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Abstract 

Gene regulation and their regulatory networks are one of the most challenging research problems of 

computational biology and complexity sciences. Gene regulation is formed by indirect interaction between 

DNA segments which are protein coding genes to configure the expression level of one another. Prevention 

of expression of any genes in gene regulation at the levels of transcription or translation indicates the gene 

silencing event. The present study examined what types of results in gene silencing would bring about in the 

dynamics of Boolean genetic regulatory mechanisms. The analytical study was performed in gene expression 

variations of Boolean dynamics first, then the related numerical analysis was simulated in real networks in 

the literature. 

 

Keywords gene silencing; gene regulation; Boolean network; cell-cycle; gene expression; cellular phenotype. 

 

 

 

 

 

 

 
 
1 Introduction 

Gene silencing is a usual term used in blocking expression of any genes inside a cell, implying prevention of 

a gene to express. In complete set of genes of a cell, most of them are important for a variety of reasons 

(Bouchard, 1994; Cavalli-Sforza et al., 1994; Giaever et al., 2002). However, some of them can have 

mutations, leading to them not functioning in a normal way, which is undesirable for the cell. Several 

techniques exist to eradicate the mutated genes. A gene can be cut out from a cell, by recombinant 

technologies with several methods, which is called the gene knock-out (Colot et al., 2006; Han et al., 2002). 

There is another way named the gene knock-down, blocking only the expression of a gene while gene is still 

present (Szulc et al., 2006; Tiscornia et al., 2003). A gene knock-down mechanism is called the gene 

silencing, meaning the degradation of that gene for the DNA, after which a gene can no longer produce 

protein no products can be made in the absence of RNA (Herman and Baylin, 2003). These processes are 

different but both of them have similar objectives. Although gene silencing can emerge at transcriptional and 

translational levels, transcriptional regulatory networks provide an investigation platform for its effects in a 

cellular phenotype (Agustino-Martinez, 2011; Hammond et al., 2001). 

 The expression of most protein-coding genes in eukaryotes is regulated predominantly at the 
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transcriptional level (Johnson and McKnight, 1989). Transcription mechanism includes transcription factors 

bound to promoter sites around a gene (Mermelstein et al., 1989). Gene regulatory networks (GRN) or 

transcriptional regulatory networks indicate that sets of genes encoding transcriptional regulators mutually 

regulate expression level of each other and determine the very basis of any cell's fate (Wagner, 1994). On the 

other hand, many genes are regulated by the RNA interference (RNAi). For example, miRNAs of mammals 

are predicted to control the activity of ~50% of all protein-coding genes. Functional studies point out that 

miRNAs take part in the regulation of almost every cellular process which has been investigated so far. RNA 

interference is a gene silencing mechanism that can also naturally appears during or after the transcription 

throughout the life (Haynes et al., 2012). If gene silencing occurred naturally as the result of evolution or 

selection or a random process, it could account for significant changes in sustainability of an organism. 

 It is very crucial impression of modeling the qualitative behavior of biological networks where 

molecules are represented as nodes and the molecular interactions are so called edges (Din, 2014; Zhang, 

2012, 2015, 2016a, 2016b). Thus, investigation of gene silencing requires that an appropriate gene regulatory 

network model should be selected. Gene regulatory network models are mainly categorized into three groups 

namely, logical models, continuous models and single-molecule models. Those that fall into logical category 

are discrete models so that they can explain the existing network qualitatively, allowing a basic knowledge of 

the dynamics and functions of a network under different conditions (Bolouri and Davidson, 2002). Their 

applicability covers a wide range of systems including biological phenomena, one of which is the Boolean 

modeling technique introduced by Kauffman (Glass and Kauffman, 1973; Kauffman, 1993). Under the 

Boolean model, the state of the genes, which are Boolean variables and the phenotypic transitions which they 

can make are determined by the states of the other genes in the network with the Boolean logic functions 

governing each gene (Albert, 2004). One of the aspects of all Boolean model is that microarray experiments 

must first be processed to binary in the experimental data from time series as the Boolean functions of the 

networks can only process binary data (Hakamada et al., 2001). Successfully applied to several different 

organisms, Boolean GRN models are a simple and useful model to describe genetic regulatory systems 

(Hickman and Hodgman, 2009). 

 Our purpose here is to investigate the effects of gene silencing on a cellular phenotype using Boolean 

GRN models. What are its effects on a phenotype if it happens incidentally? We made an analysis for the 

probability of changes at the expression levels of other genes, obtaining some numerical results for its effects 

in cell cycles of some real Boolean GRNs in literature. 

 

2 Method 

Under the working principle of Boolean GRNs, genes (and also their product proteins) are nodes of the 

network assigned to a binary value ݃௜ሺݐሻ א ሼ0,1ሽ with 1 for active and 0 for inactive. Any cellular 

phenotypes are represented by their expression patterns Φሺݐሻ ൌ ሼ݃ଵሺݐሻ, ݃ଶሺݐሻ, … , ݃ேሺݐሻሽ where ܰ is the 

number of genes. Gene interactions are directed edges. Since genes are described as either active or inactive 

independently of their RNA levels, edge weights do not have to be quantified biologically. Such interactions 

are captured by the network adjacency matrix ܹ, which is the GRN itself, with elements  ݓ௜௝ representing 

an interaction arrow from gene ݆ to gene ݅ (Lau et al., 2007), and the allowed values are given by  ݓ௜௝ א

ሼെ1,0,1ሽ. For the two genes ݅ and ݆, if an interaction exist, it can be either activating ሺ1ሻ or inhibiting 

ሺെ1ሻ. The change in the expression state of each gene ݃௜ሺݐሻ of the phenotype Φሺݐሻ as time ݐprogresses in 

discrete timesteps under the condition below 
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which reflects the regulation of gene i's expression by other genes. Under the gene regulation rule, and after 

its completion for each gene, phenotype goes to the next timestep. A sequence of updating phenotypes forms 

the trajectory. The phenotype which repeats itself in the trajectory is the stable state once it has been reached. 

There can be some limit cycles as well (Glass and Kauffman, 1973; Kauffman, 1969). 

 In order to investigate the effects of gene silencing on other genes, we first have to define that event 

(Jablonka and Lamb, 2005) in Boolean manner. Gene silencing can be considered a type of loss-of-function 

mutation in which the altered gene product lacks the molecular function of the silenced gene (Nowak, 2006). 

In our model one particular active gene is chosen and its state is fixed at zero, regardless of the state what 

remains of the GRN. To examine the effect of the silenced gene on the expression of other genes, such a path 

can be traced. 

 By the silencing of active ݇௧௛ gene 

 

Φሺݐሻ ൌ ሼ݃ଵሺݐሻ, ݃ଶሺݐሻ, … , ݃௞ሺݐሻ, … , ݃ேሺݐሻሽ,     ݃௞ሺݐሻ ൌ 0 ሺfixedሻ 

 

we define a new threshold function for the  ݅௧௛ gene, which counted as a target of ݃௞, by subtracting the 

contribution of silenced gene from the sum of  ݓ௝௜݃௝ሺݐሻ 

 

ሻݐ௜ሺܫ ൌ෍ݓ௝௜݃௝ሺݐሻ
௝

െ  ሻݐ௞௜݃௞ሺݓ

 

with the gene regulation condition becoming as follows 

 

݃௜ሺݐ ൅ 1ሻ ൌ ቐ
ሻݐ௜ሺܫ            ,1 ൐ 0
ሻݐ௜ሺܫ            ,0 ൏ 0
݃௜ሺݐሻ,     ܫ௜ሺݐሻ ൌ 0

 

 

3 Application 

A silenced gene still sustains its existence in the regulatory network compared to the gene knock-out process. 

Thus, only its expression is inactivated. Here are two different things to be considered. First, change of at 

least one gene's expression means that of the phenotype, in which case silenced gene changes the phenotype 

already by turning its active expression level into inactive. Second, change in the expression level of the 

silenced gene can induce that in other gene's expression levels. Therefore, the number of regulatory 

connections of silenced gene is of great importance. More evidently, other affected genes also indicate a 

contribution to the phenotypic change with the effect of the silenced gene. If there is a connection between 

silenced ݃௞ and ݃௜, change in the expression (from now on we have called it alteration) of target݃௜can be 

demonstrated by a flow chart considering all the unknown transcriptional connection conditions (Fig. 1). 
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of network in which it is, the following equation would be achieved 

 

஀ܲ ൌ
ሺ2ܰ െ 1ሻ஼ೖ

೚ೠ೟
െ ሺ2ܰ െ 2ሻ஼ೖ

೚ೠ೟

ሺ2ܰ െ 1ሻ஼ೖ
೚ೠ೟  

 

, which was found as the silenced gene's alteration probability on a cellular phenotype (at least one other gene 

than itself) for any random Boolean GRNs. ܥ௞
௢௨௧ is the out-degree (Ebel et al., 2002) of the silenced gene and 

its maximum ܰ െ 1. Note that we consider just one silenced gene in a phenotype to simplify the computation 

of its effects. 

 Real biological GRNs abide by the rules of randomly distributed networks, preventing us from having to 

write down any relation between the possible out-degree and network size, ܰ. Thus, they need to be regarded 

as two different variables in the equation above ( ஀ܲ). In the limit of maximum out-degree (ܥ௞
௢௨௧ ൌ ܰ െ 1), 

the alteration probability approaches to its maximum (Fig. 2a). Probability function cannot go on since the 

maximum value of the out-degree is ܰ െ 1. If we re-write ஀ܲ with ܥ௞
௢௨௧ in its maximum value, and increase 

the network size to infinity 

 

lim
ே՜ஶ

ቈ1 െ ൬
2ܰ െ 2
2ܰ െ 1

൰
ேିଵ

቉ 

 

the limit converges to1 െ ሺ1/√݁ሻሺൎ 0.393ሻ which is found to be the maximum alteration probability limit 

for any Boolean network after silencing of a gene. As with influence of silenced gene on other genes, any 

changes in expression of affected genes do mean the same thing that is, contribution of silenced gene to 

phenotypic variation by attracting other genes to itself. Altered genes may affect others which also affect 

some others such as in a chain reaction so on. On the other hand, if we fix the silenced gene's out-degree to a 

constant and increase the network size then alteration probability decreases due to the growing number of 

accessible states (2ܰ െ 1) and changes asymptotically (Fig. 2b). 

 

 

a)                                              b) 

Fig. 2 a) Silenced gene's alteration probability with respect to the out-degree in a random GRN composed of 50 genes. The 
potential of silenced gene's influence rises curvilinear with its out-degree having a maximum on ܥ௞

௢௨௧ ൌ 49, ஀ܲ ൎ 0.393. b) 
Alteration probability with respect to the number of genes in network.ܥ௞

௢௨௧ is fixed to 1, which turn out to be equation 

௚ܲ೔ ൌ 1/ሺ2ܰ െ 1ሻ, and horizontal asymptote at  ஀ܲ ൌ 0. 
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Since real networks show a certainty about the structure of the links, probabilistic calculations tend to be 

meaningless. We applied the gene silencing to observe likely phenotypic and trajectory variations. First, Sic1 

gene which has an out-degree of two was silenced and the new trajectory is shown in Table 2, where we 

encountered a chain reaction. Having transcriptional attacks to two genes (Clb1,2 and Clb5,6), Sic1 altered 

the expression level of Clb5,6. More clearly, ∑ ሻ௝ݐሼ௝,஼௟௕ହ,଺ሽ݃௝ሺݓ ൌ 0 with Sic1’s ݓሼௌ௜௖ଵ,஼௟௕ହ,଺ሽ݃ሼௌ௜௖ଵሽ ൌ െ1 

contribution to the sum of Clb5,6 whose expression was also zero in previous timestep, before silencing of 

Sic1. After silencing,െ1contribution of Sic1 is gone and ܫሼ஼௟௕ହ,଺ሽሺݐሻ ൌ 1. Thus Clb5,6 is activated when 

needed to remain inactive. In next timesteps, altered Clb5,6 affects Mcm1/SFF and it affects Swi5, Cdc20, 

Clb1,2 so on. When the7௧௛timestep has reached the flow stopped, and only the silenced gene's expression 

level is comparatively different from the original cell-cycle loop. Other genes' expressions reached the 

metaphase such as in the non-silenced procedure, but from a different trajectory. It caused new cell cycle to 

stop that Sic1 was not active again, which implies an effect of silence on the system. 

 
Table 2 New cell-cycle trajectory after the silencing of Sic1. Changes in the expression levels of other genes are shown in red 
and bold. 

 Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1/SFF 

Start 1 0 0 0 1 0 0 0 0 0 0 

G1 0 1 1 0 1 0 0 0 0 0 0 

G1 0 1 1 1 1 0 0 1 0 0 0 

G1 0 1 1 1 0 0 0 1 0 0 1 

S 0 1 1 1 0 1 1 1 0 1 1 

G2 0 0 0 1 0 1 1 1 0 1 1 

M 0 0 0 0 0 1 1 0 0 1 1 

M௦௧௨௖௞ 0 0 0 0 0 1 1 0 0 1 1 

 

 A similar event is observable in the silence of Cdh1. After Cdh1 whose out-degree is 1 was 

silenced, it did not lead to any expression levels on any genes without general disturbance of cell cycle (Table 

3). However, when the system reached to fifth state of the M phase, cell-cycle cannot continue because 

silenced Cdh1 was not active again. 

 

 

Table 3 New cell-cycle trajectory after the silencing of Cdh1. Cdh1 stopped the cell-cycle on its own. 

 Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1/SFF 

Start 1 0 0 0 0 0 0 0 1 0 0 

G1 0 1 1 0 0 0 0 0 1 0 0 

G1 0 1 1 1 0 0 0 0 1 0 0 

G1 0 1 1 1 0 0 0 0 0 0 0 

S 0 1 1 1 0 0 0 1 0 0 0 

G2 0 1 1 1 0 0 0 1 0 1 1 

M 0 0 0 1 0 0 1 1 0 1 1 

M 0 0 0 0 0 1 1 0 0 1 1 

M 0 0 0 0 0 1 1 0 1 1 1 

M 0 0 0 0 0 1 1 0 1 0 1 

M௦௧௨௖௞ 0 0 0 0 0 1 1 0 1 0 0 
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Table 5 Ste9 silenced.                                 Table 6 Rum1 silenced. 

Start 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 

G1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 

G1/S 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

G2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

G2 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 

G2/M 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 

G2/M 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 

M 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 

M 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 

unk. 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 

         

 

Table 7 Wee1 silenced. 

      Start 1 0 0 1 1 0 0 0 0 0        

      G1 0 1 0 1 1 0 0 0 0 0        

      G1/S 0 0 0 0 0 0 0 0 0 0        

      G2 0 0 1 0 0 0 0 0 0 0        

      G2 0 0 1 0 0 0 0 0 1 0        

      G2/M 0 0 1 0 0 0 1 0 1 0        

      G2/M 0 0 1 0 0 1 1 0 1 0        

      M 0 0 0 0 0 1 0 0 1 1        

      M 0 0 0 1 1 0 0 0 0 1        

      unk. 0 0 0 1 1 0 0 0 0 0        

 

 

4 Discussion 

As for Boolean network formalism of GRNs, gene silencing applied to the systems was studied. What type of 

effects silenced gene had on other genes were algebraically and probabilistically explored first, then some 

numerical examinations were performed in real data. According to the obtained results, when gene silencing 

was applied one by one to active genes of the super states to which GRNs carried cellular phenotypes, there 

are if little likelihood for other genes to change expressions (max. 1 െ ሺ1/√݁ሻ). However, the system in a 

whole cell cycle mostly tries to adjust itself to the original cycle again. And constantly inactivated 

expressions of silenced genes make the phenotype stuck in related phases causing the cell cycle trajectory to 

be stopped. Moreover, genes having been silenced also exist which carry the system to different cellular 

phases (possibility of apoptosis or invasion). This issue can be investigated by looking at the tasks of silenced 

genes in biological databases for related organism. 
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