
Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

Article

Test case prioritization using Cuscuta search

Mukesh Mann, Om Prakash Sangwan

School of ICT, Gautam Buddha University, Greater Noida, 201308, India

E-mail: Mukesh.gbu@gmail.com

Received 19 September 2014; Accepted 6 October 2014; Published online 1 December 2014

Abstract

Most companies are under heavy time and resource constraints when it comes to testing a software system.

Test prioritization technique(s) allows the most useful tests to be executed first, exposing faults earlier in the

testing process. Thus makes software testing more efficient and cost effective by covering maximum faults in

minimum time. But test case prioritization is not an easy and straightforward process and it requires huge

efforts and time. Number of approaches is available with their proclaimed advantages and limitations, but

accessibility of any one of them is a subject dependent. In this paper, artificial Cuscuta search algorithm (CSA)

inspired by real Cuscuta parasitism is used to solve time constraint prioritization problem. We have applied

CSA for prioritizing test cases in an order of maximum fault coverage with minimum test suite execution and

compare its effectiveness with different prioritization ordering. Taking into account the experimental results,

we conclude that (i) The average percentage of faults detection (APFD) is 82.5% using our proposed CSA

ordering which is equal to the APFD of optimal and ant colony based ordering whereas No ordering, Random

ordering and Reverse ordering has 76.25%, 75%, 68.75% of APFD respectively.

Keywords Dodder (Cuscuta sp.); prioritization; Cuscuta Search Algorithm (CSA); Ant Colony Optimization

(ACO).

1 Introduction

As specified by G.J. Mayers (1997) “Testing is the process of executing a program with the intent of finding

faults”. It focuses on the process of testing the newly developed / under development software system, prior to

its use. Regression testing is primarily a maintenance activity that is performed frequently to ensure the

validity of the modified software (Singh et al., 2010) and due to time and cost constraints, the entire test suite

during regression testing cannot be run. Thus, it becomes essential to prioritize the tests in order to cover

maximum faults in minimum time. Graphical User Interface (GUI) Test case prioritization was proposed

(Sangwan et al., 2012) using fuzzy logic model by assigning weight value on the basis of multiple factors such

as type of event, event interaction and Count as one of the criteria for test case prioritization for GUI based

Network Biology
ISSN 2220­8879
URL: http://www.iaees.org/publications/journals/nb/online­version.asp
RSS: http://www.iaees.org/publications/journals/nb/rss.xml
E­mail: networkbiology@iaees.org
Editor­in­Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

software. Apart from Fuzzy logic, Ant colony optimization is used as a new way to solve time constraint

prioritization problem. The paper (Singh et al., 2010) presents the regression test prioritization technique to

reorder test suites in time constraint environment along with an algorithm that implements the technique.

In the paper of Malhotra et al. (2010), regression testing is defined as the process of retesting the modified

parts of the software and ensuring that no new errors have been introduced into previously tested source code

due to these modifications. A regression test selection technique selects an appropriate number of test cases

from a test suite that might expose a fault in the modified program. The technique uses two algorithms one for

“modification” and the other for “deletion. The “modification” portion of the technique is used to minimize

and prioritize test cases based on the modified lines of source code. The “deletion” portion of the technique is

used to (i) update the execution history of test cases by removing the deleted lines of source code (ii) identify

and remove those test cases that cover only those lines which are covered by other test cases of the program.

Thus Regression testing is a very costly process performed primarily as a software maintenance activity.

During past few years Ant Colonies (AC’s) have been used as a general purpose heuristics to solve

combinatorial optimization problem like classic travelling salesman problem, data mining, telecommunication

networks, vehicle routing (Ayari et al., 2007; Caro et.al., 1998; Dorigo et el., 1996; Gomez et al., 2005;

Huaizhong et al., 2005; Li et al., 2008; Parpinelli et al., 2002; Zhao et al., 2006; Zhang, 2013a, 2013b).

Srivastava at al. (2009) presented a simple and novel algorithm with the help of an ant colony optimization for

the optimal path identification and prioritization by using the basic property and behavior of the ants. This

novel approach uses certain set of rules to find out all the effective/optimal paths via ant colony optimization

(ACO) principle. The method concentrates on generation of paths, equal to the cyclometric complexity. This

algorithm guarantees Full path coverage and used an ACO technique to generate the optimal path suite and

prioritize it according to path’s pheromone strength deposited by artificial ants. Control Flow Graph (CFG)

diagram (Mathur, 2007) is used to generate optimal path. The benefit of approach (Srivastava at al., 2009) is

that the manual generated test prioritized paths are not always reliable while automatic test prioritized paths are

reliable, because humans are the most dynamic and error introducing entity.

 Krishnamoorthi et al. (2009) focused on test case prioritization. The authors proposed a new test case

prioritization technique using Genetic Algorithm (GA). The proposed technique prioritizes subsequences of the

original test suite so that the new suite, which is run within a time-constrained execution environment. A

superior rate of fault detection when compared to rates of randomly prioritized test suites has been achieved.

Test case prioritization techniques schedule test cases in an execution order according to some criterion. The

purpose of this prioritization is to increase the likelihood that if the test cases are used for regression testing in

the given order, they will more closely meet some objective than they would if they were executed in some

other order.

2 Cuscuta Search: A plant Intelligence

What is intelligence? There has been a long debate to find the definition of intelligence which is still in its

premature stage. Some scholars define it as the ability to learn in complex situations, to make thought and

reason, to bring out profit from experience. Intelligence is more than memory or learning and one definition

(Stenhouse, 1974) defines intelligence as, “Adaptively variable behavior during the lifetime of an individual”.

Till now we have strong observations and formulation about the animal’s intelligent behavior such as ant

colony, bee colony (Tereshko, 2000; Zhang, 2013a, 2013b). They involve foraging for food not by simple but

by collective intelligence behavior. The plant’s foraging has been the least studied area in computational

intelligence. Not only animals as described above forage for food intelligently but the same have been done by

the plants too.

180

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

One such example is the dodder (Cuscuta sp.), a parasitic plant (Fig. 1) which attack it by prospective host

through some host-plant clue. If the host is found unsuitable the Cuscuta sp. continue its search but once

selection is made the Cuscuta sp. coil around its selected host in a specific manner (anticlockwise) to transfer

resources from the host plant.

A recent study (Runyon et al., 2006) has reported that seedlings of C. pentagona (Cuscuta) use host-plant

volatiles to guide host location and selection which was assumed a random (Dawson et al., 1994) phenomena

before. The seedlings of C. pentagona orient their growth to various light cues associated with the presence of

host plants (Benvenuti et al., 2005).

Research (Runyon et al., 2009) has found that Cuscuta sp. seedlings show directed growth toward tomato

volatiles experimentally released in the absence of any other plant-derived cues. Furthermore, volatile cues are

used by the seedlings to “choose” tomatoes, a preferred host, over non host wheat. This is because several

individual compounds from the tomato volatile blend were attractive to Cuscuta sp. seedlings but out of this

blend, three compounds individually elicit directed growth of Cuscuta: (A) β-phellandrene, (B) β-myrcene, and

(C) α-pinene (Runyon et al., 2006) while one compound from the wheat blend, (Z)-3-hexenyl acetate, had a

repellent effect. A typical attack of Cuscuta is shown in Fig. 1.

Fig. 1 A Dodder (Cuscuta sp.) (Light yellow) coiling around its host. Cuscuta sp. has the ability to asseses its prospective host

before coiling around the host plant (Kelly, 1990) and thus it does not coil around every host with which it comes in contact. If

the prospective host is found to be unsuitable the parasitic plant continues its search for other hosts. Photo by Mukesh Mann and

Om Prakash Sangwan at Gautam Buddha University, Greater Noida, India; http://www.gbu.ac.in.

A key point of observation is that Cuscuta somehow knows its starvation i.e. if the same cues (α-pinene, β-

myrcene, and β-phellandrene) would have been coming from the wheat, the bend will be towards the wheat

rather than tomato. Considering this dynamics we can say Cuscuta search for its food from its current need

181

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

(starvation) and will continue to attack till its starvation get complete. As soon as its starvation is completed a

new branch will evolve. The evolution of new branch is considered as the completition of search i.e. no left

starvation. The new branch will again repeat the same process until all plants nutrients are been taken by

Cuscuta i.e. at short of dead host.

3 Modeling Test Case Prioritization Using Cuscuta Foraging

In order to model the intelligent behavior of Cuscuta we make the following assumption.

1. The Cuscuta knows its initial starvation.

2. The host is chosen which fulfills its maximum starvation from its current starvation.

3. At each attack the Cuscuta need for nutrients get fulfilled and the next attack is totally governed by the

left starvation.

4. A new leave will grow as soon as the starvation get completed, this indicate the completion of one

iteration / stopping criteria.

4 Defining Software Test Prioritization Problem

Prioritization is the process of scheduling test cases in an order to meet some performance goal. We define a

test suite T as a tuple of test cases Ti from i=1 to n as (T1, T2,.…..Tn). The goal is to execute Ti in order to

meet some performance goal. With Knapsack problem, the minimum time in which we can prioritize the test

cases is the maximum output of knapsack, i.e. Test cases are knapsack items, having total maximum capacity

equal to total number of faults to be covered. The numbers of faults covered by each test case represent its

weight and the total time to execute a test case to find the particular number of faults represent the time to put

the item (test case) into the knapsack. The knapsack 0/1 algorithm outputs prioritized list in minimum ejection

time.

Formally, 0/1 knapsack in terms of test suite prioritization is defined as (Alspaugh et. al., 2007)

Maximize: ci xi

Subject to: min (ti xi) , xi = 0 or 1

where, ci is fault coverage, ti is execution time of test case Ti. Thus, the 0/1 knapsack problem is an NP-

complete problem (Rothermel et. al., 2001). All NP complete problems are NP hard. In this paper we use

Cuscuta search method for solving this hard combinatorial optimization problem.

5 Test Suite Selection and Prioritization using Cuscuta Search

For a given test suite, the problem of selection and prioritization of test cases can be stated as follows:-

1. Given T t1, t2, t3….tn where T is original test suite.

2. Obtain m T such that m≤n where m = number of test cases in test suite T and

3. Select m and prioritize them on the basis of maximum fault coverage in minimum time.

6 Proposed Cuscuta Search Algorithm (CSA)

1. Count total number of faults (TS) in given test prioritization problem.

2. Initialize position of each fault suite (fs) as the chemical clue randomly.

3. Place each test case (Cuscuta) [T1, T2, T3…..TN] at the position corresponds to the position of fs.

4. For each Cuscuta Ti , where i∊ [1 to n]

182

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

a) Starvation STi= TS. /* initialize the current starvation

b) Initial position PT i= fsi. /* initialize position of current test case (Cuscuta) equal to position of its corresponding

 /* fault suite (fsi).

5. WHILE (STi!=0){

a) Current starvation CSi= STi

6. For each Cuscuta Tj where j [1 to n] {

/* find test case (Cuscuta) out of all available test case which fulfills maximum starvation of the current test suite as per the

need of its current starvation.

a) Find Tj such that Tj = max (fs) as per CSi.

 /* Replace current starvation with the test suite which provide maximum fault as per current starvation of Cuscuta.

 } / * end of second for loop

b) Seq_arry[n] = Tj /* Store value of test case in an array of size n.

c) Find fs corresponding to Tj.

d) STi = sub (CSi, fs.) / * calculate left starvation

7. Find execution time associated with the Tj = exc_Time [Tj].

8. Total time[i] =total time[i] + exc_Time [Tj].

 } /*end of while statement

Print Total time[i].

Print Seq_arry[n].

} / * end of first for loop

9. Find sort _ascend (Total time[i]) /*Arrange Test cases in order of increasing execution time

10. Print “The Prioritization order will be the corresponding array index Seq_arry[n] in order of sort _ascend

Total time[i]”.

7 Evaluation Metrics

In order to evaluate the performance of various test case prioritization schemes, prior knowledge of faults

within the given program is assumed along with execution time to run the test cases as shown in Table no.1

and Table no.2. Test suite can be evaluated empirically based on average percentage of fault detected (APFD,

for short) over the life time of the test suite. A higher preference will be given to the prioritization scheme

having higher APFD value. APFD (Krishnamoorthi et al., 2009) is defined as

APFD= [1- Σg
i=1 reveal(i,T)/ng] + 1/2n

where, T = test suite, g = number of faults in program under test, n = number of test cases, reveal(i, T) =

position of the first test in T that exposes fault i.

Other method to calculate APFD is to find the area under the curve that represents the weighted percentage

of faults undetected over the corresponding fraction of the test suite (Gregg et al., 1999).

183

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

8 Example Validation

Consider a test suite with 8 test cases in it, covering a total of 10 faults (Singh et. al., 2010) and given their

total time of execution as shown in Table no. 1 and Table no. 2. Our task is to prioritize these test cases in an

order of maximum fault coverage with minimum test suite execution. The following mapping is considered

between the proposed algorithm’s variables and given prioritization problem.

1. We assume that we had prior information about the original test suite T = {t1,t2……tn}and

corresponding fault coverage (Yogesh Singh et. al., 2010) as shown in table 1 and the total execution

time of each test case as shown in Table 2.

2. Number of Cuscuta plants search for food is equal to number of test cases.

3. The host is chosen which fulfills its maximum starvation from its current starvation.

4. At each attack the Cuscuta need for nutrients get fulfilled and the next attack is totally governed by the

left starvation.

5. A new branch will grow as soon as the starvation get completed, this indicate the competitions of one

iteration / stopping criteria.

 Table 1 Sample test cases vs. faults identified.

Test

case/faults

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 * * * *

T2 * *

T3 * * * *

T4 * * *

T5 * * *

T6 * *

T7 * * *

T8 * *

 Table 2 Sample test cases, fault suite, faults identified and its execution time.

Test case Fault suite No. of faults covered Execution time

T1 f1 2,4,7,9 7

T2 f2 1,3 4

T3 f3 1,5,7,8 5

T4 f4 2,4,9 4

T5 f5 3,6,10 4

T6 f6 1,7 5

T7 f7 3,6,8 4

T8 f8 2,10 2

184

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

We start with test case1 (T1) out of eight available test cases. T1 is positioned at its corresponding fault

suite i.e. T1 is positioned at fault suite f1 (2,4,7,9), T2 at positioned at fault suite f2 (1,3) an so on .The initial

starvation for each Cuscuta (T1,T2,T3….T8) is 10. I.e. initial current starvation is set equal to total number of

faults. Now the Cuscuta (test case T1) will search in its domain of eight test cases,where each test case release

a definite amount of chemical clue(i.e covers definite number of faults). The Cuscuta will attack on the test

case which release maximum chemical clue (faults) as per current starvation of T1.The Current starvation of

Cuscuta (T1) = 1,2,3,4,5,6,7,8,9,10. Mathematically, total number of test cases requirement to fulfill T1 current

starvation is equal to 10.

Faults (starvation) covered by

1. T1= 2,4,7,9. I.e. favorable test case = 4, Thus probability = favorable test case /total number of test

cases= 4/10= 0.4.

2. T2=1, 3. I.e. favorable test case = 2, Thus probability = favorable test case /total number of test cases=

2/10= 0.2.

3. T3= 1,5,7,8. I.e. favorable test case = 4, Thus probability = favorable test case /total number of test

cases= 4/10= 0.4.

4. T4= 2, 4, 9. I.e. favorable test case = 3, Thus probability = favorable test case /total number of test

cases= 3/10= 0.3.

5. T5= 3,6,10. I.e. favorable test case = 3, Thus probability = favorable test case /total number of test

cases= 3/10= 0.3.

6. T6= 1, 7 I.e. favorable test case = 2, Thus probability = favorable test case /total number of test cases=

2/10= 0.2.

7. T7= 3, 6, 8. I.e. favorable test case =3, Thus probability = favorable test case /total number of test

cases= 3/10= 0.3.

8. T8= 2, 10. I.e. favorable test case = 2, Thus probability = favorable test case /total number of test

cases= 2/10= 0.2.

So out of these probabilities test case =T1, T3 has highest probability to fulfill the current starvation of

Cuscuta (T1). T1 is chosen because Cuscuta (T1) has already been placed on T1 initially. It should be noted

that a random selection will be made when two or more than two test cases has same probability. But here we

choose T1 because we initialize Cuscuta (T1) over test case T1.

Thus the left starvation after choosing test case (T1) by Cuscuta (T1) = [1,2,3,4,5,6,7,8,9,10.]-[2,4,7,9]=

[1,3,5,6,8,10]. So the current starvation now become equal to = [1, 3, 5, 6, 8, 10]. I.e. Total number of test

cases = 6.

 Faults (starvation) covered by

1. T1=0 (as all nutrients have been taken during previous attack). I.e. favorable test case = 0, Thus

probability = favorable test case /total number of test cases= 0/6= 0.

2. T2=1, 3. I.e. favorable test case = 2, Thus probability = favorable test case /total number of test cases=

2/6= 0.33.

3. T3= 1,5,7,8. I.e. favorable test case = 3, Thus probability = favorable test case /total number of test

cases= 3/6= 0.5.

185

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

4. T4= 2, 4, 9. I.e. favorable test case = 0, Thus probability = favorable test case /total number of test

cases= 0/6= 0.

5. T5= 3,6,10. I.e. favorable test case = 3, Thus probability = favorable test case /total number of test

cases= 3/6= 0.5.

6. T6= 1, 7 I.e. favorable test case = 1, Thus probability = favorable test case /total number of test cases=

1/6= 0.16.

7. T7= 3, 6, 8. I.e. favorable test case =3, Thus probability = favorable test case /total number of test

cases= 3/6= 0.5.

8. T8= 2, 10. I.e. favorable test case = 2, Thus probability = favorable test case /total number of test

cases= 2/6= 0.33.

So out of these probabilities test case =T3, T5 ,T7 has highest probability to fulfill the current starvation (1, 3,

5, 6, 8, 10) of Cuscuta (T1). So a random selection will be made when two or more than two test cases have

same probability. Lets Cuscuta chooses T3.Thus the left starvation after choosing test case (T3) by Cuscuta

(T1) = [1, 3, 5, 6, 8, 10] - [1, 5, 7, 8] = [3, 6, 10]. So the current starvation now become equal to = [3, 6, 10], i.e.

total number of test cases = 3.

In a similar manner the next attack by the Cuscuta (T1) will be on test case T5 and after attacking T5 the

current starvation becomes zero, i.e. no further search or we can say a germination of a new leaf. Thus we have

total of three moves by Cuscuta (T1) to fulfill its total starvation as shown in Fig. 2, with total time equal to

sum of execution time of each test case, i.e. exce_time (T1) + exce_time (T3) + exce_time (T5)=15.

 Fig. 2 Total number of attack (moves) by Cuscuta (T1) to fulfill its current starvation.

In a similar manner the different attack (moves) by all Cuscuta have been shown in Table 3.

Table 3 Attack (moves) sequences by Cuscuta.

Cuscuta Initial Total

starvation

Attack (moves) Final

Starvation

left

Execution

_time

T1 1,2,3,4,5,6,7,8,9,10 Attack(move) T1 T3 T5

4

0 15

Time 7 5

Chemical

evaporated

2,4,7,9 1,5,7,8 3,6,10

T2 1,2,3,4,5,6,7,8,9,10 Attack (move) T2 T1 T3 T5

4

3,6,10

0 20

Time 4 7 5

Chemical

evaporated

1,3 2,4,7,9 1,5,7,8

T3 1,2,3,4,5,6,7,8,9,10 Attack (move) T3 T5 T4

4

0 13

Time 5 4

T1 T3 T5

186

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

Chemical

evaporated

1,5,7,8 3,6,10 2,4,9

T4 1,2,3,4,5,6,7,8,9,10 Attack (move) T4 T5 T3

5

0 13

Time 4 4

Chemical

evaporated

2,4,9 3,6,10 1,5,7,8

T5 1,2,3,4,5,6,7,8,9,10 Attack (move) T5 T3 T4

4

0 13

Time 4 5

Chemical

evaporated

3,6,10 1,5,7,8 2,4,9

T6 1,2,3,4,5,6,7,8,9,10 Attack (move) T6 T1 T5 T4

4

0 20

Time 5 7 4

Chemical

evaporated

1,7 2,4,7,9 3,6,10 2,4,9

T7 1,2,3,4,5,6,7,8,9,10 Attack (move) T7 T1 T3 T5

4

0 20

Time 4 7 5

Chemical

evaporated

3,6,8 2,4,7,9 1,5,7,8 3,6,10

T8 1,2,3,4,5,6,7,8,9,10 Attack (move) T8 T3 T1 T5

4

0 18

Time 2 5 7

Chemical

evaporated

2,10 1,5,7,8 2,4,7,9 3,6,10

Total

execution

time

 136

The CSA ordering is obtained from the Table 3 on the basis of execution time. The test case having

minimum execution time is set at higher priority followed by next higher execution time. The different

ordering scheme is shown in Table 4.

Table 4 Order of test cases for various prioritization approaches.

No order Random order Reverse order Optimal order ACO

order[Yogesh

Singh et. al., 2010]

CUSCUTA

order

T1 T5 T8 T1 T3 T3

T2 T7 T7 T3 T5 T4

T3 T1 T6 T5 T4 T5

T4 T3 T5 T4 T1 T1

T5 T6 T4 T6 T7 T8

T6 T2 T3 T7 T8 T2

T7 T4 T2 T8 T6 T6

T8 T8 T1 T2 T2 T7

187

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

9 Calculating Average Percentage of Faults Detected (APFD)

APFD depends on two things (i) calculation of total percentage of test suite executed and (ii) no of fault

detected by each percentage of test suite executed. In this example we elaborate this calculation w.r.t CSA

Scheme.

The CSA ordering as shown in table 4 is TC ={ T3,T4,T5,T1,T8,T2,T6,T7} i.e. a total of 8 test cases in test

suite TC. Thus if we execute this sequence then percentage of test suite executed is calculated as

(i) T3= (1/8)*100= 12.5%. Also, for execution of T4 it is necessary to execute T3 first. i.e

(ii) T3, T4= (2/8)*100= 25.0%. Also, for execution of T5 it is necessary to execute T3, T4 first.

(iii) T3, T4, T5 = (3/8)*100= 37.5%. The rest are calculated in similar manner as

(iv) T3, T4, T5, T1= (4/8)*10= 50.0%.

(v) T3, T4, T5, T1, T8= (5/8)*100= 62.5%.

(vi) T3, T4, T5, T1, T8, T2= (6/8)*100= 75%.

(vii) T3, T4, T5, T1, T8, T2, T6= (7/8)*100= 87.5%.

(viii) T3, T4, T5, T1, T8, T2, T6, T7= (8/8)*100=100.0%.

Now we calculate number of faults detected for each percentage of test suite execution. In case of CSA, For

12.5% test suite execution, number of participating test cases are {T3} only, which covers {f1,f5, f7, f8}

faults out of total ten faults, Thus number of fault detected by executing 12.5% of test suite in case of CSA is

4/10= 0.4. In similar manner Table 5 gives percentage of fault detected by executing various percentage level

of test suite in case of CSA and other prioritization Schemes.

Table 5 Total Faults detected using various Prioritizing schemes

Prioritization

Scheme

Percentage of test

suite executed

Number of participating test

cases

(Ptc)

Faults detected by Ptc Total faults

detected

CSA

ordering

12.5 T3 f1,f5,f7,f8 4/10=0.4

25 T3, T4 f1,f2,f4, f5,f7,f8, f9 7/10=0.7

37.5 T3, T4, T5 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

50 T3, T4, T5, T1 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

62.5 T3, T4, T5, T1,T8 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

75 T3, T4, T5, T1,T8, T2 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

87.5 T3, T4, T5, T1,T8, T2, T6 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

100.0 T3, T4, T5, T1,T8, T2, T6, T7 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

Ant Colony

based

ordering

12.5 T3 f1,f5,f7,f8 4/10=0.4

25 T3,T5 f1,f3,f5,f6,f7,f8,f10 7/10=0.7

37.5 T3,T5,T4 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

50 T3,T5,T4,T1 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

62.5 T3,T5,T4,T1, T7 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

75 T3,T5,T4,T1, T7,T8 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

87.5 T3,T5,T4,T1, T7,T8,T6 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

100.0 T3,T5,T4,T1, T7,T8,T6,T2 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

Optimal

ordering

12.5 T1 f2,f4,f7,f9 4/10=0.4

25 T1,T3 f1,f2,f4,f5,f7,f8,f9 7/10=0.7

37.5 T1,T3,T5 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

50 T1,T3,T5,T4 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

188

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

62.5 T1,T3,T5,T4, T6 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

75 T1,T3,T5,T4, T6,T7 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

87.5 T1,T3,T5,T4, T6,T7,T8 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

100.0 T1,T3,T5,T4, T6,T7,T8,T2 f1,f2,f3,f4,f5,F6, f7,f8, f9, f10 10/10=1.0

No ordering 12.5 T1 f2,f4,f7,f9 4/10=0.4

25 T1,T2 f1,f2,f3,f4,f7,f9 6/10=0.6

37.5 T1,T2,T3 f1,f2,f3,f4,f5,f7,f8,f9 8/10=0.8

50 T1,T2,T3,T4 f1,f2,f3,f4,f5,f7,f8,f9 8/10=0.8

62.5 T1,T2,T3,T4,T5 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

75 T1,T2,T3,T4,T5,T6 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

87.5 T1,T2,T3,T4,T5,T6,T7 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

100.0 T1,T2,T3,T4,T5,T6,T7,T8 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

Random

Ordering

12.5 T5 f3,f6,f10 3/10=0.3

25 T5,T7 f3,f6,f8,f10 4/10=0.4

37.5 T5,T7, T1 f3,f2,f4,f6,f7,f8,f9,f10 8/10=0.8

50 T5,T7, T1,T3 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

62.5 T5,T7, T1,T3,T6 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

75 T5,T7, T1,T3,T6,T2 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

87.5 T5,T7, T1,T3,T6,T2,T4 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

100.0 T5,T7, T1,T3,T6,T2,T4,T8 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

Reverse

ordering

12.5 T8 f2,f10 2/10=0.2

25 T8,T7 f2,f3,f6,f8,f10 5/10=0.5

37.5 T8,T7,T6 f1,f2,f3,f6,f7,f8,f10 7/10=0.7

50 T8,T7,T6,T5 f1,f2,f3,f6,f7,f8,f10 7/10=0.7

62.5 T8,T7,T6,T5,T4 f1,f2,f3,f4,f6,f7,f8,f9,f10 9/10=0.9

75 T8,T7,T6,T5,T4,T3 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

87.5 T8,T7,T6,T5,T4,T3,T2 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

100.0 T8,T7,T6,T5,T4,T3,T2,T1 f1,f2,f3,f4,f5,f6,f7,f8,f9,f10 10/10=1.0

Thus for various ordering the APFD is calculated by finding the area under the curve enclosed by the solid

line as shown in figure 3. We can also calculate the APFD using the formula given by Krishnamoorthi et al.,

2009. Both method results the same output.

10 Comparison with Different Ordering

We compare the result of proposed CSA ordering with No order, Random order, Reverse order, optimal order,

Ant colony order (ACO order) for the test cases order as shown in Table 4. The various approaches and their

prioritization order as mentioned in Table 4 are compared by calculating their average percentage of faults

detected (APFD). The comparison results are shown in Fig. 3.

189

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

Fig. 3 Comparison of different prioritization ordering with APFD.

Results obtained by measuring the Average Percentage of Faults Detected (APFD) shows that Cuscuta

ordering has the same APFD as that of optimal ordering and ant colony optimization ACO (Singh et. al., 2010)

but better than No order, Random order and Reverse order. The graph clearly shows the effectiveness of

Cuscuta search in detecting average percentage of faults.

11 Application of the CSA

CSA can be used in large and complex test suite prioritization problems and thus saving bigger amount of time

and cost during software development life cycle as compared to smaller ones. With this approach software

testers can easily select and prioritize test cases with minimum execution time and higher percentage of fault

detection.

12 Discussion

We have proposed a selection and prioritization technique based on Cuscuta search Algorithm to find the near

190

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

optimal solution. By calculating APFD (Average Percentage of Faults Detected) for each technique, we

conclude that Cuscuta ordering gives same results as given by the optimal and ACO ordering but better than

No order, Random order and Reverse order. Cuscuta is strong in its searching method as it knows its currents

starvation during each attack over the host and hence lead to better solutions in optimal time.

This algorithm suggests a critical use of nature inspired approach in the field of software testing. The paper

arguments about the intelligence of plants as like animals. A part from CSA, Particle Swarm Optimization

(PSO), Artificial Bee Colony Optimization (ABC) and Genetic Algorithm are few other metahurestic inspired

by animal’s intelligent behavior on which research can be carried out to exploit natural intelligence of species

and to solve NP problems in software testing.

References

Alspaugh S, Walcott KR, Belanich M, Kapfhammer GM, Soffa ML. 2007. Efficient time-aware

prioritization with knapsack solvers. Proceedings of WEASELTech, 22(1): 13-18

Ayari K, Bouktif S, Antoniol G. 2007. Automatic mutation test input data generation via ant colony.

Proceeding of. 9th annual conference on Genetic and evolutionary computation, 1074-1081

Benvenuti S, Dinelli G, Bonetti A, Catizone P. 2005. Germination ecology, emergence and host

detection in Cuscuta campestris. Weed Research, 45: 270-278

Caro G.D, Dorigo M. 1998. AntNet: Distributed Stigmergetic Control for Communications Networks. Journal

of Artificial Intelligence Research, 9: 317-365

Chaudhary N, Sangwan OP, Singh Yogesh. 2012. Test Case Prioritization using Fuzzy Logic for GUI based

Software. International Journal of Advanced Computer Science and Applications, 3(12): 222-227

Dawson JH, Musselman LJ, Wolswinkel P, Dörr I. 1994. Biology and control of Cuscuta.Rev. Weed Science, 6:

265-317

Dorigo M, Maniezzo V, Colorni A.1996. Ant system: optimization by a colony of cooperating agents. Systems,

Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1): 29-41

Gregg Rothermel, Roland H. Untch, Chengyun Chu, Mary Jean Harrold.1999. Test Case Prioritization: An

Empirical Study. Proceedings of the International Conference on Software Maintenance. 1-10, Oxford, UK

Gomez O, Baren B. 2005. Omicron ACO: A New Ant Colony Optimization Algorithm.CLEI Electronic

Journal, 8(1): 1-8

Huaizhong Li, Lam CP. 2005. Software Test Data Generation using Ant Colony Optimization. Proceedings of

World Academy of Science, Engineering And Technology, 1: 1-4

Kelly CK. 1990. Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology,

71: 1916-1925

Krishnamoorthi R, Sahaaya SA, Mary A. 2009. Regression Test Suite Prioritization using Genetic Algorithms.

International Journal of Hybrid Information Technology, 2(3): 35-52

Li L, Ju S, Zhang Y. 2008. Improved ant colony optimization for the traveling salesman problem. Proceedings

of 1st International Conference on Intelligent Computation Technology and Automation, 76-80

Malhotra R, Kaur A, Singh Y. 2010. A Regression Test Selection and Prioritization Technique. Journal of

Information Processing Systems, 6(2): 235-252

Mayers G.J. 1977. The Art of Software Testing. John Wiley and Sons, New York, USA

Parpinelli RS, Lopes HS, Freitas AA. 2002. Data mining with an ant colony optimization algorithm. IEEE

Transactions on Evolutionary Computation, 6(4): 321-332
Rothermel G, Untch R. H, Chu C, Harrold MJ. 2001. Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(10): 929-948

191

Network Biology, 2014, 4(4): 179-192

 IAEES www.iaees.org

 Runyon JB, Tooker JF, Mescher MC, Moraes CM De. 2009. Parasitic plants in agriculture: chemical ecology

of germination and host-plant location as targets for sustainable control. In: Sustainable Agriculture

Reviews (Lichtfouse E, ed). Springer, Dordrecht, 1: 123-136

Runyon JB, Mescher MC, De Moraes CM. 2006. Volatile chemical cues guide host location and host selection

by parasitic plants. Science, 313: 1964-1967

Singh Y, Kaur A, Suri B. 2010. Test Case Prioritization using Ant Colony Optimization ACM SIGSOFT

Software Engineering Notes, 35: 1-7

Srivastava PR, Baby K., Raghurama G. 2009. An Approach of Optimal Path Generation using Ant Colony

Optimization.In Proceedings of 9th TENCON 2009-2009 IEEE Region Conference. 1-6, Singapore

Stenhouse D. 1974. The Evolution of Intelligence: A General Theory and Some of Its Implications. Harper &

Row, USA

Tereshko V. 2000. Reaction-diffusion model of a honeybee colony’s foraging behaviour. In Schoenauer M.(ed.)

Parallel Problem Solving from Nature VI. Lecture Notes in Computer Science, Springer, 1917: 807-816

Zhang WJ. 2013a. Selforganizology: A science that deals with self-organization. Network Biology, 3(1):1-14

Zhang WJ. 2013b. Self-organization: Theories and Methods. Nova Science Publishers, New York, USA

Zhao P, Zhao P, Zhang X. 2006. New Ant Colony Optimization for the Knapsack Problem. Proceedings of the

7th International Conference on Computer-Aided Industrial Design and Conceptual Design,1-3

192

