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Abstract 

In present study, I proposed a node degree dependent random perturbation algorithm for prediction of missing 

links in the network. In the algorithm, I assume that a node with more existing links harbors more missing 

links. There are two rules. Rule 1 means that a randomly chosen node tends to connect to the node with greater 

degree. Rule 2 means that a link tends to be created between two nodes with greater degrees. Missing links of 

some tumor related networks (pathways) are predicted. The results prove that the prediction efficiency and 

percentage of correctly predicted links against predicted missing links with the algorithm increases as the 

increase of network complexity. The required number for finding true missing links in the predicted list 

reduces as the increase of network complexity. Prediction efficiency is complexity-depedent only. Matlab 

codes of the algorithm are given also. Finally, prospect of prediction for missing links is briefly reviewed. So 

far all prediction methods based on static topological structure only (represented by adjacency matrix) seems 

to be low efficient. Network evolution based, node similarity based, and sampling based (correlation based) 

methods are expected to be the most promising in the future. 
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1 Introduction 

Many biological networks (food webs, protein–protein interaction networks and metabolic networks, etc) are 

incomplete networks due to missing links. For example, 80% of the molecular interactions in cells of Yeast 

(Yu et al., 2008) and 99.7% interactions of human (Amaral, 2008) are unknown. An incomplete network 

occurs due to our limited knowledge on the network, or the network is in evolution and thus more links or even 

nodes are expected with time. Link (connection) prediction tries to estimate the likelihood of the existence of a 

link between two nodes based on observed links and (or) the attributes of nodes (Zhang, 2015d; Zhou, 2015). 

Link prediction can largely reduce the experimental costs for link finding. Also, link finding algorithms can be 

used to predict the links that may appear in the future of evolving networks (Lü and Zhou, 2011; Lü et al., 
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2012; Zhou, 2015). So far, numerous research on link prediction have been conducted (Clauset et al., 2008; 

Guimera and Sales-Pardo, 2009; Barzel and Barabási, 2013; Bastiaens et al., 2015; Lü et al., 2015; Zhang, 

2015b, 2015c, 2015d, 2016b; Zhang and Li, 2015; Zhao et al., 2015; Zhou, 2015). In present study, I will 

propose an algorithm for prediction of missing links in the network, in which the likelihood of missing links of 

a node depends on the node degree. 

 

2 Methods 

2.1 Algorithm 

Link prediction is closely correlated with network evolution. Following the principle of network evolution of 

Zhang’s model (Zhang, 2016a), in present algorithm I assume that a node with more existing links harbors 

more missing links. It is a reasonable and practical assumption because new nodes tend to connect the nodes 

with more links (Barabasi and Albert, 1999; Zhang, 2012a; Zhang, 2016a).  

Assume there are totally v nodes in the network being predicted, and adjacency matrix of the network is 

d=(dij), i, j=1,2,…,v, where dij=dji, dii=0, and if dij=1 or dji=1, there is a link (connection) between nodes i and 

j. The adjacency matrix of the network for missing links only is D=(Dij), i, j=1,2,…,v. The procedures are as 

follows 

   (1) Calculate the expected missing links to be predicted, m=m’per, where m’ is the total links of the 

network, per is the perturbation rate, and per=0.2, 0.3, etc., which represents a percentage increment of links in 

the network perturbation.  

(2) Calculate the degree of node, ai(t), i=1,2,…,v. The cumulative attraction strength of node 1 to node i is  
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where  is attraction factor, >0. For example, =1.2, 1.5, etc.  

(3) Generate missing links. Let p0=0, and generate two random values w and u. For p0, p1, p2,…, pv, one of  

the following two rules is used 

    Rule 1: if (j-1)/vwj/v, pk-1upk, kj, and dkj=djk=0, let Dkj=1 and Djk=1, i.e., there is a missing link 

between nodes k and j.  

Rule 2: if pj-1(t)wpj(t), pk-1(t)upk(t), kj, and dkj=djk=0, let Dkj=1 and Djk=1, i.e., there is a missing 

link between nodes k and j. 

Rule 1 means that a randomly chosen node tends to connect to the node with greater degree. Rule 2 

means that a link tends to be created between two nodes with greater degrees. By doing so, a new link is 

found. Repeat the procedure m times to produce m (missing) links. By doing so, an adjacency matrix of the 

network for missing links only, D=(Dij), i, j=1,2,…,v, is generated. 

   (4) Return (3) to perform the next prediction, until the desired simulation times are achieved. 

  (5) Calculate mean number (likelihood) of predicted missing links, and rank the likelihood from greater to 

smaller. The first m links are the predicted missing links with maximal likelihood. 

    The following are Matlab codes of the algorithm (linksPrediction.m)  

 

%Reference: Zhang WJ. 2016. A node degree dependent random perturbation method for prediction of missing links in the 

network. Network Biology, 6(1): 1-11 

clear 

choice=input('Input the type (1 or 2) of data file of the network from which missing links are ready to be predicted (1: adjacency 

matrix; 2: two array): ');  
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disp('Adjacency matrix: d=(dij)m*m, where m is the number of nodes in the network. dij=1, if vi and vj are adjacent, and dij=0, 

if vi and vj are not adjacent; i, j=1,2,…, m'); 

disp('Two array: there are two columns, A1 and A2, in the data file; an element of A1 stores a node of a link and the 

corresponding element of A2 stores another node of the link. '); 

if (choice==1) 

adjstr=input('Input the file name of adjacency matrix from which missing links are ready to be predicted (e.g., raw.txt, raw.xls, 

etc. Adjacency matrix is d=(dij)m*m, where m is the number of nodes in the network. dij=1, if vi and vj are adjacent, and dij=0, 

if vi and vj are not adjacent; i, j=1,2,…, m: ','s'); 

end 

if (choice==2) 

adjstr=input('Input the file name of two array of the network from which missing links are ready to be predicted (e.g., raw.txt, 

raw.xls, etc. There are two columns, A1 and A2, in the data file; an element of A1 stores a node of a link and the corresponding 

element of A2 stores another node of the link: ','s'); 

end 

rule=input('Input the rule type (1 or 2) used in the algorithm: ');  

pro=input('Input perturbation rate to increase missing links of the network (e.g, 0.2, 0.3, etc.): '); 

lamda=input('Attraction factor of nodes (lamda>0; e.g., 1.3, 1.5, etc.)= ');   

simu=input('Input the simulation times (e.g, 100, 200, etc.): '); 

if (choice==1) adjmat=load(adjstr); v=size(adjmat,2); end 

if (choice==2)  

twoarray=load(adjstr); 

nn=size(twoarray,1);   

v=max(max(twoarray)); 

for i=1:nn 

adjmat(twoarray(i,1),twoarray(i,2))=1;  

adjmat(twoarray(i,2),twoarray(i,1))=1; 

end; end 

degr=sum(adjmat); 

m=round(sum(degr)/2*pro); 

fprintf('\nAdjacency matrix of the original network\n') 

disp([adjmat]) 

fprintf('\nNode degrees of adjacency matrix of the original network\n') 

disp([degr]) 

fprintf(['\nMean of node degrees of the original network: ' num2str(mean(degr)) '\n\n']) 

cnow=(sum(degr)/2)/((v^2-v)/2); 

fprintf(['\nConnectance=' num2str(cnow) '\n'])  

summ=sum(degr); 

summa=sum(degr.*(degr-1)); 

h=v*summa/(summ*(summ-1)); 

fprintf(['\nAggregation index (AI) of node degrees=' num2str(h) '\n'])  

cv=(std(degr))^2/mean(degr); 

fprintf(['\nCoefficient of variation (CV) of node degrees=' num2str(cv) '\n'])  

summ=v*(v-1)/2; 

su=zeros(summ,2*simu); 

prop=zeros(1,v); 
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proptot=zeros(v); 

degrr=degr.^lamda; 

prop(1)=degrr(1)/sum(degrr); 

for i=2:v; 

prop(i)=prop(i-1)+degrr(i)/sum(degrr); 

end 

for siml=1:simu 

adj=zeros(v);  

temp=zeros(m,2); 

mm=1; 

while (v>0)     

rep=0; 

while (v>0) 

propp=prop; 

if ((rep==0) & (rule==1)) 

for i=1:v; 

propp(i)=i/v; 

end; end 

ran=rand(); 

for j=1:v 

if (j==1) st=0; end 

if (j>=2) st=propp(j-1); end 

if ((ran>=st) & (ran<propp(j))) rep=rep+1; id(rep)=j; break; end 

end 

if ((rep>=2) & (id(rep)~=id(1)))  

tab=0; 

for i=1:mm 

if (((id(1)==temp(i,1)) & (id(rep)==temp(i,2))) | ((id(rep)==temp(i,1)) & (id(1)==temp(i,2)))) tab=1; break; end 

end 

if (tab==1) continue; end; 

temp(mm,1)=id(1); temp(mm,2)=id(rep);  

break; 

end; end  

if (adjmat(id(1),id(rep))==0) adj(id(1),id(rep))=1; adj(id(rep),id(1))=1; mm=mm+1; end; 

if (mm==m+1) break; end; 

end 

fprintf(['Simulation ' num2str(siml)]) 

fprintf('\n\nAdjacency matrix for predicted links only\n') 

disp([adj]) 

[pairx,pairy]=find(adj); 

temp1=pairx; temp2=pairy; 

pairxs=pairx(temp1<temp2); 

pairys=pairy(temp1<temp2); 

ConnectionPairs=[pairxs pairys]; 

dm=size(ConnectionPairs,1); 

4



Network Biology, 2016, 6(1): 1-11 

 IAEES                                                                                     www.iaees.org

su(:,siml*2-1)=[pairxs;zeros(summ-dm,1)]; su(:,siml*2)=[pairys;zeros(summ-dm,1)];  

disp('Predicted links') 

disp([ConnectionPairs]) 

end 

disp('--------------------------------Summary---------------------------------') 

disp(['There are totally ' num2str(sum(degr)/2) ' links in the original network']) 

disp(['You wish to predict ' num2str(m) ' missing links in the original network']) 

fprintf('\n'); 

proptot=zeros(v); 

for i=1:v-1 

for j=i+1:v 

for k=1:simu 

for l=1:v*(v-1)/2 

if ((su(l,k*2-1)==i) & (su(l,k*2)==j)) proptot(i,j)=proptot(i,j)+1; proptot(j,i)=proptot(i,j); break; end 

end; end; end; end 

disp('Likelihood (mean number) of predicted links: ') 

disp('   Node     Node     Likelihood') 

s=0; 

for j=1:v 

for i=1:v 

if (proptot(i,j)~=0) s=s+1;pairvalue(s)=proptot(i,j)/simu; end; 

end; end 

[pairx,pairy]=find(proptot); 

result=[pairx pairy pairvalue']; 

results(1,1)=result(1,1); results(1,2)=result(1,2); results(1,3)=result(1,3); 

su=1; 

for i=2:s 

lab=0; 

for j=1:i-1 

if ((result(j,2)==result(i,1)) & (result(j,1)==result(i,2))) lab=1; break; end; 

end 

if (lab==0) su=su+1;results(su,1)=result(i,1); results(su,2)=result(i,2); results(su,3)=result(i,3); end 

end 

ires=sortrows(results,-3); 

disp([ires]) 

 
2.2 Validation  

In present study, I used the data of tumor related networks (pathways) (ABCAM, 2012; Huang and Zhang, 

2012; Li and Zhang, 2013; Pathway Central, 2012; See supplementary material for adjacency matrices). These 

networks are complete. For each network, some links are removed following reverse process of the algorithm 

above and then predicted. The simulation times are set to be 100. The perturbation rate is per=0.25. 

Attraction factor =1.5. 
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3 Results 

3.1 Rule 1 

Some of the summarized results for link prediction of tumor related networks (the pathways Ras, p53, Akt, 

HGF, JNK, PPAR, TGF-β, and TNF) are listed in Table 1 and 2, and the percentages of correctly predicted 

links with randomization method are given also. Here, the percentage of correctly predicted links against 

number of missing links (%) = correctly predicted links / number of missing links 100, and the percentage 

of correctly predicted links against predicted missing links (%) = correctly predicted links / total of predicted 

missing links 100, connectance = number of observed links / number of possible maximum number of links. 

 

 
Table 1 Link prediction of Ras, p53, and Akt networks with Rule 1 (per=0.25, =1.5, 100 simulations).  
The listed links are true links missed in the data used for predicting. 

Ras p53 Akt 

Rank Node Node Likelihood Rank Node Node Likelihood Rank Node Node Likelihood

28 9 5 0.04 82 47 32 0.04 465 35 31 0.01

34 28 5 0.04 138 47 33 0.03 151 50 12 0.02

58 22 5 0.03 140 47 36 0.03 2 51 15 0.18

137 10 5 0.02 88 48 47 0.04 1 51 16 0.2

140 25 5 0.02 11 52 4 0.07 26 51 24 0.1

230 31 28 0.02 61 52 9 0.04 17 51 28 0.12

392 35 34 0.01 4 52 10 0.09 28 51 31 0.1

269 52 30 0.02 36 51 38 0.07

18 52 48 0.07 10 51 39 0.14

19 52 51 0.07 31 51 41 0.09

7 51 42 0.15

                20 52 51 0.12

 

 

According to Table 1 and 2, the regression relationships between aggregation index (u), coefficient of 

variation (w) (Zhang and Zhan, 2011; Zhang, 2012a), and prediction efficiency (z=x/y, where x is the 

percentages of correctly predicted links, and y is the averaged ranks before which all missing links fall in the 

list of predicted links), the percentage (%) of correctly predicted links against predicted missing links (q), and 

the rate of the averaged rank before which all missing links fall in the list of predicted links vs. total number 

of predicted missing links (f) are as follows 

 

Algorithm prediction: 

             z=0.320+0.344u   r2=0.318, p=0.019<0.05, n=17       

             z=0.465+0.192w  r2=0.323, p=0.017<0.05, n=17  

             q=1.349+0.243u  r2=0.106, p=0.203, n=17  

             q=1.427+0.154u  r2=0.139, p=0.141, n=17  

             f=0.438-0.125u   r2=0.306, p=0.021<0.05, n=17        

             f=0.389-0.073w   r2=0.341, p=0.014<0.05, n=17       

Randomization prediction: 

             z=0.485-0.106u   r2=0.149, p=0.125, n=17       

             z=0.445-0.063w  r2=0.171, p=0.099<0.1, n=17   
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             q=1.615-0.349u  r2=0.259, p=0.038<0.05, n=17  

             q=1.451-0.182u  r2=0.229, p=0.051<0.01, n=17  

             f=0.476-0.088u   r2=0.156, p=0.117, n=17        

             f=0.436-0.046w   r2=0.142, p=0.136, n=17       

 

Thus prediction efficiency and the percentage of correctly predicted links against predicted missing links 

with the algorithm increases as the increase of network complexity. Generally, the rate of averaged rank of 

true missing links in the list of predicted missing links declines as the network complexity, which means the 

required number for checking true missing links in the predicted list reduces as the increase of network 

complexity.  

Compared to the prediction of randomization method, in general, the results of the algorithm are effective, 

i.e., the present algorithm is effective in predicting missing links of biological networks (Table 1, 2). 

Both mean of node degrees and connectance have not significant relationships with prediction efficiency. 

Thus prediction efficiency is complexity-depedent only. 

    

Table 2 Link prediction of some tumor related networks of missing links with Rule 1 (per=0.25, =1.5). 

  PPAR TGF-β TNF STAT3 mTOR Ras EGF PTEN JAK-STAT

Mean of node degrees 1.85 1.79 2.06 1.75 1.83 1.71 1.96 2.06 2.09 

Connectance 0.07 0.05 0.07 0.08 0.04 0.05 0.04 0.06 0.05 

Possible maximum number of candidate links  326 669 433 255 993 565 1431 494 858 

Aggregation Index (Zhang and Zhan, 2011; 

Zhang, 2012a ) 

Coefficient of variation (Zhang and Zhan, 

2011; Zhang, 2012a) 

0.68 

0.40 

0.78 

0.61 

0.85 

0.68 

0.72 

0.51 

0.75 

0.54 

0.75 

0.57 

0.73 

0.47 

0.91 

0.82 

0.91 

0.81 

Percentage (%) of correctly predicted links 

against true missing links with the 

algorithm (x) 

83.3 75.0 87.5 100 80.0 87.5 84.6 75.0 45.5 

Percentage (%) of correctly predicted links 

against predicted missing links with the 

algorithm   

1.9 1.3 2.0 2.6 1.4 1.8 1.3 1.7 0.9 

Number of missing links 6 8 8 5 10 8 13 8 12 

Total number of predicted links with 100 

simulations 
257 448 346 195 575 392 823 348 545 

The averaged rank before which all missing 

links fall in the list of predicted links (y)  
115 190 179 114 202 127 432 47 99 

Prediction efficiency (x/y) 0.7243 0.3947 0.4888 0.8772 0.396 0.689 0.1958 1.5957 0.4596 

Percentage (%) of correctly predicted links 

against true missing links with 

randomization method (x) 

100 75 87.5 60.0 70.0 37.5 61.5 100 45.5 

Percentage (%) of correctly predicted links 

against predicted missing links with 

randomization method   

2.2 1.3 1.9 1.4 1.1 0.7 0.9 2.0 0.8 

Total number of predicted links with 100 

simulations 
270 466 375 217 651 424 853 398 617 

The averaged rank before which all missing 

links fall in the list of predicted links (y) 
120 148 175 84 338 103 239 302 102 

Prediction efficiency (x/y) 0.8333 0.5068 0.5 0.7143 0.2071 0.3641 0.2573 0.3311 0.4461 

 

3.2 Rule 2 

In the step (3) of the algorithm, I use the Rule 2 for prediction. The results for some pathways are listed in 

Table 3. Compared to the Rule 1, the percentages (%) of correctly predicted links with the algorithm calculated 
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from the Rule 2 are overall smaller. However, the prediction efficiency of Rule 2 is generally higher. The 

major regression relationships and conclusions are similar to Rule 1. Moreover, the prediction efficiency of the 

algorithm increases dramatically as the network complexity. 

  

Table 2 (continue) Link prediction of some tumor related networks of missing links with Rule 1 (per=0.25, =1.5). 

  p53 Akt HGF JNK PI3K MARK FAS ERK 

Mean of node degrees 1.96 1.69 1.67 2.67 2.25 2.14 1.88 2.27 

Connectance 0.04 0.03 0.05 0.06 0.04 0.04 0.04 0.04 

Possible maximum number of candidate links  1275 1604 600 1064 1532 1591 1277 1702 

Aggregation Index (Zhang and Zhan, 2011; ; Zhang, 2012a) 

Coefficient of variation (Zhang and Zhan, 2011; Zhang, 

2012a) 

1.50 

1.99 

3.59 

5.42 

0.96 

0.93 

1.72 

2.96 

0.97 

0.93 

1.22 

1.46 

1.17 

1.32 

1.41 

1.93 

Percentage (%) of correctly predicted links against true 

missing links with the algorithm (x) 
76.9 100 57.1 100 68.8 53.3 75.0 94.1 

Percentage (%) of correctly predicted links against 

predicted missing links with the algorithm   
1.6 2.2 1.1 2.6 1.2 0.9 1.4 1.8 

Number of missing links 13 12 7 16 16 14 12 17 

Total number of predicted links with 100 simulations 642 542 354 612 899 819 640 883 

The averaged rank before which all missing links fall in 

the list of predicted links (y)  
64 66 102 93 240 202 80 179 

Prediction efficiency (x/y) 1.2016 1.5152 0.5598 1.0753 0.2867 0.2639 0.9375 0.5257

Percentage (%) of correctly predicted links against true 

missing links with randomization method (x) 
61.5 25.0 71.4 75.0 68.8 66.7 75.0 76.5 

Percentage (%) of correctly predicted links against predicted 

missing links with randomization method   
0.9 0.3 1.2 1.4 1.1 1.0 1.2 1.2 

Total number of predicted links with 100 simulations 823 862 423 839 990 974 770 1073 

The averaged rank before which all missing links fall in 

the list of predicted links (y) 
343 106 219 296 409 262 177 505 

Prediction efficiency (x/y) 0.1793 0.2358 0.326 0.2534 0.1682 0.2546 0.4237 0.1515

 

Table 3 Link prediction of some tumor related networks (pathways) of missing links with Rule 2 (per=0.25, =1.5). 

  Ras p53 Akt HGF JNK PPAR TGF-β TNF 

Percentage (%) of correctly predicted links with the algorithm (x) 62.5 92.3 50.0 57.1 75.0 33.3 37.5 62.5 

Percentage (%) of correctly predicted links against predicted missing links 

with the algorithm   
0.7 0.9 0.2 1.5 1.2 1.8 1.5 1.7 

Total number of predicted links with 100 simulations 314 388 301 300 404 221 304 291 

The averaged rank before which all missing links fall in the list of 

predicted links (y)  
74 92 6 78 81 41 63 95 

Prediction efficiency (x/y) 0.8446 1.0033 8.3333 0.7321 0.9259 0.8122 0.5952 0.6579

Percentage (%) of correctly predicted links against number of missing 

links with random network (x) 
37.5 53.9 16.7 85.7 62.5 83.3 87.5 75.0 

Percentage (%) of correctly predicted links against predicted missing links 

with random network   
1.6 3.1 2.0 1.3 2.9 0.9 0.9 1.7 

Total number of predicted links with 100 simulations 411 823 851 412 838 277 478 359 

The averaged rank before which all missing links fall in the list of 

predicted links (y) 
77 325 23 213 246 55 184 111 

Prediction efficiency (x/y) 0.487 0.1658 0.7261 0.4023 0.2541 1.5145 0.4755 0.6757
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4 Discussion 

As stated above, random prediction is overall effective for the random networks only. However, in practical 

applications, most networks are complex networks. Thus the algorithm is effective in predicting missing links 

in most cases. The prediction efficiency of the algorithm increases as the increase of network complexity. 

Therefore, the algorithm is more efficient for the networks of higher complexity. 

The changes of  can reflect various effects of the node degree on connection mechanism. The larger  

will lead to find more missing links of the nodes with greater node degree. 0 means a trend to random 

prediction. How to fix a suitable value of , is specific to practical problems.  

Lü et al. (2015) proposed the structural perturbation method (SPM) to predict missing links and argued that 

its prediction ability was stronger than previous methods. However, I affim their method does not hold due to 

the following reasons: (1) Mechanically, the structural perturbation method can only be used to analyze 

structural stability of dynamic systems. The static structure of a network, expressed by an adjacent matrix, is 

the topological structure, which cannot represent the dynamic charicteristics of the network evolution. 

Pediction of missing links should be conducted on the basis of mechanism of network evolution (dynamics). 

Without loss of generality, network evolution may be approximated with a group of linear differential 

equations (Zhang, 2015a). And the structural stability of the network was determined by the eigenvalues but 

not eigenvectors of system matrix. Even so, the structural perturbation method for determining the variables 

with least impact on structural stability should only be used around the equilibrium states of the system rather 

than the states far away the equilibrium. (2) During the evolution of a network, the generated links with most 

likehood are not necessarily those links that minimaly perturb the topological structure of the network. On the 

premise of not destroying the structural stability of the system and no other limitations, any links will prepare 

to be created. A most occurred case is that two nodes with most similarity will firstly connect to each other. (3) 

Utilization of missing links in the prediction model to predict missing links, as done by Lü et al. (2015), is 

somewhat similar to model fitting but not prediction. In this case, the stronger “prediction” ability (precisely, 

fitting ability) is surely expected.  

So far all prediction methods based on static topological structure only (represented by adjacency matrix) 

seems to be low efficient. Network evolution based (Zhang, 2012a, 2012c, 2015a, 2016a, 2016b), node 

similarity based (Zhang, 2015d), and sampling based (correlation based; Zhang, 2007, 2011, 2012b, 2013, 

2015b; Zhang and Li, 2015) methods are expected to be the most promising in the future. 
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