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Abstract 

To explore the topological properties of paddy arthropod food webs is of significance for understanding natural 

equilibrium of rice pests. In present study, we used Pajek software to analyze the topological properties of four 

full arthropod food webs in South China. The results showed that predators were significantly abundant than 

preys, and the proportion of predators to preys (3.07) was significantly higher than previously reported by 

Cohen in 1977 (1.33). In the food webs, the number of top species was the largest, accounted for about 50% of 

the total. The number of intermediate-intermediate links was far greater than the other three links. The average 

degree of paddy arthropod food webs is 6.0, 6.04, 5.74 and 7.75, respectively. Average degree and link density 

did not change significantly with the change of the number of species, but the connectance reduced 

significantly. In the paddy ecosystems, the increase of species diversity does not lead to an increase 

proportionally to the links among species. The link density and connectance of food webs of early season rice 

field were less than that from late season rice field. Cycles of all food webs cycles were 0. The maximum chain 

length of the basal species was 3, and the largest chain length of the top species was typically 2 or 3. Neutral 

insects were found to play a very important role in the paddy ecosystem. Nilaparvata lugens and Sogatella 

furcifera were found to be the dominant species of rice pests. Pardosa pseudoannulata, Tetragnatha maxillosa, 

Pirata subparaticus, Arctosa stigmosa and Clubiona corrugate were identified as the important predatory 

species that may effectively control the pest population. The keystone species calculated from keystone index 

and network analysis are analogous, indicating either keystone index or network analysis can be used in the 

analysis of keystone species. 
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1 Introduction 

Arthropod food webs in paddy ecosystems are complex ecological networks, which primarily describe the 

relationship between natural enemies and rice pests. A food web can explicitly express between-species trophic 

relationship. Studies on food webs can provide new ideas for rice pest control and management (Valladares et 

al., 1999). Arthropods are one of the most important organisms in paddy ecosystems (Zhang, 2011). The 

changes of a paddy arthropod community may indicate the occurrence situation and development trends of rice 

pests. Therefore the research on paddy arthropod food webs is one of the fundamental works to optimize the 

biological or natural control of rice pests (You et al., 1993). 

Trophic relationship between species within a biome are expressed as the directional links between species 

in the food web, which depicts the intrinsic attributes of interdependence, mutual restrain and co-evolutionary 

relationship between the various organisms. Food webs are important part of the studies of biological 

communities (Price, 1981; Crichlow et al., 1982; DeAngelis et al., 1989; Zhang, 2007, 2011, 2012a, 2012b, 

2012c). In recent years, a lot of studies have been done on food webs, including arthropod food webs (Guo et 

al., 1995; Crook et al., 1984; Prabhakar et al., 2012). For example, Jiang et al. (2006) recorded the dynamics of 

arthropod communities in paddy fields of Anhui Province.Yuan et al. (2010) studied the community structure 

of organic rice fields in Yangtze River farms and evaluated the effects of natural enemies on the control of rice 

insect pests. Wang et al. (2013) compared the community structure of arthropods between ecological and 

conventional rice fields. Furthermore, studies have indicated that climatic conditions (Zhang et al., 1997), 

pesticides, pest-resistance varieties of rice, and water-saving irrigation (Fuet al., 2013) would affect paddy 

arthropod communities. Overall most studies have focused on the effects of changes in ecosystems in different 

habitats, such as environmental changes, invasive species, species extinction, etc., on the structural 

components and dynamics of arthropod food webs. For example, Oraze (1988) studied the changes of spider 

community in the flooded rice fields. Gratton and Denno (2006) restored an arthropod food web following 

removal of an invasive plant. The concept of neutral insects was first put forward by Wu (1994). Neutral 

insects are defined as the insects neither natural enemies nor insect pests in rice ecosystems, such as 

chironomids, mosquitoes, flies and springtails, etc (Guo et al., 1995; Liu, 2000; Liu et al., 2002). Meanwhile, 

many researchers used different methods, such as serological method (Crook et al., 1984), population 

dynamics investigation method, ELISA method (Zhang et al., 1996; Liu et al., 2002), and the isotope method 

(Schmidt SN et al., 2007)to study the relationship between natural enemies and neutral insects and insect pests,, 

in order to guide utilization and protection of natural enemies and neutral insects.  

The topological properties of food webs have been a hot topic since the presentation of food web concept 

(MacArther, 1955; Sprules and Bowerman, 1988; Hall and Raffaelli, 1991; Lafferty et al., 2006; Rzanny and 

Voigt, 2012).Some basic properties of food webs, including the number of species, the number of links, 

connectance, link density and the relationship among them were studied (Sugihara et al., 1989; Dunne et al., 

2002; Navia et al., 2010). These properties stressed the importance of species in maintaining the stability of 

food webs. Nevertheless, so far the research on the topological properties of paddy arthropod food webs is 

fewer. In present study, we analyzed some topological properties of paddy arthropod food webs, aiming to 

provide a theoretical basis for improving the structure of arthropod food webs and for protecting natural 

enemies of insect pests. 

 

2 Materials and Methods 

2.1 Materials 

2.1.1 Data sources  
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The data sources are listed as follows: 

 

 

Name Matrix (S×S) District Period Data sources 

FW1 26×26 Dasha 

Guangdong 

The overall pattern Liu et al. (2002) 

FW2 57×57 Hunan The overall pattern Liu (2009) 

FW3a 23×23 Wengyuan, 

Guangdong 

The overall pattern of 

early season rice 

Gu et al.(2006) 

FW3b 24×24 Wengyuan, 

Guangdong 

The overall pattern of 

late season rice 

Gu et al.(2006) 

 

 

2.1.2 Data description 

Paddy arthropod food webs are composed of natural enemies, pests, neutral insects and plants. The food webs 

in present study primarily describe the relationship between the natural enemies and rice pests. The arthropod 

food web FW1 contains 24 species of arthropods, including 19 species of predators and 5species of preys 

which contain 4 rice insect pest species and 1 neutral insect species (Table 1). There are 55 arthropod species 

in FW2, including 36 predator species, and 19 prey species which contain 13 rice insect pest species and 6 

neutral insect species (Table 2). FW3a has 21 arthropod species, including 16 species of predators, and 5 prey 

species which contain 4 rice insect pest species and 1 neutral insect species (Table 3). FW3b contains 22 

arthropod species, including 17 predator species and 5 prey species in which there are 4 rice insect pest species 

and 1 neutral insect species (Table 4).  

 

Table 1 Species and their roles in FW1. 

ID   Species Category ID   Species Category 

1    Araneus inustus 

2 Dyschiriognatha quadrimaculata 

3 Tetragnatha nitens 

4 Coleosoma octomaculatum 

5 Hylyphantes graminicola 

6 Ummeliata insecticeps 

7 Pirata subparaticus 

8 Pardosa pseudoannulata 

9 Pardosa tschekiangensis 

10 Clubiona corrugata 

11 Clubiona corrugata 

12 Oxyopes sertatus 

13 Bianor hotingchiechi 

predator  

predator 

predator 

predator 

predator  

predator 

predator  

predator 

predator  

predator 

predator 

predator 

predator 

14 Marpissa magister 

15 Microvelia horvathi 

16 Cyrtorrhinus livdipennis Reuter 

17 Casnoidea indica 

18 Paederus fuscipesCurti 

19 Micraspis discolor 

20 Cnaphalocrocis medinalis Guenee 

21 Sogatella furcifera 

22 Nilaparvata lugens 

23 Oxya chinensis 

24 Chironomus sp 

25 Rice 

26 Humus 

predator  

predator  

predator  

predator  

predator  

predator 

prey 

prey 

prey 

prey 

prey 
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Table 2 Species and their roles in FW2. 

ID   Species Category ID   Species Category 

1 Pirata japonious 

2 Pirata subparaticus 

3 Pardosa pseudoannulata 

4 Pardosa tschekiangensis 

5 Tetragnatha nitens 

6 Neoscona nautica 

7 Neoscona theisi 

8 Neoscona griseomaculata 

9 Acusilas coccneus 

10 Araneidae 

11 Araneus inustus 

12 Argiope aemula 

13 Dyschiriognatha quadrimaculata 

14 Coleosoma octomaculatum 

15 Clubiona corrugata 

16 Bianor hotingchiechi 

17 Salticidae 

18 Ummeliata insecticeps 

19 Hylyphantes graminicola 

20 Oxyopes sertatus 

21 Ebrechtella  tricuspidata 

22 Marpissa magister 

23 Clubiona corrugata 

24 Tetragnatha maxillasa 

25 Dolomedes sp 

26 Plecippussetipe sp 

27 Cyrtorrhinus livdipennis Reuter 

28 Microvelia horvathi 

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator 

predator  

predator  

predator  

predator 

predator  

predator  

predator  

predator 

predator  

predator  

predator  

predator 

predator  

predator  

predator  

predator 

 

29 Paederus fuscipes Curti 

30 Micraspis discolor 

31 Casnoidea indica 

32 Ophionea indica 

33 Colliuris chaudoiri Bohem 

34 Carabiade 

35 Coccinella septempunctata 

36 Harmonia axyridis  

37 Culex triaeniorhynchus 

38 Chironomus sp 

39 Salina sp 

40 Entomobrya griseoolivata 

41 Hypogastramatura 

42 Bourletiella christianseni 

43 Sogatella furcifera 

44 Nilaparvata lugens 

45 Oxya chinensis 

46 Naranga aenesc 

47 Cnaphalocrocis medinalis Guenee 

48   Tryporyza incertulas 

49 Nephotettix bipunctatus 

50 Empoasea subrufa 

51 Tettigoniella spectra 

52   Mythimna separata 

53 Tettigoniidae 

54 Oxya chinensis 

55 Nephotettix cincticeps 

56 Rice 

57   Humus 

predator  

predator  

predator  

predator  

predator  

predator  

predator  

predator  

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey 

prey  

prey 

prey 

prey 

prey 

prey 

 

 

Table 3 Species and their roles in FW3a. 

ID   Specifies Category ID   Species Category 

1 Pirata piratoides 

2 Tetragnatha maxillosa 

3 Neoscona nautica 

4 Tetragnatha nitens 

5 Tetragnatha mandibulata 

6 Thalassius affinis 

7 Micraspis discolor 

8 Staphylinidae 

predator  

predator 

predator 

predator 

predator  

predator 

predator  

predator 

13 Ummeliata insecticeps 

14 Pardosa pseudoannulata 

15 Pirata subparaticus 

16 Bianor aurocinctus 

17 Sogatella furcifera 

18 Nilaparvata lugens 

19 Cnaphalocrocis medinalis Guenee 

20 Oxya chinensis 

predator  

predator 

predator  

predator 

prey 

prey 

prey 

prey 
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9 Cyrtorrhinus livdipennis Reuter 

10 Oxyopes lineatipes 

11 Bianor hotingchiehi Schenke 

12 Pardosa laura 

predator  

predator 

predator 

predator 

21 Chironomus sp 

22 Rice 

23 Humus 

prey 

 

 

Table 4 Species and their roles in FW3b. 

 

 

 

2.1.3 Data conversion 

Species were labeled with ID codes (see Tables 1, 2, 3 and 4). In the Pajek environment, choose the directory 

and execute the command as follows: Open data →Data editors →Matrix editor, in the UCINET software, and 

save them as the files in “.##h” format. Finally, choose the directory and execute the command: 

File→Open→Ucinet dataset→network, in Netdraw software; choose and open the “.##h” file, and then save it 

to the file in “.net” format by the command: File→Save data as→Pajek→Net file.The resultant four“.net” files 

formed the basis for topological analysis. 

2.2 Methods  

2.2.1 Pajek software (Network analysis) 

Pajek is a software platform for the network analysis of the large and complex networks with up to millions of 

nodes. It is a fast visualized tool for program operation. Pajek contains various methods/algorithms on analysis 

of topological properties. 

2.2.2 Topological properties and measures 

2.2.2.1 Classification of species   

Species in a food web can be divided into three categories, top species T, intermediate species I, and basal 

species B (Pimm et al., 1991). Atop species is a species not eaten by any species in the web. An intermediate 

species is a species that has both at least one predator and at least one prey. A basal species is a species that 

eats no species. 

2.2.2.2 Link analysis 

Links in a food web can be divided into four categories, the basal-intermediate links, the basal-top links, the 

intermediate-intermediate links, and the intermediate-the top links (Cohen and Newman, 1985). For example, a 

ID   Species Category ID   Species Category 

1 Arctosa  stigmosa 

2 Tetragnatha maxillosa 

3 Neoscona nautica 

4 Tetragnatha nitens 

5 Tetragnatha mandibulata 

6 Tetragnatha caudicula 

7 Micraspis discolor 

8 Staphylinidae 

9 Cyrtorrhinus livdipennis Reuter 

10 Oxyopes lineatipes 

11 Leucauge blanda 

12 Coleosoma octomaculatum 

predator  

predator 

predator  

predator 

predator  

predator 

predator  

predator 

predator  

predator 

predator 

predator 

13 Ummeliata insecticeps 

14 Pardosa pseudoannulata 

15 Pirata subparaticus 

16 Pardosa laura 

17 Bianor aurocinctus 

18 Sogatella furcifera 

19 Nilaparvata lugens 

20 Cnaphalocrocis medinalis Guenee 

21 Oxya chinensis 

22 Chironomus sp 

23 Rice 

24 Humus 

predator 

predator 

predator 

predator 

predator 

prey 

prey 

prey 

prey 

prey 
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basal-intermediate link is a link from a basal species to an intermediate species.  

2.2.2.3 Degree analysis 

Degree is a basic property for a network. The degree of a node is defined as the number of its connected nodes. 

In general, the greater the degree of a node, the more important the node is in the food web (Zhang, 2012d). 

We obtained the degree of nodes by performing the command: Net→Parations→Degree→In/Out/All in Pajek 

software, where All is the sum of outgoing degree and incoming degree. 

2.2.2.4 Connectance and link density 

Connectance is defined as the number of observed trophic interactions divided by the number of possible 

interactions (Zhang, 2012a, 2012d). The number of possible interactions may be S2 if cannibalistic interactions 

are counted, and S(S-1) if only interspecific interactions are counted. Link density is equal to the ratio of total 

number of links to the total number of species. 

2.2.2.5 Chain cycle analysis 

A chain cycle refers to a closed loop in the food chain. For example, cannibalism is a cycle where one species 

feeds upon itself. In Pajek, chain cycles can be obtained by using command: 

Net→Count→4-rings→directed→cyclic. 

2.2.2.6 Chain length analysis 

Chain length is defined as the number of links connected to each other through two adjacent species between 

the basal species and the top species. We obtained chain length by the command: Net → 

K-neigbours→input/output.  

2.2.3 Keystone index  

Keystone index is a two-way trapezoidal index, and proposed by Jordán et al. (1999) based on the food web. It 

includes top-down and bottom-up control of material flow and information flow in food webs, namely Kb for 

botton-up, Kt for top-down and K for bidirectional processes (K = Kb + Kt). The specific formula is as follows: 

1 ( )
( )

( )( )
b

b

K j
K i

m i j


  

1 ( )
( )

( )( )
t

t

K j
K i

n i j


  

( ) ( ) ( )b tK i K i K i   

where Kb(j) is the bottom-up keystone index of the jth predator, m(i)(j) is the number of its direct preys. Kt(j) is 

the top-down keystone index of the jth prey, and n(i)(j) is the number of its direct predators. Keystone index is 

a measure on the basis of topological structure of food web. Thus it is theoretically similar to some measures in 

network analysis. 

 

3 Results 

3.1 Species analysis 

As indicated in Tables 1, 2, 3 and 4, the numbers of predators/preys in the four arthropod food webs are 19/5, 

36/19, 16/5 and 17/5, respectively. The average number of each predator feeds on prey species is 3.8, 1.9, 3.2 

and 3.4, respectively. This is basically different from that of Cohen (1977) (4:3, i.e., 1.33). It is found that the 

more species in the food web, the less average number of each predator feeds on prey. 
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Briand and Cohen (1984) proposed that top species, intermediate species and basal species were all 

approximately proportional to the number of total species, and the proportion was 0.29, 0.53 and 0.19, 

respectively. Table 5 exhibits that in paddy arthropod food webs, the number of predators is significantly 

greater than that of preys. The proportion of top species is the largest, with about half of the total species, and 

the proportion of basal species is the least.  

 

Table 5 Species analysis of food webs. 

Food web Trophic 

level 

Number of 

species 

Total number 

of species 

Proportion Species ID 

 

FW1 

T 13  

26 

50% 1-6, 8-11, 13-15 

I 11 42.3% 7, 12, 16-24 

B 2 7.7% 25,26 

 

FW2 

T 31  

57 

54.4% 1, 3-19, 21-26, 28, 31-36 

I 24 42.11% 2, 20, 27, 29, 30, 37-55 

B 2 3.49% 56, 57 

 

FW3a 

T 11  

23 

47.83% 1-6, 11-13, 15, 16 

I 10 43.48% 7-10, 14, 17-21 

B 2 8.69% 22,23 

 

FW3b 

T 12  

24 

50% 1-6, 11-14, 16, 17 

I 10 41.67% 7-10, 15, 18-22 

B 2 8.33% 23, 24 

 

 

Table 6 Link analysis of food webs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Food web Trophic 

level 

Number of 

links 

Total number 

of links 

Proportion 

 

FW1 

B-I 5  

78 

6.41% 

B-T 0 0 

I-I 21 26.92% 

I-T 52 66.67% 

 

FW2 

B-I 19  

172 

11.04% 

B-T 0 0 

I-I 32 18.61% 

I-T 121 70.35% 

 

FW3a 

B-I 5  

66 

7.57% 

B-T 0 0 

I-I 11 16.67% 

I-T 50 75.76% 

 

FW3b 

B-I 5  

93 

5.38% 

B-T 0 0 

I-I 14 15.05% 

I-T 74 79.57% 
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critical importance in keystone species analysis, but Pardosa tschekiangensis. Furthermore, the keystone index 

results of FW3a and FW3b were consistent with the results of network analysis, but there were differences in 

their values, shown that the arrangement of the importance of species was different. Similarly, the most 

significant species Ummeliata insecticeps in Gu et al. (2006) did not show a larger Kt value.  

 

 

Table 8 Species with higher Kt value and their ID codes in the four paddy arthropod food webs. 

FW1 FW2 FW3a FW3b 

ID Kt 

value 

species ID Kt 

value 

species ID Kt 

value

species ID Kt 

value 

species 

8 1.91 Pardosa 

pseudoannulata 

3 4.71 Pardosa 

pseudoannulata

2 2.68 Tetragnatha 

maxillosa 

1 1.7 Arctosa 

stigmosa 

11 1.91 Clubiona 

corrugata 

15 3.17 Clubionacorru

gata 

14 2.28 Pardosa 

pseudoannulata 

2 1.7 Tetragnatha 

maxillosa 

9 1.76 Pardosa 

tschekiangensis 

2 3.13 Pirata 

subparaticus 

15 1.86 Pirata 

subparaticus 

14 1.7 Pardosa 

pseudoannulata

2 1.58 Dyschiriognatha 

quadrimaculata 

4 2.37 Pardosa 

tschekiangensis

1 1.67 Pirata 

piratoides 

11 1.46 Leucauge 

blanda 

6 1.47 Ummeliata 

insecticeps 

22 2.22 Marpissa 

magister 

6 1.6 Thalassius 

affinis 

3 1.22 Neoscona 

nautica 

7 1.47 Pirata 

subparaticus 

18 2.09 Ummeliata 

insecticeps 

11 1.18 Bianor 

hotingchiehi 

Schenke 

15 1.18 Pirata 

subparaticus 

14 1.17 Marpissa 

magister 

16 1.73 Bianor 

hotingchiechi 

21 1 Chironomus sp 5 1.14 Tetragnatha 

mandibulata 

24 1 Chironomus sp 29 1.29 Paederus 

fuscipes Curti 

12 0.78 Pardosa laura 22 1 Chironomus sp
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(c) 

 

 

(d) 

 
 

Fig. 3 Food web links of outgoing degree analysis of FW1 (a), FW2 (b), FW3a(c) and FW3b (d), respectively. For each species, 
the number in parenthesis is outgoing degree and the number outside parenthesis is species ID code. 
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It can be found from Fig. 3, that the outgoing degree of Chironomus sp is just less than Nilaparvata lugens 

and Sogatella furcifera, two rice pests in the FW1 and FW2.The outgoing degree of Chironomussp in FW3a is 

less than Micraspis discolor, Cyrtorrhinus livdipennis Reuter and Sogatella furcifera. In FW3b, Chironomus sp 

and Cyrtorrhinus livdipennis Reuter have the largest outgoing degree. In addition, the bottom-up keystone 

index, Kb, has shown in Table 9. In FW1 and FW2, both Sogatella furcifera and Nilaparvata lugens have the 

largest Kb values, and species with the largest Kb value in FW3a and FW3b is Cyrtorrhinus livdipennis Reuter. 

These results mean that Nilaparvata lugens and Sogatella furciferaare the dominant pest species, and their 

natural enemies are abundant also. Cyrtorrhinus livdipennis Reuter is the most significant predator. The 

outgoing degree of neutral insect, e.g., Chironomussp, further verifies its role as a complementary food in the 

arthropod food webs; it can be used as supplementary prey source of natural enemies.  

 

 

Table 9 Species with higher Kb value and their ID codes in the four paddy arthropod food webs. 

FW1 FW2 FW3a FW3b 

ID Kb 

value 

species ID Kb 

value 

Species ID Kb 

value

species ID Kb 

value 

species 

21 5.43 Sogatella 

furcifera 

44 6.01 Nilaparvata 

lugens 

9 2.58 Cyrtorrhinusli

vdipennis 

Reuter 

9 2.44 Cyrtorrhinus 

livdipennis 

Reuter 

22 5.35 Nilaparvata 

lugens 

43 5.09 Sogatella 

furcifera 

17 2.13 Sogatella 

furcifera 

22 2.16 Chironomus 

sp 

24 4.31 Chironomus sp 52 3.38 Mythimnase 

parata 

7 1.83 Micraspis 

discolor 

18 1.85 Sogatella 

furcifera 

20 2 Cnaphalocrocis

medinalis 

Guenee 

47 3.23 Cnaphalocrocis

medinalis 

Guenee 

21 1.71 Chironomus 

sp 

7 1.7 Micraspis 

discolor 

12 1.31 Oxyopes 

sertatus 

38 2.63 Chironomus sp 18 1.51 Nilaparvata 

lugens 

19 1.6 Nilaparvata 

lugens 

 

 

Comprehensive analysis of the bottom-up and top-down keystone index have shown in Table 10. K is sum 

of Kb and Kt. Nilaparvata lugens and Sogatella furciferaas rice pests in FW1 and FW2 have the largest K value, 

and the main keystone species in FW1 and FW2 is Pardosa pseudoannulata, Pirata subparaticus, Clubiona 

corrugateand Pardosa tschekiangensis. Pardosa pseudoannulata, Tetragnatha maxillosa, Cyrtorrhinus 

livdipennis Reuter and Pirata subparaticus in FW3a are the keystone species, and in FW3b, Arctosa stigmosa 

and Oxyopes lineatipes are also the keystone species. Spiders, as the major arthropod species, have significant 

control effect on the rice insect pests. Therefore, in order to achieve sustainable integrated pest prevention, it 

should strengthen the ecological protection of paddy field spiders. 
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Table 10 Species with higher K value and their ID codes in the four paddy arthropod food webs. 

FW1 FW2 FW3a FW3b 

ID K 

value 

species ID K 

value 

species ID K 

value

species ID K 

value 

species 

21 5.68 Sogatella furcifera 44 6.09 Nilaparvata 

lugens 

14 3.01 Pardosa 

pseudoannulata 

22 3.16 Chironomus sp

22 5.6 Nilaparvata lugens 43 5.17 Sogatella 

furcifera 

21 2.71 Chironomus sp 9 2.44 Cyrtorrhinus 

livdipennis 

Reuter 

24 5.31 Chironomussp 3 4.71 Pardosa 

pseudoannulata

2 2.68 Tetragnatha 

maxillosa 

15 2.23 Pirata 

subparaticus 

7 2.55 Pirata 

subparaticus 

2 3.8 Pirata 

subparaticus 

9 2.58 Cyrtorrhinus 

livdipennis 

Reuter 

10 2.15 Oxyopes 

lineatipes 

20 2.25 Cnaphalocrocis 

medinalis Guenee 

52 3.46 Mythimnase 

parata 

17 2.38 Sogatella 

furcifera 

18 2.1 Sogatella 

furcifera 

8 1.91 Pardosa 

pseudoannulata 

47 3.31 Cnaphalocrocis

medinalis 

Guenee 

15 2.86 Pirata 

subparaticus 

19 1.85 Nilaparvata 

lugens 

11 1.91 Clubiona 

corrugata 

15 3.17 Clubiona 

corrugata 

7 1.83 Micraspis 

discolor 

20 1.75 Cnaphalocrocis

medinalis 

Guenee 

9 1.76 Pardosatschekiang

ensis 

38 2.8 Chironomus 

sp 

18 1.76 Nilaparvata 

lugens 

1 1.7 Arctosa 

stigmosa 

12 1.63 Oxyopessertatus 46 2.44 Naranga aenesc 1 1.67 Pirata 

piratoides 

2 1.7 Tetragnatha 

maxillosa 

2 1.58 Dyschiriognathaqu

adrimaculata 

4 2.37 Pardosa 

tschekiangensis

6 1.6 Thalassius 

affinis 

7 1.7 Pardosa 

pseudoannulata

 

 

4 Conclusions and Discussion 

Paddy arthropod food webs are generally complex ecosystems. Various ecological interactions can be found, 

including parasitism, predation, etc., which closely relate to biological control of rice insect pests. Therefore, 

the topological properties analysis of paddy arthropod food webs is a fundamental work for the biological 

control of insect pests. From analysis above, we draw some major conclusions as follows:  

(1) Overall the ratios of predators to preys in the arthropod food webs are quite different from the results of 

Cohen (1977). The reason of the ratio for FW2 being close to the proposed by Cohen (1977) may be attributed 

to that the data of FW1, FW3a andFW3b were collected in the empirical fields, and the food web data of 
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Cohen and FW2weremostly qualitative collated. Under certain conditions, the number of species in a 

qualitative summary of food webs is significantly larger than the actual number of species found in the 

empirical fields. Therefore, a systematic review and analysis of paddy arthropod food webs should focus on 

practical (observed) communities. 

(2) Proportions of different trophic levels and the ratios of link types are different from Briand and Cohen 

(1984). In present study, the number of top species is about half of the total number of species, and the number 

of intermediate species is slightly little than the number of top species. The number of 

intermediate-intermediate links is far greater than the number of the other three kinds of links, and the 

basal-top links are all absent. These may be due to the absence of predators fed on predatory spiders.  

(3) Average degree and link density of arthropod food webs do not change much with the change of the 

number of species, but the connectance significantly reduces. Link density and connectance of the early season 

rice field and late season rice field show certain difference. Therefore, food webs should not be constructed 

through qualitative summary.  

(4) There are not cycles in arthropod food webs. The maximum chain length of the basal species is 3, and the 

largest chain length of the top species is typically 2 or 3, which are in consistent with Pimm et al (1991). Thus 

the topological properties of paddy arthropod food webs are in coincident with the cascade model, which can 

be further validated in future studies. 

(5) In the paddy ecosystems studied, Pardosa pseudoannulatais the dominant natural enemy species. The 

natural enemies Tetragnatha maxillosa, Pirata subparaticus, Arctosa stigmosa and Clubiona corrugate have 

stronger control effects on pests also. Furthermore, the outgoing degree and K value of Chironomus sp 

indicates that neutral insects play an important role in the paddy ecosystems (Guo, 1995). 

(6) The keystone species calculated from keystone index and network analysis are analogous, indicating 

either keystone index or network analysis can be used in the analysis of keystone species. 

In present study, paddy arthropod food webs were constructed based on the matrixes representing 

relationship between pests, predators and neutral insects. Parasites, predatory birds and other predators were 

not included in the food webs. In future studies, we suggest that: (1) Complete food webs should further 

include parasites and predatory birds, etc. (2) In food web analysis, some models, such as the cascade model 

(Cohen and Newman, 1985), the niche model (Williams and Martinez, 2000) and nested model (Cattin et al., 

2004) may be fitted and analyzed. (3) Both temporal and spatial aspects of food webs should be considered in 

order to provide a better theoretical basis for biological control and ecosystem maintenance in paddy fields. 
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