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Abstract 

Robustness refers to a system’s capacity for maintaining some performance when the system’s internal 

structure is perturbed. In previous study, network robustness, i.e., network structure robustness, includes both 

resistance capacity (connection robustness) of network structure to perturbation and restoration capacity 

(restoration robustness) of network structure if it is perturbed. Besides network structure robustness, in present 

paper I defined two more categories of robustness, network parameter robustness, and comprehensive 

robustness. Network parameter robustness refers to a network’s capacity, without any structural changes, for 

maintaining between-node flows (fluxes) / link weights if it is perturbed. Comprehensive robustness refers to 

the network’s capacity that not only the topological structure of the network, e.g., nodes and links, are not or 

less changed, but also between-node flows (fluxes), link weights, nodes’ state values are maintained also if the 

network is perturbed. Comprehensive robustness considers both structure and parameter changes of a network. 

Furthermore, some new indices for network parameter robustness, and comprehensive robustness were 

proposed. In addition to specialized indices for network robustness, the inverse of various indices of global 

sensitivity analysis were suggested as indices for network robustness. Differences between robustness and 

stability were discussed. Misuse or inaccurate use of robustness / stability in ecology was clarified. In addition, 

I proposed methods to facilitate network robustness. Parameters / properties of some robust bio-networks were 

analyzed and summarized.  

 

Keywords network; structure robustness; parameter robustness; comprehensive robustness; stability; 

sensitivity analysis; biological networks  

 

 

 

 

 

 

 

 

1 Introduction 

1.1 Definition and implication 

Perturbation of a system’s structure / parameters occurs occasionally. System perturbation occurs due to (1) 

external disturbances, and (2) internal factors such as unknown variables or mechanisms, structural catastrophe, 
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or slow drift of parameters / properties, etc. Robustness refers to a system’s capacity for maintaining some 

performance (stability, topological structure, functionality, or flux, etc.) if the system’s internal structure (or 

parameters) is perturbed. It denotes the insensitivity of system’s performance to perturbation of its structure / 

parameters (Zhang, 2016d). According to the specific types of system’s performances, robustness is divided 

into stability robustness and performance robustness. 

Robustness is the key for the survival of the system in the case of abnormal and dangerous situations. 

Robust control refers to control theory and methodology that maintains satisfied performance when system 

model encounters perturbation or other uncertain disturbances (Ferrarini, 2011, 2013, 2014, 2015).  

In terms of robustness of biological systems, Alon (2006) defined robustness as that a biological network 

can almost make its basic functions irrelevant to original biochemical parameters, while non-robustness was 

defined as fine-turned, i.e., system properties greatly change when biochemical parameters are perturbed (Alon 

et al., 1999). Robustness is related to the survival of organisms, which is a response to internal perturbation 

and which reflects the capacity of an organism’s internal organization (Zhang and Zhang, 2009).  

Exploiting the mechanism of robustness is very important for understanding biological networks, through 

which we can understand how biological networks maintain its own features under various disturbances, such 

as changes in the environment (lack of nutrition level, chemical induction, temperature), internal faults (DNA 

damage, genetic failure of metabolic pathways), etc (Zhang and Wang, 2009; Gao and Guo, 2011).  

1.2 Robustness and stability 

Stability is divided into state stability and structure stability. State stability is a system’s capacity to maintain 

its operation state after it is disturbed by external factors, while the system’s structure / parameters is / are 

maintained. State stability includes uniform stability, and asymptotic stability, etc. Structure stability denotes a 

system’s capacity to maintain its structure / parameters after it / they is / are disturbed by external factors.  

Robustness is a mapping from system’s structure / parameters to system’s performance, driven by the 

system’s perturbation, while stability is driven by external disturbance.  

Both robustness and stability are determined by a system’s structure / parameters.  

 

2 Network Robustness 

Complex networks are characterized by some or all of the properties of self-organization, self-similarity, 

attractors, small-world, and scale-free. Some of these properties, however, are occasionally disturbed or even 

destroyed.  

Network structure robustness is the capacity of the network for maintaining its functionality when network 

nodes or links are damaged (by random failures, malicious attacks, etc.) (Newman et al., 2006; Barabasi and 

Albert, 2000; Zhu and Liu, 2012). It includes both resistance capacity (connection robustness) of network 

structure to external damage and restoration capacity (restoration robustness) of network structure if it is 

damaged (Du et al., 2010). Research on network robustness have been widely reported (Kwon and Cho, 2007; 

Ash and Newt, 2007; Gao et al., 2006; Wang et al., 2006a, 2006b). Kwon and Cho (2007) studied the 

relationship between feedback structure and network structure robustness, and found that scale-free network 

model may evolve more feedback structures than random graph model and its network structure robustness 

enhanced considerably. Ash and Newt (2007) optimized network structure using evolutionary algorithm and 

found that clustering, modularity and length of long paths all have important effects on the network structure 

robustness. Gao et al. (2006) demonstrated that for most food webs the attacks based on betweenness centrality 

are more effective than that based on node degree. Wang et al. (2006a, b) argued that network structure 

robustness to random failures can be improved by optimizing the efficiency of the network (average inverse 
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length of paths). So far, network structure robustness is usually represented by network connectivity 

(connection robustness). Restoration robustness is seldom studied.  

Besides network structure robustness, here I define two more categories of robustness, network parameter 

robustness, and comprehensive robustness. Network parameter robustness refers to a network’s capacity, 

without any structural changes, for maintaining between-node flows (fluxes) / link weights if it is perturbed. 

Comprehensive robustness refers to a network’s capacity that not only topological structure of the network, 

e.g., nodes and links, are not or less changed, but also between-node flows (fluxes), link weights, nodes’ state 

values are maintained also if the network is perturbed. Comprehensive robustness considers both structure and 

parameter changes of a network. 

   In addition to conventional indices for network robustness, I propose to use the inverse of some indices of 

global sensitivity analysis such as Sobol index (Sobol, 1993), and Extended Fourier Amplitude Sensitivity Test, 

etc (Tarantola et al., 2002; Xu et al., 2004; Zhang, 2012c, 2016d) as indices of network robustness.  

As a basic formula, for instance, we may define network robustness as  

 

          R=1/(dN/dp/N) 

or  

 

          R=1/(dN/dp) 

 

where N: network measure, dN: final variation of network measure due to perturbation; p: strength of 

perturbation, which is usually expressed by variation of network measure itself, e.g., number of removed nodes 

/ links, or amount of reduced flux, etc. The greater R value means the stronger robustness. 

   There are many network measures for uses, i.e., total number of nodes or links, network fluxes, etc.  

2.1 Structure robustness 

2.1.1 Connection robustness 

Connection robustness refers to the capacity of a network to maintain connectivity among remaining nodes if 

some nodes are attacked and destroyed. Suppose Nr nodes with maximal degree, along with their links are 

simultaneously removed from a network X. Connection robustness is thus (Dodds et al., 2003) 

 

R=c/(n-nr) 

 

where n: total number of nodes in the original network, nr: number of nodes removed, and c: number of nodes 

in the maximal connected subgraph (i.e., components; Zhang, 2012a) after nr nodes have been removed.  

2.1.2 Restoration robustness 

The full information of a node with unknown or incomplete information can be achieved by consulting the 

information of its adjacent nodes, as used in detection of key terrorist in the terrorist organization (Bohannon, 

2009). Restoration robustness refers to the capacity of a network to restore missed nodes / links if they are 

destroyed.  

   Restoration robustness in terms of nodes (D) and links (L) are  

 

            D=1-(nr-ns)/n 

            L=1-(lr-ls)/l 
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respectively, where n: total number of nodes in the original network, l: total number of links in the original 

network, ns: number of nodes restored, nr: number of nodes removed, ls: number of links restored, and lr: 

number of links removed.  

2.2 Parameter robustness 

Suppose the topological structure of a network, e.g., nodes and links, are not changed if the network is 

perturbed. Parameter robustness refers to a network’s capacity, without any structural changes, for maintaining 

between-node flows (fluxes) / link weights if it is perturbed. Here I propose to use the following index, revised 

from adjacency matrix index (Zhang, 2012c), to represent parameter robustness. Following the definition of 

Zhang (2012c), suppose flows (fluxes) / link weights matrix of a network with n nodes is w=(wij)n×n, where wij 

is the flow (flux) or the weight of the link between nodes vi and vj; wij=0 if there is not a link between nodes vi 

and vj; i, j=1,2,…, n. The index is 
 

            S=∑∑|wij0-wijt| 
i  j 

 

where wijt, wij0: flow (flux) or link weight between nodes vi and vj after and before a network is perturbed. The 

less S value means the stronger robustness.  

2.3 Comprehensive robustness 

Following the definition of Zhang (2012c), suppose adjacency matrix of a network with n nodes is d=(dij)n×n, If 

dij=dji=0, then there is not link between nodes vi and vj; if dij=dji=1, then there is a link between nodes vi and vj. 

Suppose wij is the flow (flux) or the weight of the link between nodes vi and vj, i, j=1,2,…, n. The index for 

comprehensive robustness is 
 

            S=∑∑|wij0dij0-wijtdijt| 
i  j 

 

   In addition to the measures on network robustness, other robustness measures can be defined according to 

various performance indices of a network, e.g., network type, variation coefficient, network entropy, etc 

(Zhang and Zhan, 2011). For instance, robustness of network entropy is defined as a network’s capacity to 

maintain network entropy if the network’s structure (or parameters) is perturbed. 

For specific networks, e.g., ecosystems, network performance indices may be additionally defined as total 

productivity, number of functional groups, etc.  

 

3 Theoretical Analysis of Structure Robustness of Typical Networks 

In the random network of n nodes, two nodes are connected at a certain probability p (Zhang, 2012a). In the 

regular network, nodes are connected following certain rules. For instance, the nearest neighbors coupling 

network (Wang et al., 2006a, 2006b), namely for a given k (k is an even number), n nodes in the network are 

linked to generate a ring, in which each node is only connected with its k/2 neighborhood nodes. Scale-free 

network is the most popular network (Barabasi and Albert, 1999; Zhang, 2012a). Small-world network was 

proposed by Watts and Strogatz (1998). Methods for network generation / evolution are from Barabasi and 

Albert (1999) (scale-free network), Watts and Strogatz (1998) (small-world network), Wang et al. (2006a, 

2006b) (regular network), and Zhang (2012a) (random network).  

3.1 Connection robustness 

For the random network, increasing connection probability p enhances connection robustness. Network 

connectivity will not be destroyed if p0.3 (the threshold density for connection robustness).  

As increase of the nodes removed from scale-free network, the decrease of network connection capacity 
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produces “emergence” phenomena. Connection robustness enhances as the increase of network density.  

In general, the connection robustness of regular network and random network is stronger than scale-free 

network. In terms of connection robustness, small-world network is the interim between regular network and 

random network. Connection robustness of all networks produces “emergence” as change of number of nodes 

removed and network density. 

3.2 Restoration robustness 

3.2.1 Node restoration 

Suppose that node i is adjacent to node j. If node i is removed from node j, we may try to restore node i and the 

link to node j according to the information of node j. 

   For the random network, if network density is less than 0.3, the restored nodes decline as increase of the 

nodes removed. Removed nodes can be restored if network density is not less than 0.3 (threshold density for 

node restoration robustness). Similar to threshold density for connection robustness, the threshold density for 

node restoration robustness declines as the increase of network size. 

   The scale-free network can be thoroughly restored if only a few of nodes are removed. After the removed 

nodes have reached a threshold, the number of restored nodes will decrease quickly. However, node restoration 

robustness increases as network density.  

   In the small-world network, for a fixed re-connection probability p, the decline of node restoration rate 

shows “emergence” as increase of nodes removed. The increase of node degree or re-connection probability p 

will enhance node restoration robustness.  

Overall, node restoration robustness of all networks produces “emergence” as change of number of nodes 

removed and network density. 

3.2.2 Link restoration 

   For the random network, link restoration robustness increases as network density. However, link 

restoration robustness will be almost irrelevant to network density after network density has reached a 

threshold. 

   Link restoration robustness of scale-free network decreases linearly as the number of nodes removed, and 

has not significant relationship with network density.  

   For the small-world network, with a fixed re-connection probability p, the decline of link restoration rate 

shows “emergence” as increase of nodes removed. The increase of node degree or re-connection probability p 

will enhance link restoration robustness.  

In summary, both link and node restoration robustness of the random network are the best among four 

types of networks, and the regular network is the worst. Small-world network is the interim between the 

random network and the regular network. Node restoration robustness of scale-free network is better but its 

link restoration robustness is as worse as the regular network. 

In addition to network evolution methods and resultant networks above, more complex network evolution 

model has demonstrated that network density (connectance; Zhang, 2011, 2012a, 2012b) increases as time 

(Zhang, 2016a), which means that the network evolves to the stronger robustness according to the conclusions 

above.  

As theoretical models, all of network evolution methods and resultant networks above do not limit the 

number of links connected to a node, i.e., node degree is limitless in these methods and networks. 

 

4 Facilitation of Network Structure Robustness 

Different from theoretical networks above, practical networks sometimes demonstrate different mechanisms 

(e.g., food webs with random degree distributions were highly fragile to removals of species, see Montoya and 
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Sole, 2003) for robustness-maintaining due to the limitation of node degree (e.g., many species have only one 

or two links in food webs), etc. Based on both theoretical analysis and practical observations, here I summarize 

the following methods to enhance structure robustness of a given network 

(1) Maintaining a certain network density / connectance / connectivity (Dunne et al., 2002; Allesina et al., 

2005; Zhang, 2011, 2012a). It has been reported that a food web with the higher connectance has more 

numerous reassembly pathways and can thus restore faster from perturbation (MacArthur, 1955; Law and 

Blackford, 1992; Zhang, 2012a). However, some models suggested that food webs with the lower connectance 

restored faster after a disturbance (May, 1973; Pimm, 1991; Chen and Cohen, 2001; Cohen et al., 1990; Zhang, 

2012a). Therefore, for a network with fixed number of nodes, maintaining (increasing or reducing) a certain 

number of links may improve network structure robustness.  

(2) Deploying network circuits (Alon, 2006; Zhang, 2012a, 2016f). Deploying some circuits in network 

means the existence of some feedback controls, which help to improve network robustness. Feedback control 

is the basis of robustness of bio-systems and bio-processes, e.g., the chemotaxis and heat shock response of 

Escherichia coli, biological rhythms, and cell cycles, etc (Oleksiuk et al., 2011). 

(3) Constructing hierarchical sub-networks / modules / connected components (Zhang, 2012a, 2016e). A 

large network is always organized from various small mosaics (modules). Organizing mosaics to a large 

network will probably influence the robustness of entire network (May, 1973). Pinnegar et al. (2005) used a 

detailed Ecopath with Ecosim model to examine the impacts of food web aggregation and the removal of weak 

linkages. They found that aggregation of a 41-compartment food web to 27 and 16 compartment systems 

greatly affected system properties (e.g. connectance, system omnivory and ascendancy) and influenced 

dynamic stability. Highly aggregated webs restored more quickly following disturbances compared to the 

original disaggregated model. 

Existence of hierarchical sub-networks / modules / connected components may prevent failures diffuse 

across over a network, simplify the evolution and update of nodes and links, and thus help to enhance network 

structure robustness. In addition, utilization of several hierarchical sub-networks / modules / connected 

components may avoid malfunction of the major components in a network. A biological cell is a typical 

example. In a cell, mitochondria, ribosomes, chloroplasts, etc., are sub-networks / modules / connected 

components.  

(4) Incorporating redundancy. Besides useful nodes and links, adding redundant (i.e., temporarily not 

useful, or candidate) nodes, links and circuits in a network will help to enhance structure robustness. 

Redundant nodes / links / circuits are expected to play key roles if some original nodes, links and circuits are 

destroyed. In biological networks, repeated genes, homeotic genes (McAdams and Arkin, 1999), redundant 

metabolites, multi-pathway signaling, and similar metabolic circuits (Edwards et al., 2001), etc., are all 

examples of network redundancy.  

   Some methods above can be used to facilitate parameter robustness and comprehensive robustness. 

Actually comprehensive robustness is more reasonable than structure robustness, because network structure is 

usually determined by the strengths of between-node interactions (i.e., link weights, between-node fluxes, etc.). 

As an example, past studies have demonstrated that under the condition of constant structure robustness, to 

increase nodes and links in a network must be at the cost of weakening the added links (weak interactions, i.e., 

weak weights, weak fluxes, etc.; McCann, 1988; Paine, 1992; Zhang, 2011, 2012a).  

Computational simulation, e.g., the network evolution model (Zhang, 2015) can be used to exploit the 

relationship between network structure and network robustness. 
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5 Biological Networks and Robustness 

5.1 Misuse or inaccurate use of stability in biological studies 

So far, most research used stability, etc., to describe the robustness of various biological systems. This includes 

such topics as “relationship between biodiversity and stability”, “stability of ecosystems”, “stability of 

metabolic networks”, etc. It is unsurprising because the terminology “robustness” was defined as late as about 

30 years ago, while “stability” had been used by ecologists for more than 40 years (May, 2973). Obviously, 

“stability” in these topics was substantially robustness in most situations. Definition and implication of 

robustness and stability, as discussed above, are soundly distinctive. We concern both external disturbance and 

internal perturbation in biodiversity and ecosystems. According to the substantial implication of so-called 

stability in these topics, I argue to use robustness to replace misused or inaccurately used stability in these 

situations in exception of the fewer cases for stability-specific topics. In most of the situations, the exact and 

correct designate should be “relationship between biodiversity and robustness”, “robustness of ecosystems”, 

“robustness of metabolic networks”, etc. 

5.2 Robust structure and parameters of some biological networks (systems) 

I assume that naturally existing and sustainable networks (food webs, biochemical networks, etc.) are robust. I 

summarize some network structures and parameters from references in Table 1, in which S is the number of 

species, L is the number of actual links, and C is connectance.  is the parameter of power-law distribution of 

node degrees, p(x)=x-. It can be concluded that overall power-law  is around 1.5 (1.50.4), the mean node 

degree is around 23 (Zhang and Li, 2016). 

 

Table 1 Network structure and parameters of food webs, metabolic pathways, etc. 

Structures Parameters Values Sources 

L=CS2  C 0.14 

food webs Martinez, 1991, 1992 

S=C-a a -0.5 

food webs Montoya and Sole, 2003 

L=aSb a, b a=1.3, b=1.1 

40 food webs Cohen and Briand, 1984  

L=aSb b 1.5 

  
food webs 

  
Sugihara et al., 1989; Schoenly et al., 
1991; Havens, 1992; Martinez, 1994 

L=aSb a, b a=2, b=1 

food webs Cohen et al., 1990; Martinez, 1992 

C=L/S2 C 0.1~0.15 

food web Martinez, 1992; Warren, 1994 

1.63 1.71 1.58 
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p(x)=x-  transcription 
network 

signaling 
network 

metabolic 
network 

Goemann et al., 2011 


p(x)=x-  1.64 1.43 1.11 

  
arthropod family 
networks  

arthropod 
family 

arthropod 
family Zhang, 2011 

m= L/S m 2.16 4.07 3.14 

m= L/S m 2.84 2.19 

  
arthropod species 
networks    

Zhang, 2011 

m= L/S m 2.1 2.9 

  
tumor pathway 

tumor 
pathway  

Huang and Zhang, 2012 

m= L/S m 2.35 2.18 3.09 

  
transcription 
network 

signaling 
network 

metabolic 
network 

Goemann et al., 2011 

m= L/S m ~2 

food webs Cohen et al., 1990; Martinez, 1992 

m= L/S m 4~15 

  
immunization 
network 

Shams and Khansari, 2014 

m= L/S m 4.68 10.58 

  
normal pathway 

cancer 
pathway  

Rahman et al., 2013 

Note: S is the number of species, L is the number of actual links, and C is connectance.  is the parameter of  
power-law distribution of node degrees, p(x)=x-. 
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