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Abstract   

The proof of our understanding of ecological and biological systems is measured by our skill to rule them, i.e. 

to channelize them towards a desired state. Control is a cardinal issue in most complex systems, but because a 

general theory to apply it in a quantitative manner has been absent so far, little was known about how we can 

rule weighted, directed networks that represent the most common configuration of real systems. To this 

purpose, Evolutionary Network Control (ENC) has been developed as a theoretical and methodological 

framework aimed to the control of ecological and biological networks by coupling network dynamics and 

evolutionary modelling. ENC is a tools to address controllability for arbitrary network topologies and sizes. 

ENC has proven to cover several topics of network control, e.g. a) the global control from inside and b) from 

outside, c) the local (step-by-step) control, and the computation of: d) control success, e) feasibility, and f) 

degree of uncertainty. Taken together, these results indicate that many aspects of controllability can be 

explored exactly and analytically for arbitrary networks, opening new avenues to deepening our understanding 

of complex systems. As yet, I have applied ENC only to linear ecological and biological networks. In this 

work, I show that ENC also holds for any kind of nonlinear networks, and provide an applicative example 

based on the nonlinear, widely-used, Lotka-Volterra model. 
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1 Introduction 

I have recently introduced a methodological framework, named Evolutionary Network Control (ENC; 

Ferrarini, 2013a; Ferrarini, 2013b), so that ecological and biological networks can be controlled from the 

outside (Ferrarini, 2013a) but also through the use of endogenous controllers (Ferrarini, 2013b), by coupling 
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network dynamics and evolutionary modelling (Holland, 1975; Goldberg, 1989). The endogenous control 

requires that the network is optimized at the beginning of its dynamics, by acting upon nodes, edges or both, so 

that it will inertially go to the desired state. On the contrary, the exogenous control requires that one or more 

exogenous controllers act upon the network at each time step (Ferrarini, 2011a; Ferrarini, 2011b).  

     In another paper (Ferrarini, 2013c), I have examined a further issue: how reliable is the achieved solution? 

This is an important question, because it’s not assured that while managing a network-like system we are able 

to impose to nodes and edges exactly the optimized values we would need in order to achieve the desired 

control. In order to face this topic, I have coined a 3-parts (network dynamics - genetic optimization - 

stochastic simulations) solution. 

     I have further proposed a solution to the choice of the most feasible solution to network control by 

introducing the concepts of control success and feasibility (Ferrarini, 2013d). 

Later, I have faced another pivotal question, i.e. how to locally (step-by-step) drive ecological and biological 

networks so that also intermediate steps (and not only the final state) are under our control (Ferrarini, 2014). 

The ratio behind this question is that intermediate dynamics could potentially go below or above critical 

ecological or biological thresholds, hence invalidating the final global control. To this purpose, I have 

introduced a solution to the complete (local + global) control of ecological and biological networks by making 

use of an intermediate control function. 

     As yet, I have applied ENC only to linear ecological and biological networks. While it is not goal of this 

paper to discuss the implications of the ENC of ecological and biological networks, I show here that ENC also 

holds for any kind of nonlinear networks, and provide an applicative example based on the nonlinear, widely-

used, Lotka-Volterra model (Lotka, 1925; Volterra, 1926).  

 

2 Subduing the Lotka-Volterra Model via ENC: Mathematical Formulation 

It’s given a generic ecological (or biological) dynamical system with n interacting actors 

( , )
dS

S t
dt


 

           (1) 

where Si is the amount (e.g., number of individuals, total biomass, density, covered surface etc…) of the 

generic i-th actor.  

    If we also consider inputs (e.g. species reintroductions) and outputs (e.g. hunting) from-to outside, we must 

write 

( , ) ( ) ( )
dS

S t I t O t
dt

  
  

        (2) 

with initial values 

0 1 2 nS =<S (0), S (0)...S (0)>


        (3) 

and co-domain limits  
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    The Lotka-Volterra equations (Lotka, 1925; Volterra, 1926), otherwise known as the predator-prey 

equations, are a combination of two first-order, non-linear, differential equations frequently used to describe 

the dynamics of biological systems with two interacting species, one as a prey and the other as a predator.  

    The Lotka-Volterra model makes five assumptions about the environment and the dynamics of the two 

interacting species: 1) the prey population finds food at any times; 2) the food supply for the predator depends 

on the size of the prey population; 3) the rate of change of each population is proportional to its size; 4) while 

interacting, the environment does not change; 5) predators have unbounded appetency. As differential 

equations are used, the solution is deterministic and continuous so that the generations of both the predator and 

prey persistently overlap.  

    The nonlinear Lotka-Volterra model with logistic grow of the prey S1 is a particular case of eq. (1) and it 

reads as follows 

1 1
1 1 2

2
1 2 2

(1 )
dS S

S S S
dt
dS

S S S
dt

 


 

   

  


        (5) 

with initial values 

0 1 2S =<S (0), S (0)>


         (6) 

and co-domain limits  

1min 1 1max

2min 2 2max
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S ( ) S

S t
t
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        (7) 

In order to get the global control of such model, ENC can act upon the previous Lotka-Volterra model as 

follows 

1 1
1 1 2

2
1 2 2
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(1 )

S =<S (0), S (0)>

dS S
S S S

dt

dS
S S S

dt

 


 


  




 





 


  
  

       (8) 

with steady values at 

1 2 0
dS dS

dt dt
           (9) 

where the tilde symbol means that the ENC is active over such actors by controlling equation parameters and 

initial values. 

    The control equations in (8) are able to globally drive any ecological and biological network, and the 

nonlinear Lotka-Volterra as a particular case, to the desired final state with an uncertainty degree that can be 

calculated as proposed in Ferrarini (2013c). 
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where the underscores represent 1%, 5% or 10% uncertainties about the optimized parameters. Thus for 

example: 

0.99*   1.01*

0.95*   1.05*

0.90*   1.10

 

 

* 

or

or

  

  

  

 

 











 

  

  

  

        (11) 

If we stochastically vary n times (e.g. 10,000 times) the parameters that have been optimized via ENC, we can 

compute how many times such uncertainty makes the optimization procedure useless. Hence, uncertainty 

about network control can be computed as in Ferrarini (2013c) 

% 100*
k

U
n

           (12) 

where k is the number of stochastic simulations acting upon the optimized parameters that make the 

optimization procedure useless (i.e. the goal of the optimization procedure is not reached).   

    In order to apply the ENC framework, the software Control-Lab (Ferrarini, 2013e) has been developed using 

Visual Basic (Balena, 2001; Pattinson, 1998). 

 

3 An Applicative Example  

Let’s consider the Lotka-Volterra system of eq. (5) with the following parameters and constants: 

          (13)  

    Fig. 1 shows its dynamical behaviour. Figure 2 depicts its phase plot. 
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    Fig. 1 Time plot of the above-depicted nonlinear Lotka-Volterra dynamical system. 

 

 

 

 

   Fig. 2 Phase plot of the above-depicted nonlinear Lotka-Volterra dynamical system. 
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    The previous nonlinear system goes at the steady state with S1= 80.00 and S2= 67.20. 

    Let’s suppose we want that both the prey and the predator go to equilibrium with values close to 100. Fig. 3 

shows the optimized solution (S1= 99.45 and S2= 99.91) detected via ENC by acting upon alpha, beta, gamma 

and delta. The steady state happens at t= 42.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The ruled Lotka-Volterra system with equilibrium values S1= 99.45 and S2= 99.91. The optimized parameters detected via 
Evolutionary Network Control are indicated above the two curves. The solution has been found through Control-Lab (Ferrarini, 
2013e). 

 

 

    After 10,000 simulations (1% uncertainty) on the optimized parameters (alpha, beta, gamma and delta), we 

achieve the results of Table 1. It is evident that the solution depicted in Fig. 3 is robust with regard to a 1% 

sensitivity analysis, as mean and median values of the 10,000 simulations are very close to the desired solution 

S1= S2= 100. 

 

Table 1  Sensitivity analysis (1% uncertainty) on the optimized parameters of Fig. 3. 

 Statistics  S1 S2 

min 96.73 97.98 

max 102.38 101.72 

mean 99.52 99.92 

median 99.57 99.92 

std. dev. 1.02 0.74 
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    Now let’s suppose we want that both the prey and the predator go to equilibrium with values close to 50. Fig. 

4 shows the optimized solution (S1= 50.96 and S2= 50.00) found via ENC by acting upon alpha, beta, gamma 

and delta. The steady state happens at t= 74.48. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Ruled Lotka-Volterra system with equilibrium values S1= 50.96 and S2= 50.00. The optimized parameters detected via 
Evolutionary Network Control are indicated above the two curves. The solution has been found through the software Control-Lab 
(Ferrarini, 2013e). 

 

 

    After 10,000 simulations (5% uncertainty) on the optimized parameters (alpha, beta, gamma and delta), we 

achieve the results of Table 2. It is clear that the solution depicted in Fig. 4 is robust with regard to a 5% 

sensitivity analysis, as mean and median values of the 10,000 simulations are very close to the desired solution 

S1= S2= 50. 

 

 

Table 2  Sensitivity analysis (5% uncertainty) on the optimized parameters of Fig. 4. 

Statistics   S1 S2 

min 44.55 45.50 

max 58.45 55.12 

mean 50.94 49.95 

median 50.85 49.91 

std. dev. 2.52 1.95 
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    Last, let’s suppose we require that the prey and the predator go to equilibrium with S1+S2= 90. Fig. 5 shows 

the optimized solution (S1= 54.92 and S2= 35.23) detected via ENC by acting upon alpha, beta, gamma and 

delta. The steady state happens at t= 95.00. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Ruled Lotka-Volterra system with equilibrium values S1= 54.92 and S2= 35.23 and sum equal to 90.15. The optimized 
parameters detected via Evolutionary Network Control are indicated above the two curves. The solution has been found through 
the software Control-Lab (Ferrarini, 2013e). 

 

    After 10,000 simulations (10% uncertainty) on the optimized parameters (alpha, beta, gamma and delta), we 

achieve the results of Table 3. The solution depicted in Fig. 5 is robust with regard to a 10% sensitivity 

analysis, as mean and median values of the 10,000 simulations are approximately equal to the desired solution 

S1+S2= 90. 

 

Table 3  Sensitivity analysis (10% uncertainty) on the optimized parameters of Fig. 5. 

Statistics  S1 S2 

min 42.12 29.52 

max 71.29 42.14 

mean 55.22 35.27 

median 54.91 35.13 

std. dev. 5.66 2.65 

 

    Any other kind of network control is feasible using ENC, including the control of Lotka-Volterra models 

with n>2 actors. ENC can also be employed to impose early (or late) stability to Lotka-Volterra models in 

particular, but also to any arbitrary ecological and biological networks more in general (Ferrarini, 2015). 
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4 Conclusions 

The control of ecological and biological networks has unlimited applications: a) neutralize damages to 

ecological and biological networks, b) safeguard rare and endangered species, c) manage ecological systems at 

the least possible cost, d) counteract the impacts of climate change.  

    While in previous papers I have showed how to globally and locally rule linear ecological and biological 

networks, here I have showed that Evolutionary Network Control is on top of the control of nonlinear 

networks as well. 

 

 

References 

Balena F. 2001. Programming Microsoft Visual Basic 6.0. Microsoft Press, Redmond, WA, USA 

Ferrarini A. 2011a. Some thoughts on the controllability of network systems. Network Biology, 1 (3-4): 186-

188  

Ferrarini A. 2011b. Some steps forward in semi-quantitative network modelling. Network Biology, 1(1): 72-78 

Ferrarini A. 2013a. Exogenous control of biological and ecological systems through evolutionary modelling.        

Proceedings of the International Academy of Ecology and Environmental Sciences, 3(3): 257-265 

Ferrarini A. 2013b. Controlling ecological and biological networks via evolutionary modelling. Network     

Biology, 3(3): 97-105 

Ferrarini A. 2013c. Computing the uncertainty associated with the control of ecological and biological systems.   

      Computational Ecology and Software, 3(3): 74-80 

Ferrarini A. 2013d. Networks control: introducing the degree  of success and feasibility. Network Biology,     

3(4): 115-120 

Ferrarini A. 2013e. Control-Lab 5.0: a software for ruling Quantitative Ecological Networks using Ecological     

Network Control Manual, 137 pages 

Ferrarini A. 2014. Local and global control of ecological and biological networks. Network Biology, 4(1): 21- 

     30 

Ferrarini A. 2015. Imposing early stability to ecological and biological networks through Evolutionary 

Network Control. Proceedings of the International Academy of Ecology and Environmental Sciences, 5(1) 

(in  press) 

Goldberg DE. 1989. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley,     

Reading, USA 

Holland JH. 1975. Adaptation in natural and artificial systems: an introductory analysis with applications to        

biology, control and artificial intelligence. University of Michigan Press, Ann Arbor, USA 

Lotka AJ. 1925. Elements of Physical Biology. Williams & Wilkins Co., Baltimore, USA 

Pattison T. 1998. Programming Distributed Applications with COM and Microsoft Visual Basic 6.0.        

Microsoft Press, Redmond, WA, USA 

Volterra V. 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memoriale     

Accademia Nazionale dei Lincei di Roma, 2: 31-113 

42




