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Abstract 

Evolutionary Network Control (ENC) has been first introduced in 2013 to effectively subdue network-like 

systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks 

should be based on the identification of the set of driver nodes that can guide the system’s dynamics, in other 

words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven 

to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics) of 

linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network 

dynamics) control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. 

Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear 

networks as well, so that also intermediate steps (not only the final state) are under our strict control. ENC can 

be readily applied to any kind of ecological, biological, economic and network-like system. 

 

Keywords Evolutionary Network Control; genetic algorithms; intermediate control function; local dynamics; 
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1 Introduction 

Evolutionary Network Control (ENC) has been recently developed to control any kind of ecological and 

biological networks from inside (Ferrarini, 2013) and from outside (Ferrarini, 2013b), by coupling network 

dynamics and evolutionary modelling (Holland, 1975). The endogenous control requires that the network is 

optimized at the beginning of its dynamics, by acting upon nodes, edges or both, so that it will inertially go to 

the desired state. The exogenous control requires that one or more exogenous controllers act upon the network 

at each time step.  

ENC can be applied to both discrete-time (i.e., systems of difference equations) and continuous-time (i.e., 

systems of differential equations) networks. ENC opposes the common idea in the scientific literature that 

controllability of networks should be based on the identification of the set of driver nodes that can guide the 
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system’s dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently 

controlled (Ferrarini, 2011). ENC makes use of an integrated solution (network dynamics - genetic 

optimization - stochastic simulations) to compute reliability of network control (Ferrarini, 2013c), and 

introduced the concepts of control success and feasibility (Ferrarini, 2013d). ENC makes use of intermediate 

control functions to locally (step-by-step) drive ecological and biological networks, so that also intermediate 

steps (not only the final state) are under its control (Ferrarini, 2014). ENC can also globally subdue nonlinear 

networks (Ferrarini, 2015), and impose early or late stability to any kind of ecological and biological network 

(Ferrarini, 2015b). 

 

Table 1 Evolutionary network control and its developed variants. 

Reference Purpose 

Ferrarini 2011 Theoretical bases of Evolutionary Network Control 

Ferrarini 2013 Endogenous control of linear ecological and biological networks 

Ferrarini 2013b Exogenous control of linear ecological and biological networks 

Ferrarini 2013c Computing the uncertainty associated with network control 

Ferrarini 2013d Computing the degree of success and feasibility of network control 

Ferrarini 2014 Local control of linear ecological and biological networks 

Ferrarini 2015 Global control of nonlinear ecological and biological networks 

Ferrarini 2015b Imposing early/late stability to linear and nonlinear networks  

This work Local control of nonlinear ecological and biological networks 

 

 

In this work, I show how ENC can locally control any kind of nonlinear networks, and I provide an 

applicative example based on the nonlinear, widely-used, Lotka-Volterra model (Lotka, 1925; Volterra, 1926). 

Of course, any other kind of ecological, biological, economic and network-like system is prone to be 

controlled by ENC. 

 

2 Mathematical Formulation 

2.1 Opening definitions 

A generic ecological (or biological) dynamical system with n interacting actors is given as follows 

( ( ))
d

t
dt

S
S            (1) 

where Si is the amount (e.g., number of individuals, total biomass, density, covered surface etc…) of the 

generic i-th actor (i.e., species, population, taxonomic group etc.) . If we also consider time-dependent inputs 

(e.g., species reintroductions) and outputs (e.g., hunting) from-to outside, we must write 

( ( )) ( ) ( )
d

t t t
dt

  
S

S I O         (2) 

with initial values 

0 1 2 n=<S (0), S (0)...S (0)>S         (3) 

and co-domain limits  
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The nonlinear Lotka-Volterra model with logistic grow of the prey S1 is a particular case of (1) and it reads as 

follows 

1 1
1 1 2

2
1 2 2
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dt
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with initial values 

0 1 2=< (0),  (0)>S SS          (6) 

and co-domain limits  
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and equilibrium at 

1

2

      with 0  
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        (8) 

 

2.2 Local control of nonlinear networks through the intermediate control function (ICF) 

ENC has been developed so that it can also control intermediate dynamics of linear and nonlinear networks 

(Ferrarini, 2014) and not only their final state (Ferrarini, 2013; Ferrarini, 2013b).   

To this purpose, ENC introduces the concept of intermediate control function (ICF; Ferrarini, 2014) and 

then controls each single step of network dynamics by subduing ICF. Using the ICF, ENC can effectively 

reach the following goals. 

2.2.1 Freezing any network actor to a desired state 

For instance, we want the prey S1(t) (or the predator S2(t)) to stay as close as possible to a certain value during 

its dynamics. In this case, ICF must be formulated as follows 

0

( )  
E

i

t

ICF k S t dt


 
         (9)

 

where t is time (independent variable), E indicates the time at which the system goes to equilibrium, k is the 

value at which we want Si(t) to be tied to, vertical lines indicates the module of the difference.  

ENC reaches its goal by optimizing the ecological/biological network in order to achieve the minimization 

of ICF. This goal can be achieved using genetic algorithms (Holland, 1975) for the endogenous optimization 
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(Ferrarini, 2013) of network edges (i.e., interaction among species) or nodes (i.e., species stocks), i.e. the 

modification of their values at the beginning of the network dynamics in order to minimize ICF.  

Alternatively an exogenous control can be applied on exogenous node’s edges (i.e., coefficients of 

interaction with the inner system) and exogenous node’s stock (Ferrarini, 2013b).  

As a result, ENC can constrain Si(t) as close as possible to k along its dynamics. 

2.2.2 Binding two or more network actors together 

For instance, we want to tie the prey S1(t) to the predator S2(t). In this case, ENC uses the following ICF to be 

minimized: 

1 2

0

( ) ( )  
E

t

ICF S t S t dt


 
        (10)

 

As a results, S1 and S2 are bound together (i.e. S1≈S2) along the whole network dynamics. 

2.2.3 Freezing any actor to a desired function 

We want here to tie the generic actor Si to a function of the other actor Sj. For instance, we could force the 

predator S2 to be always twice the prey S1 during network dynamics. 

In this case, ENC uses the following equation to be minimized 

0

( ( )) ( )  
E

j i

t

ICF f S t S t dt


 
        (11) 

As a results, Si and f(Sj) are tied together (i.e. Si ≈ f(Sj)) along the whole network dynamics. 

2.2.4 Controlling each single change of any actor 

We impose here that the generic actor Si changes from step to step of a certain value u 

0

( )
-  

E
i

t

dS t
ICF u dt

dt

 
        (12)

 

By minimizing ICF, we impose that Si changes of exactly u at each time step. 

2.2.5 Limiting the control to a certain time interval 

In this case the previous equations must be changed to operate mathematical integration from time T1 to time 

T2 (and not from 0 to E), where T1 and T2 are generic points along the timeline. 

 

3 An Applicative Example 

Let’s consider the Lotka-Volterra system of Eq. (5) with the following parameters and constants: 

 

S1(0)=85 

S2(0)=20 

=3 

=0.02 

=1.2 

=2 

=500 

dt=0.01 

                      (13)  

Fig. 1 shows its dynamical behavior. Fig. 2 depicts its phase plot. 
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Fig. 1 Time plot of the nonlinear Lotka-Volterra dynamical system described in (13). 

 

 

 
Fig. 2 Phase plot of the nonlinear Lotka-Volterra dynamical system described in (13). 

 

 

The previous nonlinear system goes at equilibrium at E= 68.74 with S1= 83.33 and S2= 125.00. The 

average absolute distance between S1 and S2 in the time span [0 - 68.74] is equal to 44.86. Now let’s suppose 

we want to halve this distance, i.e. to impose that it becomes equal to 22.43. By optimizing Eq. 10, ENC found 

the solution depicted in Fig. 3 with α= 2.4612, β= 0.0190, γ= 1.1886 while the other parameters were kept 

constant. 
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Fig. 3 ENC has found a solution to halve the average absolute distance between S1 and S2 (i.e., from 44.86 to 22.43) by acting  

upon α, β and γ while the other parameters were kept constant. 

 

 

Now let’s suppose we want to get the same result but only working on the carrying capacity κ.  ENC found 

the solution that requires κ to be equal to 149.808. The system stabilizes at E= 17.55 and the average absolute 

distance between S1 and S2 results to be 22.44 (Fig. 4). 

 

 

 

Fig. 4 ENC has found a solution to halve the average absolute distance between S1 and S2 (i.e., from 44.86 to 22.44) by acting  

upon the carrying capacity κ while the other parameters were kept constant. 
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With the parameters in (13), during the time span [0 – 68.74] the average absolute distance of two 

successive steps of S1 was equal to 0.11. Now let’s suppose we want to halve it by only working on the initial 

stocks of S1 and S2. By optimizing Eq. 12, ENC has found the solution depicted in Fig. 5, which stabilizes at 

E= 65.55 with initial stocks S1(0)= 85 and S2(0)= 62.67. 

 

 

 
 

Fig. 5 ENC has found a solution to halve the average absolute distance between two successive steps of S1  (i.e., from 0.11 to  

0.055) by acting upon the initial stocks of S1 and S2  while the other parameters were kept constant. 

 

 

Of course, by optimizing equations from (9) to (12) ENC is able to realize any other kind of control on 

nonlinear networks, as already showed for linear networks as well (Ferrarini, 2014). In addition, global and 

local controls can be coupled in ENC in order to achieve a complete control of network’s dynamics. The 

framework proposed here might also be applied to semi-quantitative networks (Ferrarini, 2011b).  

ENC has been applied using the software Control-Lab 5 (Ferrarini, 2015c) written in Visual Basic (Balena, 

2001; Pattison, 1998). 

 

4 Conclusions 

The control of ecological and biological networks is a pivotal and trendy topic. In this work, the theoretical and 

methodological framework named Evolutionary Network Control (ENC) has showed to be able to locally 

control any kind of nonlinear network, while in previous works it showed to be on top of globally and locally 

subduing linear networks, and of globally taming nonlinear networks.  

The potential applications of ENC in ecology and biology are virtually unlimited, for instance: a) neutralize 

damages to ecological and biological networks, b) safeguard rare and endangered species, c) manage 

ecological systems at the least possible cost, d) counteract the impacts of climate change, and e) balance the 

negative pressure due to human activities. ENC has been developed exactly with these purposes in mind. 
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