Article

Exotic species and the structure of a plant-galling network

Walter Santos de Araújo¹, Julio Miguel Grandez-Rios², Leonardo Lima Bergamini³, Ján Kollár⁴

¹Departamento de Biologia Geral, Universidade Estadual de Montes Claros, 39401-089, Montes Claros, Brazil ²Center for International Forestry Research, 1895, Lima, Peru

³Departamento de Ecologia, Universidade Federal de Goiás, 74001-970, Goiânia, Brazil

⁴Department of Planting Design and Maintenance, Slovak University of Agriculture in Nitra, 949-76, Nitra, Slovakia E-mail: walterbioaraujo@yahoo.com.br, jgrandezrios@yahoo.com.br, llberbamini@gmail.com, jankollar82@gmail.com

Received 1 February 2017; Accepted 7 March 2017; Published online 1 June 2017

Abstract

Gall-inducing insects are highly specialized herbivores and is expected that networks composed by gall-inducing insects and their host plants are also very specialized. However, presence of exotic species might reduce the interaction number for native species, which would lead to changes in the specialization of plant-galling networks. In this study, we use network metrics to describe, for the first time, the structure of a network of gall-inducing insects associated to ornamental host plants. We found that the plant-galling network has a low-connected structure and is more modular than expected by chance. Native insect herbivores were significantly more frequent on native host plant species, while exotic herbivores occurred mostly on exotic host plant species. On the other hand, the number of interactions between insect herbivores and native or exotic plant species did not vary. Our findings show that plant-galling networks are very specialized and structured independently of exotic species presence.

Keywords alien hosts; exotic herbivores; herbivory; network ecology.

```
Network Biology
ISSN 2220-8879
URL: http://www.iaees.org/publications/journals/nb/online-version.asp
RSS: http://www.iaees.org/publications/journals/nb/rss.xml
E-mail: networkbiology@iaees.org
Editor-in-Chief: WenJun Zhang
Publisher: International Academy of Ecology and Environmental Sciences
```

1 Introduction

Gall-inducing insects are known as the most specialized insect herbivores of nature (Shorthouse et al., 2005). These are the only arthropod herbivores (together with mites) able to modify the host plant structures at histological and cellular level to induce galls (Stone and Schönrogge, 2003). To induce galls, the insects must deal with the mechanical and chemical defenses of plants, besides being able to control the physiological apparatus of the host (Shorthouse et al., 2005). This high degree of intimacy between galling and plant leads to phylogenetic constraints in the gall induction (Stone and Schönrogge, 2003). Because of this, even the most generalist galling insects are only able to induce galls on host plant species with some degree of phylogenetic relatedness (Price, 2005).

The structure of interactions in plant-galling networks has been largely neglected until very recently in the ecological literature (Barbour et al., 2016). Due to the high specialization degree of insect galls, it is expected that networks composed by gall-inducing insects and their host plants establish very specialized, and often

species-specific, interactions. For this reason, is expected for plant-galling networks low connectivity and high compartmentalization in these interactions. The expected high degree of specialization of plant-galling networks, should affect the dynamics of these networks, because each plant species extinction may represent the extinction of a galling species.

A very interesting factor about the structure of plant-galling networks is the occurrence of exotic plant species. For example, Kollár (2011) recorded a network composed by galling insects that feed on ornamental trees and shrubs in the city of Nitra, Slovakia. Since it is located in an urban garden, the flora of this network is composed both by native species from the region as well as exotic plant species. Due their allochthonous origin, exotic plant species have not shared evolutionary history with the native species of galling insects. Many of the species able to induce galls in the exotic plants are also non-indigenous species that were introduced from the same place of origin as these plants (Kollár, 2011). Because of the different evolutionary histories, however, it is expected that native and exotic species both of plants and insects have distinctive ecological interactions in the network.

In the present work, we describe the structure of a network composed by native and exotic gall-inducing insects and ornamental host plants in the city of Nitra, Slovakia. To explore the network structure we calculate connectance, and also modularity and robustness of the interactions in contrast with null models. We also evaluated the structure of a network subset composed exclusively by native species of plants and insects. Additionally, we compare if native and exotic species of plants and insects in the network have differences in their number of interactions. As consequence of the phylogenetic restrictions of plant-galling interactions, we expected that exotic plant and insect species overall interact with a lower number of species than native ones. Finally, we tested whether exotic plant species have more interactions with exotic galling species than with native herbivores.

2 Material and Methods

2.1 Study area

The study was performed from 2004 to 2008 in the Nitra city park, Nitra, Slovakia (48° 19' 7" N, 18° 4' 55" E, 144 m a.s.l.). Nitra city is situated in southwestern Slovakia and its climate is characterized as semi-arid and humid (Kollár, 2011). The average annual total precipitation is about 600 mm and the average annual temperature is about 9.5 °C. The park, which covers 20 ha, has three parts: Sihoť, New Park, and Connecting Park. Samples were collected from all parts. The park is bordered by Nitra River and comprises woody plants in various age stages.

2.2 Sampling of plant-galling interactions

Gall-inducing insects were examined across active search on all native and introduced host woody plants in the park. All galls encountered were recorded and placed individually in labeled plastic bags for transportation to the laboratory. Fragments of each host plant were collected for botanical identification. Insect species were determined in field whenever possible according to the gall morphological characteristics. Some galls were collected to be reared in the laboratory for better determination of the gall-inducers. In these cases the publications of Csóka (1997), Schnaider (1976), Skuhravý and Skuhravá (1998), Blackman and Eastop (1994), Redfern and Shirley (2002) were used for determination. These studies were also used to determine if the insect species status were native or exotic.

We use the Fauna Europaea database (www.faunaeur.org) for taxonomic classification and correct terminology of gall-inducing insects. Plant species were identified using flora catalogs. Host plant status was determined from a checklist of alien plants to Slovakia (Medvecká et al., 2012). We checked plant species nomenclature and synonymy using The Plant List database (www.theplantlist.org). After the species

www.iaees.org

determination, we build the network from the interactions between gall-inducing insect species and their host plant species.

2.3 Data analyses

Network structure analyses were done using the network descriptors connectance, modularity, and robustness. In order to compare changes in network structure caused by the introduction of exotic species, all three indices were computed for the entire network and for a network comprising only native insects and plants. The connectance (C) was calculated as the number of realized interactions (L) divided by number of possible interactions (S_1*S_2 , where S_1 is the number of plant species and S_2 is the number of insect species) (Dormann et al., 2009; Zhang, 2011, 2012). Connectance is an inverse measure of overall interaction specialization because, in networks with higher connectance, species tend to have more connections (i.e., to be less specialized); thus, the higher the connectance, the lower the specialization of plant-herbivore networks (Araújo et al., 2015).

In addition to the connectance, we also used modularity to describe the structure of the plant-galling network. The modularity is characterized by presence of species subsets densely connected within the network, also called of modules or compartments (Dormann, 2011; Dormann et al., 2009), indicating the degree of specialization of the interaction arrangement within the network. We computed the bipartite modularity index Q (Barber, 2007) using the DIRTLPAwb+ algorithm to detect network modules (Beckett, 2016). In order to compare modularity values between different networks, we normalized the obtained value by comparing it to the maximum possible value given the network size and marginal totals (Beckett, 2016). The normalized modularity index reaches one when the network has the maximum possible modularity and approaches 0 as the modularity decreases. We then compared the observed normalized value with normalized values computed for 500 null networks generated using the quasiswap algorithm (Dormann, 2009).

Robustness is a measure of the resistance degree of the network to coextinctions (Dormann et al., 2009; Zhang, 2016). To characterize network robustness we used the exponent of the curve generated by the proportion of remaining galling species in function of the proportion of primary extinctions of plant species (Dormann et al., 2009). Robustness values also were compared to null values obtained from the same 500 null networks mentioned above. We performed all network analyses using adaptations of function from the R-package Bipartite (Dormann et al., 2008) and code provided in Beckett (2016).

We also compared if native and exotic species in the network have different average degree (AvD) than is expected from the overall mean number of plant and insect interactions. In this sense we differentiated the AvD between host plants (natives vs. exotics) and galling insects (natives vs. exotics) using t-tests. Additionally we tested whether native insect species interacted more with native plant species than with exotics by using a chi-squared test.

3 Results

The plant-herbivore network contained 90 gall-inducing species belonging to five orders and nine families of insects (Table 1). The orders with most species were Hymenoptera with 32 and Hemiptera with 31 species. The families Cynipidae (Hymenoptera), Aphididae (Hemiptera) and Cecidomyiidae (Diptera) were the most diverse with 27, 25 and 24 species, respectively. Most galling insect species were natives (81) and only nine species were of exotic origin. Seventy-three galling species were monophagous (induced galls on only one plant species) and 16 were oligophagous (10 induced galls on two host species and six on three hosts). Only the species *Rhyacionia buoliana* (Tortricidae: Lepidoptera) can be considered polyphagous, since it induced galls on five host species.

Gall-inducing insects were found on 54 species and 32 genera of host plants. The higher numbers of

gall-inducing species were recorded on the host genera *Quercus* (28), *Populus* (8) and *Salix* (7). The native plant *Quercus robur* was the species that hosted the highest diversity with 27 galling species. Seventy-nine species of gall-inducing insects occurred on native plant species and 20 species on exotic host plants. Among all the species, only nine gall-inducing species occurred on both exotic and native host plants. Native insect herbivores were significantly more frequently observed on native host plant species, while exotic herbivores occurred mostly on exotic host plant species ($\chi^2 = 20.956$; p-value < 0.001).

Table 1 Checklist of host plants and gall-inducing insects recorded in Nitra City Park (Nitra, SW, Slovakia). Species marked with * are of exotic origin. Modification of Kollár (2011).

н	lost plants	Gall-inducing insects				
Family	Species	Order	Family	Species	Occurrence	
Adoxaceae	Viburnum lantana	Hemiptera	Aphididae	Aphis viburni	Leaf	
Adoxaceae	Viburnum opulus	Hemiptera	Aphididae	Aphis viburni	Leaf	
Adoxaceae	Viburnum	Hemiptera	Aphididae	Aphis viburni	Leaf	
	rhytidophyllum*					
Betulaceae	Betula pendula	Diptera	Cecidomyiidae	Anisostephus betulinus	Leaf	
Betulaceae	Carpinus betulus	Diptera	Cecidomyiidae	Zygiobia carpini	Leaf	
Buxaceae	Buxus sempervirens*	Diptera	Cecidomyiidae	Monarthropalpus flavus*	Leaf	
		Hemiptera	Psyllidae	Psylla buxi*	Leaf	
Caprifoliaceae	Lonicera ligustrina*	Hemiptera	Aphididae	Hyadaphis tataricae*	Leaf	
Caprifoliaceae	Lonicera xylosteum	Hemiptera	Aphididae	Hyadaphis tataricae*	Leaf	
		Hemiptera	Aphididae	Rhopalomyzus lonicerae	Leaf	
Celastraceae	Euonymus europaeus	Hemiptera	Aphididae	Aphis fabae	Leaf	
Cornaceae	Cornus sanguinea	Diptera	Cecidomyiidae	Craneiobia corni	Leaf	
Cupressaceae	Juniperus communis	Diptera	Cecidomyiidae	Oligotrophus juniperinus	Needle	
Fabaceae	Gleditsia triacanthos*	Diptera	Cecidomyiidae	Dasineura gleditchiae*	Leaf	
Fabaceae	Robinia pseudoacacia*	Diptera	Cecidomyiidae	Obolodiplosis robiniae*	Leaf	
		Hemiptera	Aphididae	Aphis craccivora*	Leaf	
		Hemiptera	Aphididae	Aphis fabae	Leaf	
Fagaceae	Fagus sylvatica	Diptera	Cecidomyiidae	Mikiola fagi	Leaf	
Fagaceae	Quercus cerris	Hymenoptera	Cynipidae	Andricus cydoniae	Leaf	
Fagaceae	Quercus hispanica	Hymenoptera	Cynipidae	Andricus anthracina	Leaf	
Fagaceae	Quercus robur	Diptera	Cecidomyiidae	Macrodiplosis pustularis	Leaf	
		Diptera	Cecidomyiidae	Macrodiplosis roboris	Leaf	
		Hymenoptera	Cynipidae	Andricus anthracina	Leaf	
		Hymenoptera	Cynipidae	Andricus conglomeratus	Bud	
		Hymenoptera	Cynipidae	Andricus coriarius	Bud	
		Hymenoptera	Cynipidae	Andricus curvator	Leaf/Bud	
		Hymenoptera	Cynipidae	Andricus fecundator	Bud	
		Hymenoptera	Cynipidae	Andricus glutinosus	Bud	
		Hymenoptera	Cynipidae	Andricus grossulariae	Flower	
		Hymenoptera	Cynipidae	Andricus hungaricus	Bud	

		Hymenoptera	Cynipidae	Andricus inflator	Bud
		Hymenoptera	Cynipidae	Andricus kollari	Bud
		Hymenoptera	Cynipidae	Andricus lucidus	Fruit
		Hymenoptera	Cynipidae	Andricus mayri	Fruit
		Hymenoptera	Cynipidae	Andricus solitarius	Bud
		Hymenoptera	Cynipidae	Andricus testaceipes	Shoot
		Hymenoptera	Cynipidae	Biorrhiza pallida	Root/Bud
		Hymenoptera	Cynipidae	Cynips caputmedusae	Fruit
		Hymenoptera	Cynipidae	Cynips disticha	Leaf
		Hymenoptera	Cynipidae	Cynips divisa	Leaf
		Hymenoptera	Cynipidae	Cynips longiventris	Leaf
		Hymenoptera	Cynipidae	Cynips quercuscalicis	Fruit
		Hymenoptera	Cynipidae	Cynips quercusfolii	Leaf
		Hymenoptera	Cynipidae	Neuroterus laevisculus	Leaf
		Hymenoptera	Cynipidae	Neuroterus numismalis	Leaf
		Hymenoptera	Cynipidae	Neuroterus	Leaf/Flower
				quercus-baccarum	
		Hymenoptera	Cynipidae	Trigonaspis megaptera	Bud/Shoot
Grossulariaceae	Ribes aureum*	Hemiptera	Aphididae	Aphis idaei	Leaf
		Hemiptera	Aphididae	Aphis schneideri	Leaf
Hydrangeaceae	Philadelphus	Hemiptera	Aphididae	Aphis fabae	Leaf
	coronarius*				
Malvaceae	Hibiscus syriacus*	Hemiptera	Aphididae	Myzus persicae*	Leaf
Malvaceae	Tilia cordata	Diptera	Cecidomyiidae	Contarinia tiliarum	Petiole/flower/leaf and
					shoot
		Diptera	Cecidomyiidae	Dasineura tiliae	Leaf
Malvaceae	Tilia platyphyllos	Diptera	Cecidomyiidae	Contarinia tiliarum	Petiole/flower/leaf and
					shoot
		Diptera	Cecidomyiidae	Dasineura tiliae	Leaf
		Diptera	Cecidomyiidae	Didymomyia tiliacea	Leaf
Oleaceae	Fraxinus excelsior	Diptera	Cecidomyiidae	Dasineura acrophila	Leaf
		Diptera	Cecidomyiidae	Dasineura fraxini	Leaf
		Hemiptera	Aphididae	Prociphilus bumeliae	Leaf
		Hemiptera	Psyllidae	Psyllopsis fraxini	Leaf
Oleaceae	Fraxinus ornus	Diptera	Cecidomyiidae	Dasineura fraxini	Leaf
Oleaceae	Ligustrum vulgare	Hemiptera	Aphididae	Myzus ligustri	Leaf
Pinaceae	Abies alba	Hemiptera	Adelgidae	Dreyfusia	Shoot
				nordmannianae*	
Pinaceae	Abies concolor*	Hemiptera	Adelgidae	Dreyfusia piceae	Shoot
Pinaceae	Larix decidua	Diptera	Cecidomyiidae	Dasineura kellneri	Shoot
		Hemiptera	Aphididae	Adelges laricis	Shoot
Pinaceae	Picea abies	Hemiptera	Adelgidae	Sacchiphantes viridis	Shoot
		Hemiptera	Aphididae	Adelges laricis	Shoot

Pinaceae	Picea glauca*	Hemiptera	Adelgidae	Sacchiphantes viridis	Shoot
Pinaceae	Picea pungens*	Hemiptera	Adelgidae	Sacchiphantes viridis	Shoot
Pinaceae	Pinus contorta*	Lepidoptera	Tortricidae	Rhyacionia buoliana	Bud
Pinaceae	Pinus mugo	Lepidoptera	Tortricidae	Rhyacionia buoliana	Bud
Pinaceae	Pinus nigra*	Lepidoptera	Tortricidae	Rhyacionia buoliana	Bud
Pinaceae	Pinus ponderosa*	Lepidoptera	Tortricidae	Rhyacionia buoliana	Bud
Pinaceae	Pinus sylvestris	Diptera	Cecidomyiidae	Thecodiplosis	Needle
				brachyntera	
		Lepidoptera	Tortricidae	Retinia resinella	Bud
		Lepidoptera	Tortricidae	Rhyacionia buoliana	Bud
Pinaceae	Pseudotsuga menziesii*	Hemiptera	Aphididae	Gilleteella cooleyi*	Shoot
Rhamnaceae	Rhamnus cathartica	Hemiptera	Triozidae	Trichochermes walkeri	Leaf
Rosaceae	Crataegus monogyna	Hemiptera	Aphididae	Dysaphis crataegi	Leaf
Rosaceae	Prunus avium	Hemiptera	Aphididae	Myzus cerasi	Leaf
Rosaceae	Rosa canina	Diptera	Cecidomyiidae	Dasineura rosae	Leaf
		Hymenoptera	Cynipidae	Diplolepis rosae	Leaf bud
		Hymenoptera	Tenthredinidae	Blennocampa pusilla	Leaf
Rosaceae	Rosa multiflora*	Diptera	Cecidomyiidae	Dasineura rosae	Leaf
		Hymenoptera	Cynipidae	Diplolepis rosae	Leaf bud
Salicaceae	Populus x canescens	Coleoptera	Cerambycidae	Saperda populnea	Shoot
Salicaceae	Populus nigra	Hemiptera	Aphididae	Chaitophorus populicola	Leaf
		Hemiptera	Aphididae	Pemphigus borealis	Bud
		Hemiptera	Aphididae	Pemphigus bursarius	Petiole
		Hemiptera	Aphididae	Pemphigus populi	Leaf
		Hemiptera	Aphididae	Pemphigus populinigrae	Leaf
		Hemiptera	Aphididae	Pemphigus spirothecae	Petiole
		Hemiptera	Aphididae	Thecabius affinis	Leaf
Salicaceae	Populus simonii*	Hemiptera	Aphididae	Pemphigus spirothecae	Petiole
Salicaceae	Salix alba	Diptera	Cecidomyiidae	Rabdophaga salicis	Leaf
		Diptera	Cecidomyiidae	Rhabdophaga rosaria	Leaf
		Hemiptera	Aphididae	Aphis farinosa	Leaf
		Hymenoptera	Tenthredinidae	Euura amerinae	Leaf
		Hymenoptera	Tenthredinidae	Pontania proxima	Leaf
		Hymenoptera	Tenthredinidae	Pontania vesicator	Leaf
Salicaceae	Salix purpurea	Hymenoptera	Tenthredinidae	Pontania viminalis	Leaf
Sapindaceae	Acer campestre	Diptera	Cecidomyiidae	Dasineura rubella	Leaf
		Diptera	Cecidomyiidae	Drisina glutinosa	Leaf
Sapindaceae	Acer platanoides	Diptera	Cecidomyiidae	Acericecis vitrina	Leaf
		Diptera	Cecidomyiidae	Drisina glutinosa	Leaf
Sapindaceae	Acer pseudoplatanus	Diptera	Cecidomyiidae	Acericecis vitrina	Leaf
		Diptera	Cecidomyiidae	Drisina glutinosa	Leaf
Taxaceae	Taxus baccata	Diptera	Cecidomyiidae	Taxomyia taxi	Bud
Ulmaceae	Ulmus glabra	Hemiptera	Aphididae	Eriosoma ulmi	Leaf

		Hemiptera	Aphididae	Tetraneura ulmi	Leaf
Ulmaceae	Ulmus laevis	Hemiptera	Aphididae	Eriosoma ulmi	Leaf
		Hemiptera	Aphididae	Kaltenbachiella pallida	Leaf
		Hemiptera	Aphididae	Tetraneura ulmi	Leaf
Ulmaceae	Ulmus minor	Hemiptera	Aphididae	Eriosoma ulmi	Leaf
		Hemiptera	Aphididae	Tetraneura ulmi	Leaf

Altogether the plant-galling network comprised 116 interactions (Fig. 1), corresponding to only 2.38% of the 4,860 possible interactions (Table 2). Considering only the network of native herbivores and native plants the connectance was 2.72%. The observed modularity to the entire plant-galling network was very high and significantly higher than expected by chance (Table 2). The native-only insect and plant network subset showed a very high and significant modularity. In turn, network robustness considering all herbivores and native-only subset did not differ from the null model values (Table 2).

Native and exotic host plant species showed similar average degrees (t = -1.56, df = 39.05, p-value = 0.125), with most species interacting with only one species. Similarly, the average degree did not differ between native and exotic insects (t = -1.44, df = 17.91, p-value = 0.166), with both groups showing a high prevalence of monophagous insects.

Analysis	Value observed	Null expectation	ICI null	ICS null	Z value	р
		_	-	-	-	-
Connectance: all herbivores	0.0238					
		_	_	-	-	-
Connectance: only natives	0.0272					
Modularity: all herbivores	0.9716	0.7996	0.7726	0.8308	11.3291	0.0020
Modularity: only natives	0.9874	0.8558	0.8420	0.8789	10.9983	0.0020
Robustness: all herbivores	0.5271	0.5393	0.5252	0.5532	-1.6752	0.0539
Robustness: only natives	0.5366	0.5252	0.5095	0.5423	1.3351	0.9022

Table 2 Network structure analysis results for plant-galling network recorded in Nitra City Park (Nitra, SW, Slovakia).

4 Discussion

Most taxonomic groups of gall-inducing insects have a highly specific and intimate parasitic life-form on plant hosts, and each insect species generally presents an unique gall morphology (Price, 2005). Our results corroborate this high galling specialization since 81% of insect species were recorded on a single host plant species (i.e., monophagous insects). Oligophagous (17.7%) and polyphagous (1.3%) gall-inducing species were recorded on related host plant species, usually in the same plant genus (as is the case for *Rhyacionia buoliana* that induced galls on five species of *Pinus*). Furthermore, most of the recorded galling species induced unique gall morphotypes, even those that induced galls on more than one host species.

The high specificity of plant-galling interactions has led to a highly specialized network structure. The plant-galling network studied here has very little connected (2.38% of potential interactions) and has a low connectance compared to other plant-herbivore networks (Araújo et al., 2015; Cagnolo et al., 2011). Because of high network specialization, the structure of plant-galling network is more modular than expected by chance, but not more robust to random extinctions than randomly structured networks. This means that the removal of

plant species causes few changes in the network structure, since each plant species is connected to one or a few species of galling insects. On the other hand, these results also mean that the loss of a plant species will, in most cases, inevitably lead to the extinction of an associated galling species in the network. Because the great dependence of gall-inducing insects on their host plants, the maintenance of galling insect populations necessarily depends on plant species conservation (Araújo, 2013).

Fig. 1 Representation of the plant-galling network recorded in Nitra City Park (Nitra, SW, Slovakia). Host plant species are represented by squares and gall-inducing insect species are represented by circles. Dark gray indicates exotic species and light gray indicates native species of plants and insects. Codes of plant and insect species names are specified in the Table 3.

Contrary to expectations, native and exotic host plant species did not differ in the number of insect species they interact with. These findings indicate that the galling life-form presents very severe biological restrictions in that only a low number of insect species can induce galls, either on native or exotic plants. We also found that native and exotic insect species had a similar average degree (i.e., number of plant species that interact), counteracting our expectation of lower number of plant species being used by exotic insects than by natives. This absence of difference was observed because most of the insect species are monophagous, which results in average degrees ranging close to one for both native and exotic galling insects. Our findings are in

28

agreement with previous studies that report that most of gall-inducing species are monophagous (e.g., Carneiro et al., 2009; Stone and Schönrogge, 2003).

Our study is the first, to our knowledge, that systematically evaluated the effect of exotic species occurrence on the structure of a plant-galling network. As we expected, native insect herbivores were significantly more frequent on native host plant species, while exotic herbivores occurred mostly on exotic host plant species. This result indicates very specific interactions even for exotic plants and insects, which results in plant-galling networks very specialized and similarly structured independently of exotic species presence. Future studies may investigate whether this pattern is the same for other groups of galling arthropods less specialized than insects (e.g., galling mites) or higher trophic levels (e.g., predators and parasitoids).

Code	Taxon	Species	Code	Taxon	Species
1	Plant	Abies alba	73	Insect	Aphis craccivora
2	Plant	Abies concolor	74	Insect	Aphis fabae
3	Plant	Acer campestre	75	Insect	Aphis farinosa
4	Plant	Acer platanoides	76	Insect	Aphis idaei
5	Plant	Acer pseudoplatanus	77	Insect	Aphis schneideri
6	Plant	Betula pendula	78	Insect	Aphis viburni
7	Plant	Buxus sempervirens	79	Insect	Biorrhiza pallida
8	Plant	Carpinus betulus	80	Insect	Blennocampa pusilla
9	Plant	Cornus sanguinea	81	Insect	Chaitophorus populicola
10	Plant	Crataegus monogyna	82	Insect	Contarinia tiliarum
11	Plant	Euonymus europaeus	83	Insect	Craneiobia corni
12	Plant	Fagus sylvatica	84	Insect	Cynips caputmedusae
13	Plant	Fraxinus excelsior	85	Insect	Cynips disticha
14	Plant	Fraxinus ornus	86	Insect	Cynips divisa
15	Plant	Gleditsia triacanthos	87	Insect	Cynips longiventris
16	Plant	Hibiscus syriacus	88	Insect	Cynips quercuscalicis
17	Plant	Juniperus communis	89	Insect	Cynips quercusfolii
18	Plant	Larix decidua	90	Insect	Dasineura acrophila
19	Plant	Ligustrum vulgare	91	Insect	Dasineura fraxini
20	Plant	Lonicera ligustrina	92	Insect	Dasineura gleditchiae
21	Plant	Lonicera xylosteum	93	Insect	Dasineura kellneri
22	Plant	Philadelphus coronarius	94	Insect	Dasineura rosae
23	Plant	Picea abies	95	Insect	Dasineura rubella
24	Plant	Picea glauca	96	Insect	Dasineura tiliae
25	Plant	Picea pungens	97	Insect	Didymomyia tiliacea
26	Plant	Pinus contorta	98	Insect	Diplolepis rosae
27	Plant	Pinus mugo	99	Insect	Dreyfusia nordmannianae
28	Plant	Pinus nigra	100	Insect	Dreyfusia piceae
29	Plant	Pinus ponderosa	101	Insect	Drisina glutinosa
30	Plant	Pinus sylvestris	102	Insect	Dysaphis crataegi

Table 3 List of codes for plant and insect species occurring in the plant-galling network recorded in Nitra City Park (Nitra, SW, Slovakia).

31	Plant	Populus canescens	103	Insect	Eriosoma ulmi
32	Plant	Populus nigra	104	Insect	Euura amerinae
33	Plant	Populus simonii	105	Insect	Gilleteella cooleyi
34	Plant	Prunus avium	106	Insect	Hyadaphis tataricae
35	Plant	Pseudotsuga menziesii	107	Insect	Kaltenbachiella pallida
36	Plant	Quercus cerris	108	Insect	Macrodiplosis pustularis
37	Plant	Quercus hispanica	109	Insect	Macrodiplosis roboris
38	Plant	Quercus robur	110	Insect	Mikiola fagi
39	Plant	Rhamnus cathartica	111	Insect	Monarthropalpus flavus
40	Plant	Ribes aureum	112	Insect	Myzus cerasi
41	Plant	Robinia pseudoacacia	113	Insect	Myzus ligustri
42	Plant	Rosa canina	114	Insect	Myzus persicae
43	Plant	Rosa multiflora	115	Insect	Neuroterus laevisculus
44	Plant	Salix alba	116	Insect	Neuroterus numismalis
45	Plant	Salix purpurea	117	Insect	Neuroterus quercus-baccarum
46	Plant	Taxus baccata	118	Insect	Obolodiplosis robiniae
47	Plant	Tilia cordata	119	Insect	Oligotrophus juniperinus
48	Plant	Tilia platyphyllos	120	Insect	Pemphigus borealis
49	Plant	Ulmus glabra	121	Insect	Pemphigus bursarius
50	Plant	Ulmus laevis	122	Insect	Pemphigus populi
51	Plant	Ulmus minor	123	Insect	Pemphigus populinigrae
52	Plant	Viburnum lantana	124	Insect	Pemphigus spirothecae
53	Plant	Viburnum opulus	125	Insect	Pontania proxima
54	Plant	Viburnum rhytidophyllum	126	Insect	Pontania vesicator
55	Insect	Acericecis vitrina	127	Insect	Pontania viminalis
56	Insect	Adelges laricis	128	Insect	Prociphilus bumeliae
57	Insect	Andricus anthracina	129	Insect	Psylla buxi
58	Insect	Andricus conglomeratus	130	Insect	Psyllopsis fraxini
59	Insect	Andricus coriarius	131	Insect	Rabdophaga rosaria
60	Insect	Andricus curvator	132	Insect	Rabdophaga salicis
61	Insect	Andricus cydoniae	133	Insect	Retinia resinella
62	Insect	Andricus fecundator	134	Insect	Rhopalomyzus lonicerae
63	Insect	Andricus glutinosus	135	Insect	Rhyacionia buoliana
64	Insect	Andricus grossulariae	136	Insect	Sacchiphantes viridis
65	Insect	Andricus hungaricus	137	Insect	Saperda populnea
66	Insect	Andricus inflator	138	Insect	Taxomyia taxi
67	Insect	Andricus kollari	139	Insect	Tetraneura ulmi
68	Insect	Andricus lucidus	140	Insect	Thecabius affinis
69	Insect	Andricus mayri	141	Insect	Thecodiplosis brachyntera
70	Insect	Andricus solitarius	142	Insect	Trichochermes walkeri
71	Insect	Andricus testaceipes	143	Insect	Trigonaspis megaptera
72	Insect	Anisostephus betulinus	144	Insect	Zygiobia carpini

Acknowledgment

We wish to thank to Jeffrey van Lent (Center for International Forestry Research) for his helpful suggestions on the manuscript and English revision. This research did not receive any specific grant from funding agencies.

References

- Araújo WS. 2013. Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod Plant Interaction, 7: 373-377
- Araújo WS, Vieira MC, Lewinsohn TM, Almeida-Neto M, 2015. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS One, 10: e0115606
- Barber MJ. 2007. Modularity and community detection in bipartite networks. Physical Review E, 76:066102
- Barbous MA, Fortuna MA, Bascompte J, Nicholson JR, Julkunen-Tiitto R, Jules ES, Crutsinger GM. 2016. Genetic specificy of a plant-insect food web: implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences, 113: 2128-2133
- Beckett SJ. 2016. Improved community detection in weighted bipartite networks. Royal Society Open Science, 3: 140536
- Blackman RL, Eastop VF. 1994. Aphids on the World's Trees: An Identification and Information Guide. CABI Publishing, Wallingford, UK
- Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N. 2007. Specialization, constraints & conflicting interests in mutualistic networks. Current Biology, 17: 1-6
- Cagnolo L, Salvo A, Valladares G. 2011. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. Journal of Animal Ecology, 80: 342-351
- Carneiro M, Branco CA, Braga CD, Almada E, Costa MM, Maia V, Fernandes GW. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Revista Brasileira de Entomologia, 53: 365-378
- Csóka G. 1997. Plant Galls. Agroinform kiadó, Budapest, Hungary
- Dormann CF. 2011. How to be a specialist? Quantifying specialisation in pollination networks. Network Biology, 1(1): 1-20
- Dormann CF, Gruber B, Fründ J. 2008. Introducing the Bipartite Package: Analysing Ecological Networks. R News, 8: 8-11
- Dormann CF, Fründ J, Blüthgen N, Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2: 7-24
- Dormann CF, Strauss R. 2014. A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5: 90-98
- Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters, 5: 558-567
- Kollár J. 2011. Gall-inducing arthropods associated with ornamental woody plants in a City Park of Nitra (SW Slovakia). Acta Entomologica Serbica, 16: 115-126
- Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I. 2012. Inventory of the alien flora of Slovakia. Preslia, 84: 257-309
- Newman MEJ. 2004. Analysis of weighted networks. Physical Review E, 70: 056131
- Price PW. 2005. Adaptive radiation of gall-inducing insects. Basic and Applied Ecology, 6: 413-421
- Shorthouse JD, Wool D, Raman A. 2005. Gall-inducing insects Nature's most sophisticated herbivores. Basic and Applied Ecology, 6: 407-411

- Schnaider Z. 1976. Atlas of tree and shrub damages caused by insects and mites. Państwowe wydawnictwo naukowe, Warszawa
- Skuhravý V, Skuhravá M. 1998. Gall midges of forest trees and shrubs. Matice lesnická, Písek
- Stone G, Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18: 512-522
- Zhang WJ. 2011. Constructing ecological interaction networks by correlation analysis: hints from community sampling. Network Biology, 1(2): 81-98
- Zhang WJ. 2012. Computational Ecology: Graphs, Networks and Agent-based Modeling. World Scientific, Singapore
- Zhang WJ. 2016. Network robustness: Implication, formulization and exploitation. Network Biology, 6(4): 75-85