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Abstract 

Exponential random graph models (ERGM) based on graph theory are useful in studying global biological 

network structure using its local properties. However, computational methods for fitting such models are 

sensitive to the type, structure and the number of the local features of a network under study. In this paper, we 

compared computational methods for fitting an ERGM with local features of different types and structures. Two 

commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the 

Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. 

We compared the estimates of observed network to our random simulated network using both methods under 

ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a 

randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of 

some common attributes of interest for different order of nodes were determined through simulations. We 

implemented our method to a known regulatory network database of Escherichia coli (E. coli). 

 

Keywords biological networks; regulatory networks; exponential random graph models; Monte Carlo 

maximum likelihood estimation; maximum pseudo likelihood estimation; E. coli. 

 

 

 

 

 

 

 

1 Introduction 

Over the last decade, there has been a growing interest in the study of biological interaction networks at the 

macro and micro molecular levels (Zhang 2012). Identifying basic structural relationships among micro 

components is the main goal in the field of systems biology (Li and Zhang, 2013). A formal basis for handling 

such complex networks includes computational tools to support the modelling and simulation through methods 

developed in mathematical biology and bioinformatics. Since 1960s, with some notable precursors in the 
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preceding decades, a variety of mathematical formalisms have been proposed to describe this kind of complex 

networking. During the last few years, modelling efforts targeted several distinct types of networks at the 

molecular level, such as gene regulatory networks (Pavlopoulos et al., 2011; Mason and Verwoerd, 2007), 

metabolic networks (Ideker et al., 2001), signal transduction networks (Stock, 1990) or protein-protein 

interaction networks (Pavlopoulos et al., 2011), transcription regulatory networks (Begum et al., 2014). 

Networks of interactions that are not restricted to a cell (intercellular communications) or take place at an 

altogether different level of detail (immunological networks, ecological networks) are also of immense interest. 

In this paper, we considered a transcription regulatory network for the model organism Escherichia coli 

K-12 (E. coli) from RegulonDB (Salgado et al., 2006) version 7.4 (http://regulondb.ccg.unam.mx/). The 

RegulonDB contains information on transcription initiation and the regulatory network of E. coli. Downloadable 

experimental datasets are available on the regulatory network interactions RegulonDB. The transcription factor 

(TF) - transcription factor (TF) interaction network data are considered in this work. A transcriptional unit is 

defined as a set of one or more genes within an operon transcribed as a set through the utilization of a single 

promoter. In the original dataset (represented as a table) of E.coli in the RegulonDB website, there are four 

columns. The first column is the name of the Transcription Factor (TF), the second column is TF regulated by TF, 

third column is Regulatory effect of the TF on the regulated gene (+ activator, - repressor, +- dual, ? unknown) 

and the fourth column is the evidence of support of the existence of the regulatory interaction. The first two 

columns are considered and it created the TF-TF interaction network. The observed TF-TF network, which is a 

directed network with loops, is given in Fig. 1.  

 
Fig. 1 Observed TF-TF network. 

 

Each vertex is a TF and an edge between two TFs represents a regulation. An edge from a TF to another TF 

represents that the first TF regulates the second. We explored this observed network and counted the number of 

several network attributes i.e. edge, triangle and stars. In this observed network, there are 387 edges, 114 

triangles, twenty 3-ostars, thirty-four 3-istars, ten 5-ostars, and nine 5-istars and the network has two big 

clusters and several small clusters. The basic definitions of some network attributes are given below, 

Edges or arcs: This term adds one network statistic that is equal to the number of edges in the network. For 

undirected networks, an edge is same ask-star (1) [see below] whereas for directed networks, an edge represents 

both ostar (1) and istar (1) (Morris et al., 2008). 

Triangles: This term adds one statistic to the model that is equal to the number of triangles in the network. For an 

undirected network, a triangle is defined to be any set ሼሺ݅, ݆ሻ, ሺ݆, ݈ሻ, ሺ݈, ݅ሻሽof three edges. For a directed network, 
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a triangle is defined as any set of three edges ሼሺ݅ ՜ ݆ሻܽ݊݀ሺ݆ ՜ ݈ሻሽ and either ሺ݈ ՜ ݅ሻ or ሺ݈ ՚ ݅ሻ(Morris et al., 

2008). 

k-star: This term adds one statistic when there exists ties between one node and k number of other nodes. For a 

directed network the star statistics are replaced by outgoing stars (k-ostar) and incoming stars (k-istar) (Morris et 

al., 2008). 

 

2 Exponential Random Graph Model (ERGM) 

An Exponential Random Graph Model (ERGM) models the probability distribution (mass function / density 

function) for a given class of graphs. Given an observed graph and a set of local features of that graph, the 

probability distribution of the graph is estimated. The distribution provides a concise summary of the class of 

graphs to which the observed graph belongs, i.e. the probability distribution can be used to calculate the 

probability that any given graph is drawn from the same distribution as the observed graph (Fronczak, 2012; 

Robins et al., 2007; Saul and Filkov, 2007; Wasserman and Pattison, 1996). 

ERGMs represent the generative process of tie formation in networks with two basic types of processes 

namely dyadic dependence and dyadic independence. A dyad refers to a pair of nodes and the relations between 

them. Dyadic dependent processes are those in which the state of one dyad depends stochastically on the state of 

other dyads. Dyadic independent processes exhibit no direct dependence among dyads. This distinction between 

these two types of processes affects the specification, estimation, and behaviour of ERGMs. Models with only 

dyadic independent terms have a likelihood function that simplifies to a form that can be maximized using 

standard logistic regression models. In contrast, models for processes with dyadic dependence require 

computationally intensive estimation and imply complex forms of feedback and global dependence that 

confound both intuition and estimation (Handcock et al., 2003; Hunter and Handcock, 2006). 

Although an ERGM presents a flexible means to model complex networks, the likelihood function for 

parameter estimation involves a mathematically intractable normalizing constant. ERGMs generalize the 

Markov random graph models (Frank and Strauss, 1986), and edge and dyadic independence models. Several 

statistical computational methods had been proposed to address this difficulty in parameter estimation in an 

ERGM. These are the Markov chain Monte Carlo maximum likelihood estimation (MCMCMLE) method and 

the Maximum pseudo likelihood estimation (MPLE) method (Handcock et al., 2003; Robins et al., 2007; 

Snijders, 2002). We briefly discuss the general ERGM, which is also known asכ݌  model, to layout the 

theoretical background of such models. 

The general log-linear form of כ݌ model is expressed as, 

ܲሺܺ ൌ ሻݔ ൌ
expሾܢ′ࣂሺܠሻሿ

ሻࣂሺߢ
                                                                          ሺ1ሻ 

here ࣂ is a vector of model parameters, ܢሺܠሻis a vector of network statistics, and ߢሺ. ሻis a normalizing constant 

which is hard to compute for large networks. In order to simplify the estimation process of the model parameters, 

the log-linear model form of the כ݌  model can be re-expressed as a logit model. In particular, as per 

(Wasserman and Pattison, 1996), ࢐࢏ࢄ
ା denotes an adjacency matrix where a tie from ݅ ՜ ݆ is forced to be present. 

That is ࢐࢏ࢄ
ା ൌ ൛ܺ௞௟,  ݄ݐ݅ݓ ௜ܺ௝ ൌ 1ൟ. ࢐࢏ࢄ

ି denotes an adjacency matrix where a tie from ݅ ՜ ݆ is forced to be 

absent. That is ࢐࢏ࢄ
ି ൌ ൛ܺ௞௟,  ݄ݐ݅ݓ ௜ܺ௝ ൌ 0ൟ. Finally, ࢐࢏ࢄ

ࢉ  denotes an adjacency matrix with complement relation 

for the tie from ݅ ՜ ݆. That is, ࢐࢏ࢄ
ࢉ ൌ ሼܺ௞௟, ሺ݈݇ሻ ݄ݐ݅ݓ ് ሺ݅, ݆ሻሽ. The כ݌model in Equation (1) can be turned to a 

logistic regression model by considering a set of binary random variablesሼ ௜ܺ௝ሽ, where ௜ܺ௝ ൌ 1 implying a tie 

from ݅ ݋ݐ ݆ as follows. 

log ቊ
ܲ൫ ௜ܺ௝ ൌ 1|X௜௝

௖ ൯

ܲ൫ ௜ܺ௝ ൌ 0|X௜௝
௖ ൯
ቋ ൌ ߱௜௝ ൌ ܒܑܠ൫ܢൣ′ࣂ 

ା൯ െ ܒܑܠ൫ܢ
ି൯൧                           ሺ2ሻ 
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߱௜௝ ൌ  ൯                                               ሺ3ሻ࢐࢏࢞൫ࢾ′ࣂ 

Hereࢠሺ࢐࢏࢞
ାሻ  is defined as vector of network statisticݔ௜௝

ା ࢐࢏࢞ሺࢠ ,
ିሻ  is the vector of network statisticݔ௜௝

ି 

andࢾ൫࢐࢏࢞൯is the vector of difference statistics obtained from the network statistics ܢሺ. ሻwhen the variable 

௜ܺ௝changes from 1 to 0. The model in Equation (3) is referred to as the ݈כ݌ ݐ݅݃݋model for single binary relation. 

One can work with either the log-linear form ofכ݌ model given in Equation (1) or the logit form given in 

equation (3). 

 

3 Computational Methods 

There are two methods commonly used to estimate the maximum likelihood fit to exponential random graph 

models. These are the maximum pseudo-likelihood estimation (MPLE) and the Markov chain Monte Carlo 

maximum likelihood estimation (MCMCMLE) (Handcock et al., 2003; Robins et al., 2007; Snijders, 2002). The 

pseudo likelihood function is simply the product of the probabilities of ௜ܺ௝ with each probability conditional on 

the rest of the data. The method avoids the technical difficulty inherent in the maximum likelihood approach. 

The maximum pseudo likelihood estimator (MPLE) for an ERGM, which maximize the pseudo likelihood, may 

easily be found (at least in principle) by using logistic regression as a computational device. However, when the 

ERGM in question is not a dyadic independence model, the statistical properties of pseudo likelihood estimators 

for a network are not well understood (Hunter and Handcock, 2006). 

Monte Carlo maximum likelihood estimation (MCMCMLE) is preferred for dyadic dependentpכmodels. 

The MCMCMLE of the parameter vector  is obtained by maximizing the approximate likelihood. The 

MCMCML estimation algorithm is implemented to the software package statnet (Handcock et al., 2003) under 

the statistical computational environment R. We use these two packages statnet and ergm (Handcock et al., 2008) 

to fit the exponential random model given in equation (1).  

 

4 Simulation Study 

We conduct a simulation study for generating random network under varying conditions. We choose conditions 

by assigning different number of nodes and network statistics. The primary reason behind conducting the 

simulation is to determine the cut-off points for different number of nodes for specific attributes and also to 

compare our simulated models with an observed model. For the comparison part, we create two networks by 

imposing the same number of network attributes to the models and then compare the results of estimates with the 

TF-TF interaction network of E. coli by fitting ERGM. 

We consider various network statistics such as arc, stars, and triangles. A k-star is defined where there exist 

ties between one node and k number of other nodes. For a directed network the star statistics are replaced by 

outgoing stars (k-ostar) and incoming stars (k-istar). In particular arc, 5-ostar, 5-istar, 6-ostar, 6-istar, and 

triangles are considered as our network attributes. We physically impose these attributes into the simulated 

network by keeping approximately the same number of attributes as the observed network. We also observe that 

if we simulate triangles, ostars, istars, and arcs are automatically created. We randomly assign these attributes 

to the simulated networks for different number of nodes (n=20, 50, 100) and determine the conditions for these 

statistics to become insignificant. The cut-off points for single attributes and for a combination of attributes are 

assessed. However, due to the convergence issues, we were unable to obtain the cut-off points for some cases. A 

cut-off point is defined as the value where network attributes become significant to insignificant and vice versa. 

The rationale is that if the biological network behaves almost the same as the random network, then if we have an 

observed network with different number of nodes, we can determine up to which point (approximately) certain 

statistics become insignificant.  
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We explore the TF-TF interaction network of E. coli from the RegulonDB database and found that there are 

ten5-ostars, nine5-istars, ten6-ostars, eight6-istars and 114 triangles. The network contains 175 nodes with 

density 0.012. Once we determine the number of attributes in the observed network, then we mimic this network 

and randomly simulate two networks. Then we consider different combinations of attributes (ostars, istars and 

triangles) and fit the models by ERGM. We fit the same models for the observed data by using ERGM and then 

compare the estimates of ERGM for both MCMCMLE and MPLE method.  

We begin with networks with small number of nodes and move toward networks with higher number of 

nodes. With only 20 nodes, we consider reasonably smaller magnitude of network attributes such as arcs, 

3-ostars, 3-istars and triangles as our attributes of interest and then fit the models with ERGM to get the 

estimates and also to determine the cut-off points. We start with smaller number of attributes, two3-ostars, two 

3-istars, and two triangles. We increment each attribute one at a time to determine the cut-off points. Simulated 

network with 77 triangles, twelve3-istars and fourteen3-ostars is presented in Fig. 2.  

 

 

Fig. 2 Simulated network for n=20. 

 

 

Next we increased the number of nodes to 50 and 100. A summary of the simulated networks with nodes 20, 

50, and 100including the cut-off points for each network statistics is presented in Table 1. 

 

 

Table 1 Summary of simulation studies for different numbers of nodes. 

a% of n (apps) means that the lower cut-offs are the percentage of n (i.e. node). For example, for n=20, lower cut-off of 3-Ostar is 
7 which is 35% of n=20. 

 

 

 

For n=20 For n=50 For n=100 

Trian- 

gles 
3-Ostar 3-Istar

Trian-gl

es 
3-Ostar 3-Istar

Trian-gle

s 
3-Ostar 3-Istar

Lower cut-offs - 7 6 - - 3 - 4 5 

% ofn (apps)a - 35% 30% - - 6% - 4% 5% 

Higher cut-offs 76-80 17 17 - 35 - - 64 64 

% ofn (apps) 390% 85% 85% - 70% - - 64% 64% 
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It is to be noted that the cut-off points for 3-ostar and 3-istar are quite similar, although we could not find 

any conclusive answer when the number of nodes is 50. For 3-ostar and 3-istar, we can say that, the cut-off 

points spread out with the increase in the number of nodes. That is if we move toward higher number of nodes, 

the lower cut-off points become smaller and the higher cut-off points become smaller. For n=20, the total spread 

of insignificant region is close to (85-35) = 50% and which is approximately 60% for n=100. For triangles, 

cut-off points should be bigger than the number of nodes n. In summary, we can say that, for network data if we 

increase the order of the nodes, the spread of the insignificant region gradually becomes larger for any specific 

attributes. To determine the exact percentage of cut-off points, we have to do similar study for different other 

nodes, and then we can generalize the idea.  

4.1 Comparisons of results under simulation schemes 

In our observed TF-TF model, we have 175 nodes, 114 triangles, ten 5-ostars, nine 5-istars, ten 6-ostars and 

eight 5-istars. An R-script is written to count the number of attributes in the model. Then we randomly simulate 

two different network models to compare the estimates of these network attributes with the observed network. In 

both cases, we have very close estimates of network attributes from the simulated models compared to the actual 

model. In Fig. 3 and 4, we represent the observed TF-TF network with and without loops. 

 

 

Fig. 3 Observed TF-TF network with looping.     Fig. 4 Observed TF-TF network without looping. 

 

The estimates of attributes of the observed network are presented in Table 2. 

 

Table 2 Estimates of the observed network. 

Network 

Attributes 

MCMCMLE 

Estimates 
MPLE Estimates 

Edges -5.3500647 -5.35 

Triangle 0.9355000 9.355e-01 

5-Ostar 0.0003851 1.564e-05 

5-Istar 0.0022043 2.204e-01 

6-Ostar 7.797e-05 1.676e-06 

6-Istar 1.034e-01 1.034e-03 
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To compare the estimates of network attributes between the observed and simulated network, we randomly 

simulate two networks by imposing the same number of attributes as TF-TF, one with 5-ostars, 5-istars, and 

triangles (network-1) and the other with same number of 6-ostars, 6-istars, and triangles (network-2). The 

summary table of the number of network attributes is presented in Table 8.It is to be noted that we found very 

similar estimates for the common network attributes edge and triangle from network-1 and network-2. In Tables 

3 and 4, we presented the estimates of the observed and simulated networks for both MCMCMLE and MPLE 

methods. 

 

 

Table 3 Estimates from observed versus simulated networks with MCMC MLE. 

Network 

Attributes 

Estimates from 

observed networks 

Estimates from 

simulated networks  

Edges -5.3500647 -5.73286 

Triangle 0.9355000 2.90743 

5-Ostar 0.0003851 -0.01720 

5-Istar 0.0022043 -0.08434 

6-Ostar 7.797e-05 -1.342e-01 

6-Istar 1.034e-01 -8.702e-04 

 

 

Table 4 Estimates from observed versus simulated networks with MPLE. 

Network 

Attributes 

Estimates from 

observed networks 

Estimates from 

simulated networks 

Edges -5.35 -5.675632 

Triangle 9.355e-01 2.905757 

5-Ostar 1.564e-05 -0.016141 

5-Istar 2.204e-01 -0.083797 

6-Ostar 1.676e-06 -0.1343137 

6-Istar 1.034e-03 -0.0006957 

 

 

From Tables 3 and 4, we conclude that except triangles the rest of the estimates of network attributes are 

very close for both MCMCMLE and MPLE method. Therefore, from the biological point of view, if the 

observed network is available and the numbers of certain network attributes are known, then it behaves almost 

same as the random model for most of the cases. However, to generalize the case we need more experiment and 

more exploration among higher order of species. The simulated networks (1 & 2)are presented in Figs 5 and 6. 
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Fig. 5 Simulated network-1.                     Fig. 6 Simulated network-2. 

 

 

From this experiment, we observe that if we want to simulate a biological data, then one way would be to 

explore the observed data and count the number of statistics that we are interested and then physically impose the 

number of statistic and then compare. There are several other ways to simulate network models using several 

packages on R. The simplest one is to take the density of the observed model and simulate it using binomial 

distribution. Also, once a model is fitted by using ERGM package, it can be simulated from the fitted model. 

ERGM takes the estimates of the network attributes and simulates a similar type of model. However, in such a 

case the physical number of attributes differs substantially. Again, we can also simulate networks by using 

Erdos-Renyi model. The comparison of networks obtained using different simulation approaches is presented in 

the following section. 

4.2 Comparison over simulation methods 

In this section, we simulate several networks by the existing simulation schemes. We simulated a network by 

using Erdos-Renyi modelling scheme where we consider 175 nodes to create similarity with our observed 

TF-TF network and then consider the density of the TF-TF model. The summary of the estimates that we obtain 

under different approaches, are provided in Tables 5, 6, and 7 (for both MCMCMLE and MPLE).  

 

Table 5 Estimates from Erdos-Renyi model 

Network 

Attributes 

MCMCMLE 

Estimates 

MPLE 

Estimates 

Edges -4.438846 -4.42969 

Triangle -0.058951 -0.06431 

5-Ostar -0.007336 -0.00546 

5-Istar -0.120974 -0.15166 

6-Ostar -0.01302 -0.01366 

6-Istar -0.75202 -0.84257 
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Table 6 Estimates from Binomial simulated model 

Network 

Attributes 

MCMCMLE 

Estimates 

MPLE 

Estimates 

Edges -4.33561 -4.30465 

Triangle -0.06395 -0.08794 

5-Ostar -0.01032 -0.04404 

5-Istar -0.07059 -0.07491 

6-Ostar -0.10063 -0.25368 

6-Istar -0.31184 -0.29370 

 

 

Table 7 Estimates from fitted ERGM models 

Network 

Attributes 

MCMCMLE 

Estimates 

MPLE 

Estimates 

Edges -5.3318479 -5.332e+00 

Triangle 0.7194116 7.194e-01 

5-Ostar 0.0001207 6.297e-06 

5-Istar 0.0016440 1.644e-03 

6-Ostar 1.484e-05 5.333e-07 

6-Istar -5.887e-02 -5.887e-02 

 

We notice that as long as we consider the same network, estimates of certain attributes are always similar. 

Although some of the estimates we obtain in this simulation study are very close, the physical numbers of 

statistics differ substantially. As the simulation scheme takes the fitted estimates into account, the physical 

number of different attributes should be close to the observed model. It is important since the exact numbers of 

network statistics might have a significant influence on the overall process. The simulated networks using 

Erdos-Renyi modelling scheme, binomial density, and ergm package in R are presented in Figs 7, 8, and 9. 

 

 

       Fig. 7 Simulated from Erdos-Renyi model. 
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           Fig. 8 Simulated network using binomial probability. 

 

 
          Fig. 9 Simulated network from fitted ERGM model. 

 

The numbers of network attributes for different simulation models are presented in Table 8.  

 

Table 8 Summary table of estimates observed versus simulated networks. 

Network 

Attributes 

Observed 

TF-TF 

network 

Our 

Simulated 

network 

Simulation 

using density

Erdos-Renyi 

simulation 

ERGM fitted 

simulation 

Edges 263 327 377 375 247 

Triangle 114 115 12 9 82 

5-Ostar 10 10 17 6 7 

5-Istar 9 9 12 8 2 

6-Ostar 10 10 6 2 1 

6-Istar 8 8 3 1 3 

10
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From Table 8, we can see that the network attributes are different under all the simulation schemes. In our 

process as we are physically imposing the attributes, it is very close to the observed model. The only difference 

in the attributes is for the triangles which differ by just 1. From Table 8, we can say that, in terms of number, the 

ERGM simulated network generates close result. However, the numbers of triangles substantially differ from the 

original observed model. For the simple binomial simulation, the edges do not even come close and the other 

attributes also significantly differ. We find similar characteristic for Erdos-Renyimodelling scheme. The reason 

behind this could be that both the binomial and Erdos-Renyi consider the density only while simulation. Thus, 

the number of attributes along with the edges is very close. However, other attributes such as the number of 

5-istars or 5-ostars are not very close. In our random simulation, we emphasize on the number of attributes 

because a biological process is a very complicated process. A single edge might have significant influence over 

the entire process. Therefore, for biological simulation, we should always keep in mind the physical number of 

attributes that we are interested in. 

 

5 Conclusions 

The number of commonly used network attributes such as k-istar, k-ostar and triangles in the TF-TF regulatory 

network of E. coli is determined. These networks attributes statistically serve as the significant local structures 

for the E. coli regulatory network. An observed regulatory network of the model organism E. coli was exploredin 

terms of finding statisticallysignificant local structure in this study. Simulation of two network models, 

network-1 and network-2, and comparison of the estimates of the observed and simulated models are presented. 

In both cases, the estimates we obtain are very similar with the observed TF-TF network except for triangles. 

Networks simulated using existing methods are compared in terms of these estimates as well. At the end, our 

models provide close results and same number of network attributes, which is very important for biological 

network data. Therefore, it can concluded that for theE. coil regulatory network, the network can be reproduced 

by taking the counts for different attributes, and the simulated network will behave as the observed network.  

Simulation of different networks with different number of nodes and network attributes were performed. The 

cut-off points were determined for a number of attributes at which point specific attributes become significant to 

insignificant, or vice versa. We observed that for smaller numbers of network attributes, the estimates usually 

become significant. If the number of attributes increases in a given model, the attributes become insignificant. 

We also observe that the models in ERGM do not always converge. Addressing the convergence issue would 

be a desirable upgrade for the computational method. For the several models considered, convergence failure 

occurred while estimating parameters for any of the methods. For example, for our observed network, the model 

with edges, 4-istars, 4-ostars and triangles did not converge. Also, due to the convergence issue, cut-off points 

could not be determined for several network attributes. In addition, computation for networks with self loops 

demonstrates convergence problems. Therefore, while the ERGM provides flexible methodology, these issues 

remain in need of further analysis. 
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