0019519 

0.05345114 

0.02104135 

0.23325894 
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    Table 4 Estimated probabilities for regulation in multiple network statistics models. 

 Model: arc +2-istar+3-istar; varying stars as (0,0), (0,1), (1,0) and (2,2) 

 

 

TF-TF 

TF-Operon  

None, None None, One One, None Two, Two 

Log-odds Prob. Log-odds Prob. Log-odds Prob. Log-odds Prob. 

-5.35 

-6.46 

0.0047 

0.0016 

-5.375 

-6.46 

0.0046 

0.0016 

-5.06 

-6.45 

0.0063 

0.0016 

-4.72 

-6.44 

0.0088 

0.0016 

 

 

It is to be noted that a similar set of network statistics fit both TF-TF and TF-Operon interaction networks. 

However, model fitting suffers from the convergence problems while we include both incoming and outgoing 

star structures in the model along with other visible structures such as triangles.  

3.3 Goodness of fit and Ostar models 

It is important to investigate the performance of the exponential random graph models (ERGMs) in terms of 

how well these models fit the observed network. The parameters of an ERGM are estimated by the 

approximated maximum likelihood method. Although a maximum likelihood estimator of ࣂ may provide the 

best possible model among a particular class of models defined in equation (1) for a particular choice of a set 

of network statistics ࢠሺ࢞ሻ, it does not necessarily provide a good model in a practical sense (Hunter et al., 

2008). We present two goodness of fit statistics: Akaiki Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) in Table 5. These are generated by the MCMC-MLE method of fitting of the ERGMs for 

TF-TF and TF-Operon interaction networks. AIC and BIC measure the relative goodness of fit of a statistical 

model.The smaller the values of these statistics the better the fit of model to observed data. Model 6 (arc + 2- 

istar + 3- istar + 4- istar) and model 9 (arc + 2- istar + … +5-istar + 9- istar + 10-istar) fit the observed TF 

- TF interaction network well in terms of the AIC and BIC criteria as shown in Table 5.  

 

 

  Table 5 Goodness of fit statistics for TF-TF and TF-Operon interaction models. 

 TF-TF interaction TF-Operon interaction 

AIC BIC AIC BIC 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Model 6 

Model 7 

Model 8 

Model 9 

Model 10 

Model 11 

Model 12 

3025.1 

4437.9 

6041.4 

7436.3 

2966 

2964 

2968.3 

2970.2 

2968.4 

3033.4 

4446.2 

6049.7 

7444.7 

2991 

2997.3 

3010 

3020.1 

3026.6 

22771 

29378 

43430 

48153 

22704 

22668 

76718 

22787 

22697 

22627 

22775 

81305 

22783 

29390 

43441 

48165 

22739 

22714 

76776 

22857 

22779 

22720 

22879 

81421 
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4 Discussion 

We explored a variety of Exponential Random Graph Models (ERGMs) to identify statistically significant 

network motifs or small sub-networks in transcription regulatory networks of E. coli. The regulatory networks 

were obtained from the RegulonDB database (Release 7.4, 2012). Since the process of regulation is directed, 

we extended Saul and Filkov (2007) principles of implementation of ERGMs to the transcription regulatory 

networks with network statistics appropriate for directed networks. A total of nine TF-TF ERGMs and eleven 

TF-Operon ERGMs were fitted with network statistics found in the observed network. The performance of 

each model was examined using goodness of fit statistics to determine how well the ERGMs fit the observed 

biological network interactions. The results show that ERGMs with multiple k-istar network statistics and an 

arc term fit both the TF-TF and TF-Operon interaction networks well. Thus for TF-TF and TF-Operon 

interaction networks, arc and k-istar, 2 ൑ ݇ ൑ 10, can be considered as statistically significant network motifs. 

Although k-ostar, 2 ൑ ݇ ൑ 10, statistics do well in fitting these interaction networks individually with the arc 

term, inclusion of both k-istar and k-ostar statistics leads to convergence problems in the estimation of model 

parameters. The ERGMs displayed a better fit for the observed TF-Operon networks with k-ostar statistics. 

This fit also aligns better with the biological context of how these networks function in the living organism.  

Although ERGMs provide a simple and flexible principle of statistical modeling for regularity networks, 

there are several issues with computational algorithms in fitting the ERGMs. The first and foremost is the 

convergence problem in MCMC MLE method in the presence of multiple network statistics, such as ostar, 

triangle, istar and other higher order structure of subnetworks. We plan to address these issues of convergence 

problems and the possibility of extending the list of network motifs in our future work. Another possible 

expansion may include exploring if the similar set of network motifs can be used to describe the transcription 

regulatory networks in other prokaryotic as well as higher eukaryotic model organisms. 
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