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Abstract 

A goal of this study was to determine similarities in structure among food webs that are otherwise disparate 

with regard to species, population, and size. Food webs were examined as directed, unweighted graphs in order 

to normalize food webs with regard to biomass and population/species distinctions. The graphs were further 

normalized with regard to topological size and existence of circuits through the reduction of each strongly 

connected component to a single node. This had the added benefit of resulting in networks with more clear 

delineation between trophic levels. Finally, common induced subgraphs were considered for their obvious 

value in characterizing network structure. Through this study we determined not only that there are pairs of 

systems that are highly similar in structure once appropriately normalized for size, makeup, and geographical 

location, but also that a majority of food webs have similar structural components when compared with 

random food webs.  
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1 Introduction 

Ecosystems are complex. Management of ecosystems for environmental and societal goods and services can 

be even more complex. Finding commonalities and patterns in this complexity will help streamline 

management efforts. The complexity in ecosystems can be captured in its food web which describes predator 

prey relationships and flow of energy between species.  

Food webs are one type of network that has been subject to examination through the founding disciplines 

of network ecology and graph theory. Dunne (2002, 2004, 2009) has done much work characterizing network 

structure of food webs demonstrating the role of connectedness, size, and robustness. Food webs, like most 

real world networks, are not random (Williams and Martinez, 2000). Food webs from different types of 

ecosystems share fundamental structural and ordering characteristics (Dunne et al., 2004).  
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Finding ways to describe and quantify these fundamental structural and ordering characteristics can be 

challenging due to the complexity of the food webs. Several metrics and techniques have already been 

developed in the field of network ecology. Here we attempt to advance this field by proposing a methodology 

for examining commonality among food web models that is strongly rooted in graph theory and builds from 

prior work of Allesina et al. (2005). 

We focus on “wet” food webs, including marine, brackish, and freshwater systems from around the world 

and propose a set of metrics derived from graph theory that can be used to evaluate similarities and differences 

across these complex systems. Using a combined graph theory and network ecology approach, we first 

establish that, like other real-world networks, food webs have more organization than randomly generated 

webs (Watts and Strogatz, 1998; Williams and Martinez, 2000).  We then test for similarities and differences 

across all food web types to examine whether there are mathematical properties of food webs that are 

ubiquitous around the world. 

Our approach is advancement over other studies because of our large sample size (21) and ecosystem 

diversity (i.e. fresh-water, estuarine, marine). Many other comparative studies of food webs only look at 3-5 

networks and are typically all a similar type of ecosystem (Allesina et al., 2005; Bascompte and Melián, 2005; 

Dunne et al., 2004). We also examined larger subgraph structures (up to 7 nodes) compared to other studies (3 

nodes) (Borrelli, 2015). 

 

2 Method 

We will use the following terminology throughout this manuscript. 

 

Definition: A directed graph (henceforth referred to as a graph) is an ordered pair of sets (V, E) of vertices (or 

nodes) V and edges E. Each edge e in E is itself an ordered pair (u, v) of distinct elements from V, (i.e. we do 

not allow loops or multiple edges, but circuits of length 2 are permitted). The in-degree (alternatively out-

degree) of a node v in a graph G is the number of edges in G of the form (x, v) (alternatively (v, x)) for any 

vertex x in G.  

Definition: A graph G is connected if, for every pair u,v of vertices in G, there is a set of edges in G (e1, 

e2,…,en) such that u is in e1, v is in en, and for each i the edges ei and ei+1 have a non-empty intersection. 

Definition: An n-path is a connected graph on n vertices in which one vertex has out-degree 1 and in-degree 0 

(the source), one vertex has out-degree 0 and in-degree 1 (the sink), and the remaining vertices each have in-

degree and out-degree 1. An n-circuit is a connected graph on n vertices in which each vertex has both in-

degree and out-degree 1. A graph that contains no circuit is acyclic. 

Definition: A graph G = (VG, EG) is an induced subgraph of a graph H = (VH, EH)  if there is an injective 

function f from VG to VH such that for any edge (u, v) in EG the corresponding edge (f(u), f(v)) is in EH, and if (u, 

v) is not an edge in EG then (f(u), f(v)) is not an edge in EH.  

As an example, the 4-path is not an induced subgraph of the 4-circuit, but it is an induced subgraph of the n-

circuit for all n> 4. 

Definition: The order of a graph G is the number of vertices in G, denoted n(G). Its size e(G) is the number of 

edges in G. 

2.1 Food web networks  

Our goal with this project was to determine commonality among food web structures, in particular simplified, 

acyclic models of food webs irrespective of geographic location, size, and species particulars. We began with 

21 food webs (FW) imported from Ecopath (www.ecopath.org) to Sagemath (www.sagemath.org) as graphs 

based on the diet matrix (Table 1). The Ecopath diet matrix captures the percent of diet of prey items for every 
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predator in the food web. Each Ecopath food web was created by different researchers for different purposes 

and therefore has unique classifications and groupings of species (Table 2). To standardize these diverse 

models, each food web was given two treatments prior to any analysis: (1) removal of detritus and (2) removal 

of circuits.  

 

 
Table 1 Networks used in analysis. Networks published prior to 2010 were downloaded from the Ecopath website (www.ecopath. 
org). All networks were assigned both a three letter abbreviation (Abbr.) and a number (Num.) that is used in subsequent tables 
and figures.   

Name Abbr. Num. Reference 
Aleutian Islands, Alaska, USA ALE 1 (Guenette and Christensen, 2005; 

Guenette et al., 2007) 
Weddell Sea, Antarctica WED 2 (Jarre-teichmann et al., 1997) 
Lake Tanganyika, Burundi TAN 3 (Moreau et al., 1993b) 
Lake Ontario, Canada ONT 4 (Halfon and Schito, 1993) 
Northern Gulf of St. Lawrence, Canada GSL 5 (Morissette et al., 2003) 
Lake Aydat, France AYD 6 (Reyes-Marchant et al., 1993) 
Great Barrier Reef, Australia GBR 7 (Gribble, 2005) 
Gironde Estuary, France GIR 8 (Lobry, 2004) 
Iceland ICE 9 (Buchary, 2001) 
Lake Kinneret, Israel KIN 10 (Walline et al., 1993) 
Lake Victoria, Kenya VIC 11 (Moreau et al., 1993a) 
Narragansett Bay, Rhode Island, USA NAR 12 (Byron et al., 2011a) 
Laguna de Bay, Philippines LDB 13 (Delos Reyes, 1995) 
Lagoons, Rhode Island, USA LRI 14 (Byron et al., 2011b) 
Saco River Marsh, Maine, USA SRM 15 Byron, unpublished 
Southeast Alaska, USA SAK 16 (Guenette et al., 2007) 
PrakramaSamudra Reservoir, Sri Lanka PRA 17 (Moreau et al., 2001) 
Prince William Sound, Alaska, USA (pre oil spill) PW1 18 (Dalsgaard and Pauly, 1997) 
Prince William Sound, Alaska, USA (post oil spill) PW2 19 (Okey and Pauly, 1999) 
West Florida Shelf, USA WFS 20 (Okey et al., 2004) 
Lake Kariba, Zimbabwe KAR 21 (Machena et al., 1992) 

 

 
Table 2 Metadata describing the motivation for creating the food web model and the different emphasis on species groupings in 
each study system. See Table 1 for full ecosystem names associated with the first column, ‘ Abbr.’. ‘Percent of FW nodes 
aggregated’ is the number of species groups that contain multiple species divided by the total number of species groups in the 
original food web model, as defined by the author, ‘FW nodes’. ‘RAM nodes’ is the number of nodes in the RAM after removing 
cyclicity and detritus. 
Abbr. Study Goal Species Focus FW 

nodes 
Percent  of 
FW nodes 
aggregated

RAM
nodes

ALE Evaluate whether predation by killer 
whales might explain the decline of 
Steller sea lions in the central and 
western Aleutian Islands.  

Steller sea lion and their principal 
prey species  

40 60% 34 

WED Integrate the results of the various 
research efforts directed towards the 
shelf communities into a coherent 
whole.  

dominant groups of benthic shelf 
community 

20 100% 15 

TAN Quantify the food web and the 
production of pelagic fish and 
invertebrates. 

pelagic fish and invertebrates 7 100% 4 

ONT Characterize the food web. Phytoplankton, zooplankton, benthos 
were aggregated. Fish, mysid, 
amphipod species were left 
independent. 

14 29% 13 

GSL Impact of groundfish collapse. phytoplankton and detritus to marine 
mammals and seabirds, including 
harvested species of pelagic, demersal, 

32 59% 30 
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and benthic domains 
AYD Understand functioning of eutorophic 

ecosystem. 
emphasis on two dominat fish species, 
perch (Percafluviatilis) and roach 
(Rutilusrutilus) 

11 82% 10 

GBR Identify the effects of the major fisheries 
in (1) mangrove, (2) lagoon-seagrass, 
and (3) coral reef systems, and the 
possible confounding effects of 
independently developed fisheries 
management plans. 

fish and prawn 32 75% 8 

GIR Improve understanding of the 
complexity of estuarine ecosystems and 
response to various pressures. 

estuarine fish 18 89% 17 

ICE Describe North Atlantic marine 
ecosystem with fisheries prior to 
expansion of large-scale commercial 
fisheries. 

two primary producer groups, five 
invertebrate groups, twelve fish groups 
(including one juvenile group for cod), 
one seabirds group, three marine 
mammals groups and one detritus group

24 63% 20 

KIN Characterize the food web. Good data for biomass and production 
of phytoplankton and zooplankton and 
diet and catches of main fish species. 

14 71% 13 

VIC Evaluate change in dynamics of fish 
community after introduction of Nile 
perch. 

fish-centric model 16 75% 12 

NAR Calculate carrying capacity for shellfish 
aquaculture. 

Includes all trophic levels with 
emphasis on filter feeders. 

15 93% 14 

LDB Text not available, only data tables Text not available, only data tables 17 71% 15 
LRI Calculate carrying capacity for shellfish 

aquaculture. 
Includes all trophic levels with 
emphasis on filter feeders. 

16 88% 15 

SRM Characterize the food web. fish and birds 29 62% 27 
SAK Understand why sea lions increased in 

the presence of killer whales in 
Southeast Alaska. 

Steller sea lion and their principal 
prey species  

40 68% 19 

PRA Describe trophic relationships and 
importance of unexploited fish stocks.  

commercial fisheries and introduced 
tilapiine fish 

17 
 

71% 16 

PW1 Characterize trophic interactions prior to 
oil spill. 

not fish-centric, plankton to mammals 19 95% 18 

PW2 Understand structure and functional 
characteristics of food web after oil spill.

primary producers, zooplankton, 
benthic invertebrates, planktivorous 
'forage fishes', larger fishes, birds, 
mammals, and detritus 

48 73% 13 

WFS Community effects of seafloor shading 
by plankton blooms. 

primary producers 59 92% 6 

KAR Assess trophic interrelationships and 
community structure. 

Trophic groups selected based on 
known importance and availability of 
data from the literature. Some groups 
were left out because of perceived 
minor importance for overall trophic 
flows. Some fish species were grouped 
both because commercial landing 
statistics do not separate individuals 
species and also because their biology 
is similar. 

10 70% 9 

 

 

2.2 RAM generation process  

Despite the unique species groupings in each web, there is one exception - detritus. Every Ecopath model must 

include a detritus (decaying organic matter) component. Detritus is used to capture any unused energy in the 

ecosystem and in that way is common across all webs. The vertex with this detritus label shares at least one 

edge with every other vertex in each food web. Because we are interested in examining similarities and 

differences across food webs, the detritus vertex was removed from every food web. What remains from FW is 

a graph F.  
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It is common that food webs contain circuits whereby energy flows cyclically between specific predator 

and prey groups, typically across 2 adjacent trophic levels. Because we are interested in how energy moves 

across multiple trophic levels, smaller circuits such as these become less consequential. Cycles or hereafter, 

circuits, in F are located and reduced to a single vertex, resulting in a reduced acyclic model (RAM) of the food 

web (see Allesina et al. 2005 for another treatment of reduced acyclic graphs). The resulting 21 RAMS are 

more uniform in size than the graphs in FW and contain fewer vertices, leading to simpler computational 

analysis. 

2.3 Random RAM generation process 

Because one of our goals is to find properties of networks that are unique to food webs, random graphs were 

created for comparison. Each graph F in FW has a density d(F), the ratio of the number of edges to 

n(F)(n(F)+1). Note that n(F)(n(F)+1) is the maximum number of edges in a graph on n(F)+1 vertices. A 

random graph on n(F)+1 vertices was generated through inclusion of each potential edge among each pair of 

vertices with probability equal to d(F). The resulting graph is then stripped of a vertex of highest total degree 

(i.e. the sum of in-degree and out-degree). What results is a graph RF with the same order as and similar 

density to F. The set of all graphs of the form RF is denoted RFW. Each graph in RFW undergoes the RAM 

generation process, described above, to result in a random equivalent of each RAM, or an RRAM.  

2.4 Induced subgraphs  

There exist 243,262 graphs on up to 7 nodes that are acyclic and connected, which were placed into array A. 

Each graph in A was examined for inclusion in each RAMR as an induced subgraph, resulting in a binary array 

AR. These binary arrays were subsequently added component-wise and the resulting array At, with integer 

components between zero and 21 inclusive, was generated. The array At is an indicator of occurrence for each 

graph in A among the RAMS. Graphs from A with at least five vertices were examined for high occurrence. 

Those that appeared often were included in a set which we will refer to as S, consisting of induced subgraphs 

of approximately two-thirds of the RAMS examined (Fig. 1). It was discovered that no graph in A with greater 

than 6 nodes is an induced subgraph of a significant number of RAMS. Connected, acyclic graphs with more 

than 6 nodes did not appear as induced subgraphs with high enough frequency to be studied. Next, each graph 

in S was examined for its inclusion in each RRAM. 

2.5 Network metrics 

To examine similarities and differences across food webs, individual metrics of each FW and RAM were 

calculated and standardized against the metrics of order or size. The eight metrics listed in Table 3 were used 

for cluster and principle component analyses. Each metric captures a unique quality of the networks useful for 

examining similarities and differences across ecosystems.  

We define some relevant graph theoretic terms below 

 

Definition: The clique number of a graph is the order of the largest complete subgraph. An undirected graph is 

complete if each vertex is adjacent to every other vertex. 

Definition: The connectivity (alternatively edge-connectivity) of a graph is the fewest number of vertices 

(edges) the removal of which results in a disconnected graph. 

Definition: A graph’s density is the ratio of its size to the maximum possible number of edges among its 

vertices. 

Definition: The distance between vertices u,v in a graph G is the length of the shortest path from u to v. The 

diameter of G is the length of the greatest distance. If there are vertices with no path between them then the 

finite diameter is defined to be the length of the greatest distance between vertices that do have a connecting 

path. 
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Definition: An independent set is a collection of vertices with no adjacencies among one other. 

Definition: An induced path is simply an induced graph in the form of a path. That is, no vertex along the path 

is adjacent to any other besides its neighbors along the path. 

Definition: The eccentricity of a vertex v is the greatest distance from v to any other vertex in a graph. The 

radius of a graph is the lowest eccentricity. 

 

 

 
Fig. 1 The five six-node graphs below are those that appear in 14 RAMS (Fig. 1a) and 13 RAMS (Figs. 1b-1e). None of the graphs 
in Fig. 1 appear as induced subgraphs in any of the RRAMS.  

 

 

2.6 Cluster analysis 

A cluster analysis was performed to examine relatedness among food webs. Clusters are based on the shortest 

Euclidean distances between computed metrics. The resulting dendrogram plot is of the hierarchical binary 

cluster tree where the height of the U-shaped bars are the distances (y-axis) between networks (x-axis) being 

connected. 

2.7 PCA 

A Principle Component Analysis (PCA) was performed to examine relationship between metrics. Since 

variances among metrics were similar due to standardizing against order or size, raw data was used to perform 

the PCA. The first principal component and second principal component were plotted for each network for 

both food webs and RAMS. A biplot of the principal component coefficients showing variables represented as 

vectors. This biplot allows visualization of the magnitude and sign of each variable’s contribution to the first 

two principal components, and how each observation is represented in terms of those components.   

 

3 Results 

3.1 Induced subgraphs 

No graph in S was found as an induced subgraph in any RRAM. It was determined that each RRAM is much 

smaller than the RAMS. Ecologically, the naturally-occurring RAMS have a more complex structure than 

randomized ones, and naturally-occurring food webs appear to have much lower cyclicity than randomized 

food webs. 

Large graphs that were found to be induced subgraphs of a majority of RAMS, i.e. the graphs in S, were 

not represented in all RAMS. There are five systems in which no graph from S appeared as an induced 

subgraph (Lake Tanganyika in Burunidi, Lake Aydat in France, the Great Barrier Reef in Australia, West 

Florida Shelf in USA, Lake Kariba in Zimbabwe) (Table 3). The remaining 16 RAMS did contain at least one 

induced subgraph from the set S, and 9 of those RAMS contained all 5 common induced subgraphs (Aleutians 

in USA, Northern Gulf of St. Lawrence in Canada, Narragansett Bay in USA, Laguna de Bay in Philippines, 
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Rhode Island coastal lagoons in USA, Saco River estuary marsh in USA, Southeast Alaska, Lake Prakrama 

Samudra in Sri Lanka, and Prince William Sound Alaska prior to the oil spill) (Table 3). There appears to be 

no geographic or environmental pattern to the number of these common induced subgraphs a network contains 

(Fig. 2). 

 

 

 
Table 3 Metrics computed for each Food Web (FW) and RAM. Metrics were standardized by order or edges making all values a 
relative proportion. The number of induced subgraphs for each network is specified in the first column, Ind. Sub. Networks either 
contained all 5 of the listed induced subgraphs (5), at least one induced subgraph (1+), or no induced subgraphs. Network names 
are listed in Table 1. 

Ind. 
Sub. 

Network 
Abbr. 
Num. 

clique number/  
order 

(undirected) 

connectivity/ 
order 

(undirected) 

density 
(edges/ max 

possible 
edges) 

edge 
connectivity/ 

edges 
(undirected) 

finite 
diameter/  

order 

independent 
set/ order 

(undirected) 

induced path/ 
order 

(undirected) 
radius/ order 
(undirected) 

FW RAM FW RAM FW RAM FW RAM FW RAM FW RAM FW RAM FW RAM
5 

ALE  1 0.28 0.29 0.00 0.06 0.44 0.44 0.00 0.01 0.10 0.09 0.33 0.35 0.31 0.32 0.00 0.06
5 

GSL  5 0.29 0.30 0.16 0.17 0.60 0.60 0.02 0.02 0.10 0.10 0.29 0.30 0.29 0.27 0.06 0.07
5 

LDB  13 0.25 0.27 0.00 0.07 0.35 0.40 0.00 0.02 0.19 0.20 0.50 0.47 0.44 0.47 0.00 0.13
5 

LRI  14 0.27 0.27 0.13 0.13 0.37 0.37 0.05 0.05 0.13 0.13 0.40 0.40 0.47 0.47 0.13 0.13
5 

NAR  12 0.36 0.36 0.21 0.21 0.46 0.46 0.07 0.07 0.14 0.14 0.36 0.36 0.57 0.57 0.14 0.14
5 

PRA  17 0.19 0.19 0.13 0.13 0.40 0.40 0.04 0.04 0.13 0.13 0.44 0.44 0.50 0.50 0.13 0.13
5 

PW2  19 0.15 0.38 0.06 0.08 0.32 0.47 0.01 0.03 0.11 0.23 0.32 0.54 0.32 0.38 0.04 0.08
5 

SAK  16 0.33 0.32 0.00 0.11 0.60 0.47 0.00 0.02 0.10 0.16 0.26 0.37 0.23 0.42 0.00 0.11
5 

SRM  15 0.18 0.19 0.04 0.04 0.24 0.24 0.01 0.01 0.11 0.11 0.50 0.48 0.32 0.33 0.07 0.07
1+ 

GIR  8 0.29 0.29 0.06 0.06 0.38 0.38 0.02 0.02 0.18 0.18 0.41 0.41 0.47 0.47 0.12 0.12
1+ 

ICE  9 0.48 0.55 0.04 0.05 0.62 0.63 0.01 0.01 0.09 0.10 0.22 0.25 0.35 0.30 0.09 0.10
1+ 

KIN  10 0.31 0.31 0.08 0.08 0.42 0.42 0.03 0.03 0.23 0.23 0.46 0.46 0.54 0.54 0.15 0.15
1+ 

ONT  4 0.23 0.23 0.23 0.23 0.38 0.38 0.10 0.10 0.15 0.15 0.54 0.54 0.46 0.46 0.15 0.15
1+ 

PW1  18 0.28 0.28 0.11 0.11 0.35 0.35 0.04 0.04 0.17 0.17 0.44 0.44 0.50 0.50 0.11 0.11
1+ 

VIC  11 0.60 0.50 0.33 0.42 0.75 0.68 0.06 0.11 0.13 0.17 0.33 0.42 0.33 0.42 0.07 0.08
1+ 

WED  2  0.26 0.27 0.05 0.07 0.29 0.28 0.02 0.03 0.21 0.20 0.47 0.53 0.37 0.40 0.11 0.13
0 

AYD  6 0.60 0.60 0.40 0.40 0.71 0.71 0.13 0.13 0.20 0.20 0.40 0.40 0.40 0.40 0.10 0.10
0 

GBR  7 0.29 0.50 0.13 0.25 0.49 0.61 0.02 0.18 0.26 0.25 0.29 0.50 0.32 0.38 0.06 0.13
0 

KAR  21 0.33 0.33 0.11 0.11 0.39 0.39 0.07 0.07 0.22 0.22 0.44 0.44 0.56 0.56 0.22 0.22
0 

TAN  3 0.83 1.00 0.67 0.75 1.07 1.00 0.25 0.50 0.33 0.25 0.33 0.25 0.50 0.50 0.17 0.25
0 

WFS  20 0.24 0.50 0.07 0.17 0.49 0.40 0.00 0.17 0.07 0.17 0.22 0.67 0.29 0.50 0.03 0.17
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Fig. 3 b 

 

Fig. 3 c 

 
Fig. 3 d 
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Fig. 3 h 

Fig. 3 a-h Depicts data shown in Table 3. Each panel, a-h, is a different metric calculated on the Food Web (FW in dark gray) 
and associated RAM (light gray) for each network system. Network name abbreviations are listed in Table 1.  

 

 

 

3.3 Cluster analysis 

The food web network of the West Florida Shelf in the USA was unique to all other food webs (Figs. 4a, 5a). 

Conversely, the RAMS of Weddell Sea in Antarctica, Antarctica and Lake Aydat in France were similar to 

each other and different from all other RAMS (Figs. 4b, 5b).  
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Other studies have also demonstrated that food webs from different types of ecosystems (i.e. marine, estuarine, 

fresh-water, terrestrial) share fundamental structural and ordering characteristics, despite variable diversity and 

complexity inherent in the web (Camacho et al., 2002; Dunne et al., 2004).  

Based on the cluster analysis, environmental and geographical characteristics have little to do with how 

food webs are related to each other. There are no apparent environmental or geographical distinctions that 

easily explain why the West Florida Shelf, USA system was unique from all other systems or why the Weddell 

Sea, Antarctica and Lake Aydat, France cluster separately from all other systems. Most likely, West Florida 

Shelf system stands out from other systems because of the original motivation for creating the model. The 

modelers wanted to investigate the effect of phytoplankton shading on benthic primary production. This 

research question is quite different than that motivating any of the other study system (Table 2). Therefore, the 

uniqueness of ecosystems may be attributed to the research question structuring the model, rather than the 

inherent organization or structure of the ecosystem itself. 

We attempted to control for some of the variability, inherent model construction for different research 

purposes and goals, by removing circuits and reducing full food webs into RAMS. Several other studies that 

examined food webs for similar network structures only considered substructures on full food webs (Borrelli, 

2015; Stouffer et al., 2007). Despite our attempt to normalize models against initial construction biases, it is 

possible that RAMS still capture some of these model construction biases. For example, if food web A has one 

group called ‘planktivorous fish’ preying on zooplankton compared to food web B having three groups called 

‘herring’ and ‘mackerel’ and ‘sandlance’  all preying on zooplankton, then those two webs could look different 

after reducing them to RAMS.  How modelers aggregate groups of species does impact network ecology and 

graph theory metrics. Modelers often make their decision on how to group species based on a particular 

research focus (Table 2). In this study, we used all Ecopath derived models and it is a common practice that 

Ecopath modelers aggregate species into functional groups, based on available data, in order to limit the 

number of nodes and produce a manageable sized network (Christensen et al., 2008). We found a high degree 

of aggregation, where most models contained a high percentage of nodes that included several functionally 

similar species, as opposed to a single species (Table 2). It is suggested that the optimal number of nodes, 12-

24, above and below which mass balance food web models become less helpful for understanding these 

complex systems (Christensen et al., 2008; Plagányi, 2004; Plagányi, 2007). In this study, we then further 

aggregate species across trophic levels by removing cycling to reduce SCCs to a single node (Allesina et al., 

2005) (Table 2). These types of aggregation methods have the similar objective of reducing complexity. 

Furthermore, PCA and cluster analyses results are very similar for FW and RAMS which is justification for 

creating RAMS in the first place.  

Alesina et al. (2005) only found four out of 17 food webs that did not reduce to a single node after a 

process similar to our RAM construction. Allesina et al. (2005) uses the term DAGs – Directed Acyclic Graphs 

to describe the same thing as our RAMS. The term DAG describes a particular type of mathematical object that 

implies an abstract mathematical structure whereas we feel the term RAM more clearly represents the object 

itself. We discovered that the food webs in our data set also had high cyclicity before removing detritus. Once 

the nodes associated with detritus were removed from our food webs, we found many more “interesting” 

reduced graphs.  

This study further emphasizes that food webs are not random and that they are more similar across a range 

of ecosystem types than may be predicted. The similarities we were able to identify were embedded in the 

graphical structure of the network and are not necessarily connected to obvious environmental or geographical 

properties of the ecosystems themselves. These findings emphasize the importance of using innovative 

techniques for investigating and quantifying complex networks for the purpose of ecosystem management.  
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