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Abstract 

In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The 

territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are 

represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action 

law for predator prey models and the quasi chemical approach is applied for the interactions between the 

predator and its prey to develop the modeled equations for different possible mechanisms of the predator prey 

interactions. 
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1 Introduction 

The Lotka Voltera equations are a pair of first order non linear differential equations, and these are also known as 

the predator prey equations .i.e. when growth rate of one population is decreased and the other increased then 

these populations are said to be in a predator-prey situation. The Lotka–Volterra equations are frequently used to 

describe the dynamics of biological system in which two species interact, one as a predator and the other as a 

prey (Murray, 2003). 

The Lotka Volterra predator prey models were originally introduced by Alfred J. Lotka (Lotka, 1920) in 

the theory of autocatalytic chemical reactions. In 1920, the model to "organic systems", he made an extension 

while using plant species and an herbivorous animal species. In 1925, he utilized these equations for the 

possible analysis of predator-prey interactions and arrived at the equations which are well-known now a day. 

In 1926, Vito Volterra (Volterra, 1926), made a statistical analysis of fish catches in the Adriatic independently 

investigated the equations. V. Voltera applied these equations to predator prey interactions; consist of a pair of 

first order autonomous ordinary differential equations.  
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Since that time the Lotka Voltera model has been applied to problems in chemical kinetics, population 

biology, epidemiology and neural networks. These equations also model the dynamic behavior of an arbitrary 

number of competitors. The Lotka–Volterra system of equations is an example of a Kolmogorov model, which 

is a more general framework that can model the dynamics of ecological systems with predator-prey 

interactions, competition, disease, and mutualism. 

Lotka Volterra is the most famous predator prey model. According to Volterra if ( )x t  is the prey 

population and ( )y t that of the predator at time t  then Volterra’s model is (Murray, 2003), 

  ( );
dx

x a by
dt

 
                          

 (1) 

( ).
dy

y cx d
dt

            

(2) 

where a, b, c and d are positive constants. 

The reaction diffusion system is a mathematical model which clarifies how the concentrations of one or 

more substances which are distributed in the space, change under the influence of two processes. In the local 

chemical reactions, the substances are transformed into each other and the diffusion occur which causes the 

substances to spread out over a surface in space. Such systems are naturally applied in chemistry, however; the 

system can also explain dynamical processes of non chemical nature. Mathematically, the reaction diffusion 

system takes the form of the semi-linear parabolic partial differential equation. 

 

2 Foxes and Rabbits Interaction: A Non-Linear System  

In the existence of hundreds of different animals on the island, the modeling of the interaction among these 

animals is not an easy task. However, the interaction between two species is possible taking one as a predator 

and the other as a prey. The same single population growth model can be used for predators (foxes), if prey 

(rabbits) is considered as an unlimited food supply to foxes. But Foxes are territorial animals, and in general 

each fox claims its own territory by marking their territories with signals that other foxes will recognize e. g., 

by leaving their droppings in prominent positions but they also pair up in winter season. So it will be difficult 

for the foxes to cover the whole island without defining their own territories. 

In the ecosystem there are various species and every one play a significant role in maintaining populations 

near the carrying capacity and in keeping the system in balance. In the ecosystems Predator and prey assist them 

through particular adaptations to compete for food resources.  Predator and prey populations are directly related 

and they cannot survive without each other.  Here this relationship is illustrated by using foxes and rabbits. 

Between the foxes and rabbits populations here is a complicated and natural predator-prey relationship, 

since rabbits thrive in the absence of foxes and foxes thrive in the presence of rabbits. Foxes like to occupy a 

combination of forest and open fields. Foxes usually define their territory zones and use the transition zone or 

"edge" between these habitats as hunting areas. Foxes do not interfere in the defined areas of each other but they 

pair up in the winter season. 

In case when more rabbits are there, the more foxes will prey on them, so that the number of foxes will 

increase, when more foxes will predate a lot such that the number of rabbits will start to decrease, swiftly it 

follows by falling fox numbers as there are a small amount of rabbits to sustain them, therefore it is observed that 

the populations of rabbits and foxes are locked together in an interactive population 'dance.' This system is 

non-linear in its behavior. In mathematics non-linear simultaneous equations are used to represent these 

interactions for which there exist an infinite number of solutions. 

The cell-jump models may be considered as the proper diffusion models by themselves, the territorial 
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animal like fox is given a simple cell as its territory. The sense in which the discrete equations for cells 

converge to the partial differential equations of diffusion is that the cell models give the semi-discrete 

approximation of the partial differential equations for diffusion which result in a system of ordinary differential 

equations in cells. There are jumps of concentrations on the boundary of cells. The system of semi discrete 

models for cells with “no-flux” boundary conditions has all the nice properties of the chemical kinetic 

equations for closed systems. Under the proper relations between coefficients, like complex balance or detailed 

balance, this system demonstrated globally stable dynamics. Here we specially refer this modeling by Gorban 

et al. (Gorban et al., 2011) who developed the idea and modeled diffusion equations for different mechanisms 

and proved the dissipation inequalities.  

Let us suppose that our space is divided on two territories, a system represented as a chain of territories 

each with homogeneous composition and elementary acts of transfers on the boundary (for us there are only 

two territories). On each territory we have some concentrations (number of foxes and rabbits) for these 

processes. Let IF (fox/ foxes in first territory) and IR (rabbit/ rabbits in first territory) is the vector 

concentration  in the first territory I and IIF (fox/ foxes in second territory)  and IIR (rabbit/ rabbits in 
second territory) is the vector of concentration in the second territory II. Then in our study case the following 

mechanisms are possible between the predator (foxes) and its prey (rabbits). 

 

3 Mechanism of Circulation 

3.1 Foxes case  

As the foxes are the territorial animals and they define their own territories to prey for, but they also pair up in 

winter seasons, so the following mechanism may or may not be possible in real, in study case of foxes, but  

theoretically this type of mutually inverted and mutually inverse processes can be written as, 

,

.

I II

II I

F F

F F




                                                               (3) 

Let us suppose that Ic and IIc be the concentrations of foxes in the first and the second cell respectively, I
F  

and II
F  be the stoichiometric vectors in the respective cells, I

rw  and II
rw  be the reactions rates in the 

respective cells and FJ  be the total flux. 

The mass action law is applicable here for the above mechanisms and we will calculate the stoichiometric 

vectors, reaction rates, vector of total flux and their diffusion equations as,  

For mechanism, ,I IIF F  

1 1I
F   , .I I

rw kc  

For second mechanism, ,II IF F  

2 1I
F  , .II II

rw kc                                                                      
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Total flux will be calculated as, ,II I
F r rJ w w   

.
II I

II I
F

kl c c
J k c c D c

l

                                           (4)                            

In this approximation, kl D , where l is the cell size. 

Then its modeled equation will be,   .F

c
div J D c

t


    


                  (5) 

3.2 Rabbit’s case  

As the rabbits do not have moving restrictions like the foxes, so this mechanism for the case of rabbits will be 

written as,   

 
,

.

I II

II I

R R

R R




                                                                                               

(6) 

Now let Id and IId be the concentrations of rabbits in the first and the second cell respectively, I
R  and II

R  

be the stoichiometric vectors in the respective cells, I
rw  and II

rw  are the reactions rates in the respective cells 

and RJ  be the total flux. Then, 

For mechanism: ,I IIR R  

1 1I
R   , .I I

rw kd  

For mechanism: ,II IR R  

2 1I
R  , .II II

rw kd  

The flux in this case will be,  

.
II I

R

kl d d
J D d

l

                  

(7) 
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And modeled equation for this case will be, 

  R

d
div J D d

t


    


                                                (8) 

4 Mechanism of Sharing Place  

4.1 Foxes case  

The mechanism of sharing place with interaction of n different foxes  i.e. when a fox I
iF is in territory one and 

another fox II
jF is in territory two and then fox I

iF moves from territory one to territory two and vise versa. As 

the foxes are the territorial animals and they define their own territories to prey but they also pair up in winter 

seasons, so the above stated mechanism will have both the possibilities, that it may or may not be happens in 

real but in a multi component system it is given by stoichiometric equations of the form:   

,

.

I II I II
i j j i

II I I II
i j i j

F F F F

F F F F

  

  
                                                        (9) 

For mechanism: ,I II I II
i j j iF F F F    

1
i

I
F   , 1

j

I
F  , .I I II

r i jw kc c  

For mechanism: .II I I II
i j i jF F F F       

1
i

I
F  , 1

j

I
F   ,  .II II I

r i jw kc c    

Total flux will be calculated as,  

,II I I II
F i j i jJ k c c c c        ,I I I I I I

F i i j i j j j i i jJ k c l c c c c l c kl c c c c                       

.I I
F j i i jJ D c c c c                   

(10) 

The modeled equation in this case will be, 

 .I I
j i i j

c
D c c c c

t

       
                                                                                

(11) 
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4.2 Rabbit’s case  

In the case study of rabbits the above stated mechanism may or may not be possible because rabbit’s movement 

is naturally free without any restrictions. In this case the possible mechanisms will be as under, 

 
,

.

I II I II
i j j i

II I I II
i j i j

R R R R

R R R R

  

  
                                                                                          

(12) 

For the mechanism: ,I II I II
i j j iR R R R    

1
i

I
R   ,  1

j

I
R  , .I I II

r i jw kd d  

For the mechanism: ,II I I II
i j i jR R R R    

 1
i

I
R  , 1

j

I
R   ,  .II II I

r i jw kd d  

.I I
R j i i jJ D d d d d                                                        (13) 

Its modeled equation will be, 

 .I I
j i i j

d
D d d d d

t

       
                                                                                

(14) 

4.3 Mixed situation  

Now in the case of mix situations i.e. by taking foxes and rabbits case together.  When a fox is in territory one 

and a rabbit is in territory two, as foxes are territorial naturally but rabbits movement is free, so if a rabbit that 

moves from territory two to territory one (or from territory one to territory two), the fox in that area will prey that 

rabbit (territory change is possible only between (among) the foxes but with respect to any other animal (here 

rabbits) change of territory for foxes will not be possible). In this case the possible mechanisms will be, 

,

.

I II I I I
i j i j i

II I II II II
i j i j i

F R F R F

F R F R F

   

   
                                               (15) 

In mechanism: ,I II I I I
i j i j iF R F R F     
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If we take the first possibility. i.e.  ,I II I I
i j i jF R F R    

Then 0I
F  , 

I I II
rw kc d , 1I

R  , .II II I
rw kc d . 

Equation of flux will be, 

    ,II I I II I I I IJ k c d c d k c l c d c d l d                                    (16) 

Modeled equation for foxes in this case will be, .I Ic
D d c c d

t

       
         (17) 

Now if we take the second possibility i.e. ,I I I
i j iF R F   

Then, 0I
F  , 

I I I
rw kc d , 1I

R   , .II II II
rw kc d  

Equation of flux will be,    ,II II I I I I I IJ k c d c d k c l c d l d c d                   

.I I I IJ kl c d d c l c d D c d d c l c d                                     (18) 

Modeled equation for foxes in this case will be,  

.I Ic
D c d d c l c d

t

          
                                               (19) 

5 Mechanism of Attraction  

5.1 Foxes case  

Foxes are solitary and necessitate quite huge hunting areas. A fox constantly patrols its territory looking for 

food, using its urine to mark places it has completed searching. Foxes are territorial and fight other foxes that 

they find on their territory but they also pair up  in winter seasons so the mechanism of attraction in the case 

study of foxes will take place only in winter seasons, so in a multi component system it is given by 

stoichiometric equations of the form: 

Attraction:   

2 3 ,

2 3 .

I II I

I II II

F F F

F F F

 

 
                   

(20) 
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For mechanism:            2 3 ,I II IF F F   

1I
F  ,  2

.I I II
rw k c c  

For mechanism:     2 3 ,I II IIF F F   

1I
F   ,  2

.II I II
rw kc c  

Flux from cell one to cell two will be, 

      ,
II I

I II II I I II I I
F

c c
J kc c c c klc c klc c l c c

l


                                

To the first order we have that,  

 2 2 31 1
3 .

3 3FJ klc c kl c c kl c                                                    (21) 

And its modeled equation will be,     

 2 31
.

3

c c
kldiv c c kl c

t t

 
      

 
                                               (22) 

 

5.2 Rabbit’s case  

In the study case of rabbits the mechanisms of attraction may or may not be possible in real because rabbits move 

freely in nature without any restrictions. If two rabbits are there in territory one and one rabbit is in territory two 

and vise versa, if they all move in the same territory then these are mechanisms of attraction, so in a multi 

component system it is given by stoichiometric equations of the form: 

Attraction:                                                                                                                    

2 3 ,

2 3 .

I II I

I II II

R R R

R R R

 

 
             

(23) 

For mechanism:  2 3 ,I II IR R R   

1I
R  ,  2

.I I II
rw k d d  

For mechanism:   2 3 ,I II IIR R R   

1I
R   ,  2

.II I II
rw kd d  

Equation of flux to the first order will be, 

 2 2 31 1
3 .

3 3RJ kld d kl d d kl d                                               (24) 

And modeled equation in this case will be,  

78



Network Biology, 2015, 5(2): 71-81 

  IAEES                                                                                     www.iaees.org  

31
.

3

d
kl d

t


  


             

(25) 

6 Mechanism of Repulsion 

6.1 Foxes case  

As it is stated in the early lines that foxes are solitary and necessitate quite huge hunting areas. Foxes are 

territorial and fight other foxes that they find on their territory but they also pair up in the winter seasons, so 

mechanism of attraction in the study case of foxes will take place only in winter seasons while in other months 

there will be only repulsion so in a multi component system it is given by stoichiometric equations of the form: 

Repulsion:                                 

 
3 2 ,

3 2 .

I I II

II I II

F F F

F F F

 

 
                                                                                                

(26) 

For mechanism: 3 2 ,I I IIF F F   

1I
F   ,  3

.I I
rw k c  

For mechanism: 3 2 ,II I IIF F F        

1I
F  ,  3

.II II
rw k c  

Equation of flux for this mechanism will be calculated as,  

   3 3
,II I

FJ k c c                

      2 2
,II I I I I I

FJ k c c c l c c c l c c                  

      2 223 2 ,II I I I
FJ k c c c l c l c lc c          

      2
3 2 ,II I I I

FJ k c c c l c l c c         

    2
3 2 ,

II I
I I

F

c c
J kl c l c l c c

l

  
       

  
         

      2
3 2 ,I I

FJ kl c c l c l c c         
                                                                  

So to the first order we will have,  

 2 2 3.3 . .I
FJ kl c c kl c c kl c                                               (27) 

And its modeled equation will be,  
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 2 3.
c

kldiv c c kl c
t


     


             

(28)              

 

6.2 Rabbit’s case  

In this study case of rabbits the above stated mechanism of repulsion may or may not be possible because rabbits 

move freely in nature without any restrictions. If three rabbits are there in the same territory and one of them 

changes his territory then this will be a case of repulsion so in a multi component system it is given by 

stoichiometric equations of the form: 

Repulsion:                                            

 
3 2 ,

3 2 .

I I II

II I II

R R R

R R R

 

 
                                                                                                 

(29) 

 For mechanism: 3 2 ,I I IIR R R   

1I
R   ,  3

.I I
rw k d  

For mechanism: 3 2 ,II I IIR R R        

1I
R  ,  3

.II II
rw k d  

Vector of total flux will be, 

  2 2 3.3 . .I
RJ kl d d kl d d kl d                                           (30) 

And its modeled equation will be, 

 2 3.
d

kldiv d d kl d
t


     


                                                (31) 

 

7 The Observations   

The sense in which the discrete equations for cells converge to the partial differential equations is that the cell 

models give the semi-discrete approximation of the partial differential equations. They result in a system of 

ordinary differential equations in cells. Such approximation appears often in finite element methods and cells 

are discontinuous finite elements. There are jumps of concentrations on the boundary of cells. The Taylor 

expansion of the right hand sides of the discrete system of ordinary differential equations for cells produces the 

second order in the cell size approximation to the continuous diffusion equation (the standard result for the 

central differences). 

Significant difference from the classical finite elements is in construction of right hand sides of the 

ordinary differential equations for concentrations in cells: there are flows in both directions: from cell 1 to cell 

II and from cell II to cell I. These flows have a simple mass action law construction and the resulting diffusion 

flow is the difference between them. The kinetic constants should be scaled with the cell size to keep kl D  

( k  is the kinetic constant, l  is the cell size and D  is the diffusion coefficient for the particular 
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mechanism). 

This is the approximation of the right hand sides. The approximation of solutions is a more difficult 

problem and depends upon the properties of solutions of PDEs. It seems a good hypothesis that for obtained 

diffusion systems with convex Lyabunov functional and “no-flux” boundary conditions in bounded areas with 

smooth boundaries the cell model gives the uniform approximation to the solution of the correspondent PDE. 

The system of semi-discrete models for cells with “no-flux” boundary conditions has all the nice 

properties of the chemical kinetic equations for closed systems. Under the proper relations between 

coefficients, like complex balance or detailed balance, this system demonstrated globally stable dynamics. This 

global stability property can help with the study of the related PDE.  

Finally, the cell-jump models may be considered as the proper diffusion models by themselves, for the 

finite physically reasonable cell size, without limit. This size may be quite large for the coarse-grained models 

(it depends on the medium microstructure and on the smoothness of the concentration fields). 

 

8 Summary  

Our goals for the present study are:  

 

 To build up a brief study of complex biological systems by taking a study case of foxes and rabbits. 

 To tackle key research questions about our study case by proposing new techniques and algorithms that 

are inspired by those complex biological systems.  

 Further in our study case we want to study and aim to extend these ideas to all other possible 

mechanisms complete in all aspects between foxes and rabbits. We also aim to check the stability of 

these interactions along with finding the solutions of the above determined modeled equations. 
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