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Abstract 

Bacterial populations transition between growing and non-growing phases, based on nutrient availability and 

stresses conditions. The hallmark of a growing state is anabolism, including DNA replication and cell division. 

In contrast, bacteria in a growth-arrested state acquire a resistant physiology and diminished metabolism. 

However, there is little knowledge on how this transition occurs at the molecular level. Here, we provide new 

evidence that a multi-element genetic regulatory circuit might work to maintain genetic control among 

growth-phase transitions in Escherichia coli. This work contributes to the discovering of design principles 

behind the performance of biological functions, which could be of relevance on the new disciplines of 

biological engineering and synthetic biology. 
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1 Introduction 

It is well known that bacteria multiply rapidly when nutrients are plentiful and arrest their growth when carbon 

sources are depleted or stresses conditions occur. When bacteria are grown in batch culture, the population 

follows a well-defined curve with previously described growth phases (Monod, 1949). These growth phases 

have been modeled mathematically (Zwietering et al., 1990). One can assume that bacteria arrest their growth 

when nutrients are limiting and resume their growth when conditions are favorable again (Kolter et al., 1993). 

This simple supposition implies that the cellular machinery is designed to function in a continuous mode; 

designed to arrest and re-initiate function depending upon nutrient availability and/or stress conditions. 

Nevertheless, biochemical and genetics studies provide us with clues about the molecular processes that occur 

when bacteria transition between active and arrested growth. However, the molecular details of this 

mechanism are more complex than this simple conjecture implies. In fact, bacteria need to adapt their cellular 

machinery to changing conditions; this adaptation includes the altering of transcriptional expression profile. 
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The phenotypic result of these molecular changes is transition of a bacterial population between growth 

phases.  

Methods in molecular biology have enabled us to identify hundreds of genes and, in some cases, the 

regulators that control their expression. The most precise experiments that link the activity of regulators to 

their target genes are those that are investigated specifically and individually. These types of studies produce 

detailed results on the regulatory interactions between one regulator and one target gene. This information is 

gathered and curated on dedicated databases, such as RegulonDB (Salgado et al., 2013). The activation and 

repression of gene transcription is a task executed by the regulatory machinery, which includes 

nucleoid-associated proteins, sigma factors, and transcription factors that operate in an intricate regulatory 

network (Martinez-Antonio, 2011).    

Previously, we described a multi-element genetic regulatory circuit that may be implicated in controlling 

the transition between growths phases in Escherichia coli (Martinez-Antonio et al., 2012). In that study, we 

described the components of the genetic regulatory circuit and offered a rationale for this hypothesis. 

Additionally, we developed a mathematical model, consisting of differential equations based on power-law 

formalism, to determine how this circuit might be operating. Here, we searched transcription and proteome 

data that could lend further support to this hypothesis. We show that mRNAs and proteins corresponding to the 

regulators on the network are more abundantly expressed at times that corresponds to their peak of activity 

within the growth phases circuit. 

 

2 Materials and Methods 

2.1 Regulatory interaction data 

The pairwise transcriptional regulatory interactions between genes and regulators were obtained from 

RegulonDB v8.0 (Salgado et al., 2013). To reduce the network, nodes corresponding to non-regulatory genes 

were eliminated; however, the primary network of regulatory genes was kept intact. From this last subset of 

nodes and interactions, the regulators forming the circuit were extracted, as shown in Fig. 1. 

2.2 Transcriptome data 

Data on the mRNA levels of genes on the circuit were searched at the NCBI GEO database (Barrett et al., 

2011). Care was taken to ensure that included information was not generated by experiments using gene 

deletion, gene over-expression, environmental stressors, or any other condition that could mask or influence 

the presence of transcripts beyond that of the normal transition of bacteria between growth phases. Useful data 

corresponding to the genes in the circuit were extracted manually.  

2.3 Proteome data 

Due the scarcity of this type of data on dedicated databases, proteome data were mined from the original 

literature on PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). The key words “proteome data” and “E. coli” 

were used for these searches. Using the same inclusion criteria as above for mRNA data, useable data 

corresponding to the proteins in the circuit were extracted manually from primary and supplementary figures 

within the articles.  

 

3 Results  

3.1 The genetic regulatory circuit controlling growth phase in E. coli 

When all experimentally validated, pairwise, regulatory interactions are combined, a number of multi-element 

regulatory circuits begin to emerge (Martinez-Antonio et al., 2008). One of these circuits (Fig. 1) involves 

global regulators at the core of the entire genetic regulatory network in E. coli. One multi-element genetic 
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regulatory circuit, comprised a set of genes and regulators that activate and repress expression in a way that 

form a closed path, as shown in Fig. 1. A description of the components in the circuit is given in Table 1. 

Overall, this circuit is a negative feedback loop, designated by a negative sign; the products of the signs of its 

edges. This result means that the circuit displays homeostatic control and a periodic behavior.  

Embedded within this genetic regulatory circuit are two additional regulatory circuits, one negative 

(HNS-GadX) and one positive (GadX-RpoS). Both embedded circuits have to GadX as the common element. 

GadX has been proposed as the master switch for the activity of this circuit because inactive GadX protein 

maintains activity of the HNS-GadX circuit, while active GadX shifts the activity of the circuit to RpoS and 

IHF (Martinez-Antonio et al., 2012). Dynamic studies on gene regulatory circuits reveal that circuits like the 

one described here could have multiple functions and complex behaviors if positive and negative circuits are 

embedded within them (Thomas et al., 1995). In other words, this kind of circuit can produce different steady 

states of gene expression patterns under different physiological conditions (Kaufman et al., 2007). In the case 

of this circuit, the biological implication of such a regulator switch is that the activity of these regulatory 

components and their functions may be linked to the various growth phases of this bacterium. In subsequent 

sections, we provide some evidence that this circuit is regulating gene expression in a growth phase-dependent 

manner in E. coli.   

 

 

 

 

Fig. 1 The regulatory circuit controlling growth-phases in E. coli. This cartoon represents the growth phases and the regulators of 
the circuit, illustrated which is more active in each case: Green = represent activation; red = repression; blue = dual regulation 
(activation and repression). The grey line represents the bacterial growth curve. 
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Table 1 Validated regulatory interactions between elements of the circuit. 

Gene Promoter Transcription 

Factor 

Mode of 

regulation 

Evidence Reference 

fis dusBp CRP-cAMP Activation Microarrays (Zheng et al., 2004) 

fis dusBp CRP-cAMP Dual DNase I footprinting (Nasser et al., 2001) 

fis dusBp FIS Repression DNase I footprinting (Ball et al., 1992) (Hengenet 

al., 1997) 

fis dusBp IHF Activation Site mutation, reporter 

assays 

(Nasser et al., 2002)(Pratt et 

al., 1997) 

hns hnsp FIS Activation DNase I footprinting (Falconi et al., 

1996)(Giangrossi et al., 2001)

hns hnsp Gadx Activation Microarrays, TF 

overexpression 

(Hommais et al., 2004) 

hns hnsp HNS Repression DNase I footprinting (Falconi et al., 1996)(Falconi 

et al., 1993)(Giangrossi et al., 

2001)(Ueguchi et al., 1993) 

gadX gadXp GadX Activation Microarrays, RT-PCR (Ma et al., 2002)(Hommais, 

2004)(Tramonti et al., 2008) 

gadX gadXp HNS Repression DNase I footprinting (Giangrossi et al., 

2005)(Hommais et al., 2001) 

rpoS rpoSp GadX Activator Microarrays (Hommais, 2004) 

ihfA ihfAp4 IHF Repression DNase I footprinting (Aviv 1994)(Bykowski 1998)

ihfB ihfBp IHF Repression DNase I footprinting (Aviv et al., 1994)(Bykowski 

and Sirko, 1998) 

dps dpsp FIS Repression DNase I footprinting, 

Electrophoretic mobility 

shift, reporter assays 

(Grainger 2008)(Yamamoto 

2011) 

 

dps dpsp FIS Repression DNase I footprinting, 

Electrophoretic mobility 

shift, reporter assays 

(Grainger et al., 

2008)(Yamamoto et al., 2011)

 

dps dpsp FIS Activation Computational evidence (Altuviaet al., 1994) 

Genes transcribed by the sigma RpoS, in addition to RpoD 
 

Gene Promoter Sigma Mode Evidence Reference 

gadX gadXp RpoS Transcription Electrophoretic mobility 

shift assay and DNase I 

footprinting 

(Tramonti et al., 2002) 

ihfA ihfAp4 RpoS Transcription Transcription initiation 

mapping 

(Aviv et al., 1994)(Mechulam 

et al., 1987) 

ihfB ihfBp RpoS Transcription Transcription initiation 

mapping 

(Tramonti et al., 

2002)(Wȩgleńska et al., 

1996) 
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3.2 The regulatory factors of the circuit 

Three of regulators in the circuit on Fig. 1 are nucleoid-associated proteins or NAPs (FIS, HNS and IHF) 

(Dillon, 2010). These proteins bend and bridge the DNA in different conformations. The Ishihama laboratory 

studied the abundance of NAPs in E. coli, primarily by western blot analysis. They reported that the NAPs 

present in this circuit were maximally expressed in a growth phases-dependent manner. First, FIS expression 

peaks when cells start to divide before the exponential phase. Next, HNS expression is maximal during 

exponential growth. Finally, IHF is expressed mostly in stationary phase (Azam et al., 1999). The circuit also 

contains the acid-stress resistance regulator, GadX. GadX belongs to a group of transcriptional regulators that 

respond to low pH, mainly due to intracellular acidification by the accumulation of organic acids resulting 

from fermentative metabolism (Tramontiet al., 2002; Ma et al., 2002). The circuit is completed with a general 

stress response sigma factor, RpoS, which replaces the activity of the housekeeping sigma factor RpoD during 

stress conditions. Transcription of the anti-sigma factor RSD, inactivates RpoD. RpoS is the master sigma 

factor that directs RNAP to the transcription of genes, including the promoters of IHF subunits, whose 

products respond to multiple stress types (Lange and Hengge-Aronis, 1991).  

How might this circuit operates? 

The main properties of regulators in the circuit and the functional classes of their regulons are shown in Table 

2 and Fig. 2, with brief descriptions of each elements of the circuit (an additional, detailed description was 

presented in Martinez-Antonio et al. (2012)). FIS should be a very important player at the beginning of 

bacterial growth because it activates the transcription of important cellular elements dealing with the process 

of cell division, such as tRNAs, rRNAs, and stable RNAs, as well as ribosomal RNAs and genes for 

translation (Finkel and Johnson, 1992). Some of these same genes are also regulated by HNS (Free and 

Dorman, 1995), which is the regulator that follows FIS in the circuit. Interestingly, hns is activated by FIS. 

GadX regulates primarily the genes for pH homeostasis; most of these genes are co-regulated by HNS. gadX 

activates hns and is repressed by hns. This mutual regulation with opposed signs constitute a negative circuit of 

regulation. During ideal growth conditions, the inactive form of GadX should stop the main activity of the 

whole circuit at this point in the pathway.  

GadX can be allosterically activated by organic acids; such as acetate and formate (Shin et al., 2001). 

Usually, the presence of such acids is indicative of acidic stress conditions, such as those produced by cells 

entering into fermentative metabolism. Organic acids activate GadX, which increases the transcription of rpoS. 

Because the gadX gene has a promoter for RpoS, a robust positive circuit forms. RpoS transcribes many genes 

that prepare the cell to acquire a resistant physiology, including those that induce a smaller, rounded 

morphology, such as the regulator BolA (Aldea et al., 1989). RpoS also transcribes the two of the IHF subunits 

(ihfA and ihfB) and IHF activates the transcription of dps, which encodes a small protein in late stationary 

phase that forms crystals with DNA to protect it (Altuvia et al., 1994). IHF regulates many genes, but notable 

for this discussion are those for anaerobic respiration. In addition, IHF activates fis, and with this interaction, 

the circuit is closed. At the DNA origin of replication in the E. coli, there is a DNA-binding site for IHF, which 

suggests that this regulator may be involved in this process. IHF may function by bending the DNA and 

preventing or facilitating the access of the replication machinery to the origin of DNA replication (Goosen and 

Van de Putte, 1995).  

The overall activity of this circuit was modeled (Martinez-Antonio et al., 2012) and revealed that GadX 

might serve as a checkpoint of the circuit by maintaining the negative circuit while inactive and activating the 

positive circuit in response to organic acids. It is proposed that this circuit should contribute to the robust 

population-wide decision to continue or arrest growth. By activating the second part of the circuit, starting 

from GadX and RpoS, the regulatory machinery ensures that bacteria change the pattern of gene expression 
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upon growth arrest. One can expect that an analogous checkpoint should exist to facilitate the transition from 

arrested growth to an active growing state. At this point in the circuit architecture, no such analogous switch 

has been found. Certainly, this transition could not be explained solely by the activation of fis by IHF, however, 

this transition might also depend on the control of CRP over fis. CRP is the most global regulator in E. coli and 

its activity depends allosterically on the presence of cAMP (Harman, 2001). It means that CRP could sense the 

overall energetic status of the cell, including information on the carbon sources availability, and might have the 

capability to activate or repress fis, thus controlling the decision for growth is when conditions are suitable.     

 
 

 

Fig. 2 Genes controlled by each regulator of the genetic circuit. Some of these regulated genes are also regulated by other 
transcription factors of E. coli, but for clarity, only the regulation exerted by regulators of this circuit are included here. 
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Table 2 The regulatory genes of the circuit and the functional classes of the regulated genes. 

Transcription factor  Description Functional classes of target genes (numbers), take from 

RegulonDB 

FIS (Factor for 

Inversion Stimulation) 

A 22 kDa homo-dimeric protein. FIS 

bends the DNA between 50º and 90º. 

tRNAs (53), anaerobic respiration (34), membrane (34), 

translation (29), ribosome (27), aerobic respiration (23), 

rRNA and stable RNAs (22), carbon compounds (20), 

electron donors (20), transcription related (18).  

HNS (Histone-like 

Nucleoid Structuring 

protein) 

A 15.4 kDa protein that forms bridges 

between adjacent DNA duplexes. 

Transcription related (24), carbon compounds (24), 

membrane (23), activators (20), translation (17), ribosomes 

(17), rRNA and stable RNAs (16), uncharacterized proteins 

(14), pH homeostasis (13). 

GadX (Regulator of 

Glutamic Acid 

Decarboxylase) 

Contributes to pH homeostasis by 

consuming intracellular H+ and 

producing gamma-amino butyric acid  

pH homeostasis (8), Porters (5), membrane (5), 

transcription related (4), activators (3), amino acids (2). 

RpoS (Sigma S or 

sigma38) 

A sigma subunit of RNAP for general 

stresses and stationary phase 

transcription 

Diverse stress-responses (60) 

IHF (Integration Host 

Factor) 

A protein composed of α (himA) and 

β (himB) subunits. It bends the DNA 

and compact the chromosome length by 

about 30% 

Anaerobic respiration (42), membrane (41), carbon 

compounds (21), transcription related (19), aerobic 

respiration (16), electron donor (15), activators (14), porters 

(13), oxide-reduction transporters (13)  

 

 

3.3 mRNA levels of the regulatory genes in the circuit support the circuit model 

We searched the mRNA levels of genes on the circuit in the NCBI GEO database (Barrett et al., 2011). Ideally, 

the data used in this analysis should not be obtained from experiments that involve gene deletions, gene 

over-expression, environmental stress, or any other condition that could mask or influence the presence of 

transcripts beyond those that result from the natural transition of bacteria through growth phases. One such 

exceptionally useful study was published by Sangurdekar et al (2006). In this work, the authors measured 

mRNA abundance of a culture of E. coli MG1655 grown in the minimal medium Bonner-Vogel at 0.5 DO and 

compared the results to those obtained from the same strain grown in LB medium at multiple time points that 

covered all the growth phases. From this study, we could recover information about the mRNA abundance for 

five of the six regulatory genes of the regulatory circuit (since IHF is constituted by two genes: ihfA and ihfB). 

Absent information was for one of the subunits of the IHF protein (ihfB). This analysis revealed that the 

quantity of mRNA varies for each gene over the growth phases (Fig. 3). In the case of fis and hns, their 

transcripts are more abundant before mid-exponential phase. In contrast, the transcripts for gadX, ihfA, and 

rpoS are more abundant after mid-exponential phase. For comparison, we decided to look for the mRNA 

quantity of dps because it is expected to be abundant in the late stationary phase. We found that transcripts 

level of dps were most abundant in stationary phase, further supporting the hypothesis that this circuit 

modulates the transition into stationary phase. 

To validate the accuracy of the data used for this analysis, we examined the expression pattern of several 

control genes with known expression changes over the entire growth curve. The repressor LacI is not required 

in these conditions (Semsey et al., 2013), and we observed no major changes in lacI mRNA. Topoisomerase 1 
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biological sense they control population growth. Here, we provide proteomic and transcriptomic data that 

support this hypothesis of growth regulation. The presence and abundance of mRNA and proteins of these 

components peaked when they are more active.  

It is rare to find proteomic and transcriptomic data at several phases of growth for the same culture; 

fortunately we found data that, although generated for other purposes, served nicely for this analysis. With 

these data, we confirmed the notion that the maximal abundance of these elements occurs when these 

regulators should be required, offering a form of temporal support for this hypothesis. The architecture and 

proposal activity of the genetic regulatory circuit could explain how it operates to start and arrest bacterial 

growth.  

Although mRNA was reported in relative units; however, to appreciate their small quantity, studies on the 

total mRNA have determined a median value of less than 10 mRNA copies per gene per cell in a single-cell 

study on E. coli (Taniguchi et al., 2010). This observation may be explained by the fact that mRNA is quickly 

degraded, often within minutes. In contrast, many proteins have half-lives greater than the E. coli cell cycle. In 

the case of proteins, one recent study by (Wiśniewskia and Rakusb, 2014) stated that E. coli (ATCC 25922 

grew at 37ºC, 250 rpm, 15 hrs in LB medium) has 75 fg of proteins in late stationary phase. This number 

corresponds to approximately 1.3×106 proteins/cell. The specific values on late stationary phase for the 

proteins referred to here are in molecules/cell: 2534 for IHFA, 1582 for IHFB; 2980 for CRP; 206 for FIS; 

6059 for HNS; 55 for GadE (there are not data for GadX); 1.7 for RpoS (101 for RpoD); 9 for LacI; 125 for 

TopA and 4339 for Dps. 

Isogenic mutants for all the regulators in the circuit are available in the Keio collection (Baba et al., 2006). 

The mutants for FIS and RpoS are the most sensitive for growth in our hands; a strain with a fis deletion is 

unable to grow in minimal medium without additional supplements, including carbon and nitrogen sources 

(e.g., casamino acids). The RpoS mutant was lost from the collection with three successive freezings to -80ºC 

(personal observation). With new methodologies at hand, now it is possible to determine the importance of 

intracellular macro-components to physiological requirement, such as ribosomes, mRNA, proteins, etc., 

depending on the quality of nutrients (Klumpp et al., 2009). It is possible that regulators of this circuit, 

although not essential for bacterial growth in normal conditions, are evolutionarily important to the fitness of E. 

coli. Our description of this kind of circuit reveals a potential mechanism to explain observed phenotypes and 

could guide the engineering of certain biological processes in synthetic biology. 
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