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Abstract 

The equilibrium of biological and ecological networks is often studied using eigenvector-eigenvalue analyses 

in order to reckon steady/unsteady properties and trajectories. Although at equilibrium inputs equal outputs for 

all the system variables, network flows continue to happen. Therefore, in this study I face three underestimated 

topics of network equilibrium: equilibrium flows, equilibrium sensitivity and equilibrium what-if properties. 

Using an applicative example, I show here that these three topics add important details to the knowledge of 

network behaviour at equilibrium. 
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1 Introduction  

The stability analysis of dynamical networks is a well-established topic, both in ecology and in biology. The 

equilibrium of biological and ecological networks is often studied using eigenvector-eigenvalue analyses in 

order to compute their steady/unsteady properties and trajectories. Using a different perspective, Ferrarini 

(2015) demonstrated that early, or late, stability can be imposed to any kind of ecological and biological 

network. Ferrarini (2016a) showed that network stability can be imposed also locally, not only globally. 

In this study, I face three underestimated topics of network equilibrium: equilibrium flows, equilibrium 

sensitivity and equilibrium what-if. Using an applicative example, I show that these three topics can add 

important details to the knowledge of network behaviour at equilibrium. 

 

2 Mathematical Formulation 

A generic ecological (or biological) system composed by a set S of n interacting taxonomic resolutions 

(species, genera, family, etc.) or aggregated assemblages of taxa (e.g., phytoplankton) is 
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where Si is the number of individuals (or the total biomass) of the generic i-th taxonomic resolution or  

assemblage of taxa.  

If we also consider time-dependent inputs (e.g. species reintroductions) and outputs (e.g. hunting) from 

outside, we must write: 

( ( )) ( ) ( )
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with I(t)≥0 and O(t)≤ 0, and with initial values 

0 1 2 n=<S (0), S (0)...S (0)>S
         (3) 

and co-domain limits  

 
1min 1 1max

nmin nmax

S ( ) S

...      

S ( ) Sn

S t

t

S t

 
 
            (4) 

Stability happens at time t= TEq when 
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or, by relaxing Eq. 5, when 
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2.1 Reckoning network flows at equilibrium 

Although at equilibrium inputs equal outputs for all of the variables, network flows continue to happen in the 

form 
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thus one main question is the amount of inputs and outputs at equilibrium for each variable, and also their 

ratios if compared to the equilibrium values. In fact, if flows at equilibrium are high compared to equilibrium 

values, a small perturbation of the network can lead to great changes, and vice versa.  
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The flow amount at equilibrium for each generic variable Si is 

 ( ( )) ( ) ( ( )) ( )Eq Eq Eq Eq Eq Eq
Si SiInputs t t outputs t t      S I S O

  (8) 

where S+
Eq is the set of variables with positive input to Si, and vice versa for S-

Eq. 

For instance, in a simple linear dynamical system composed by species <A, B, C, D> with equilibrium 

values <a, b, c, d> and interactions upon A equal to  <0.3, -0.4, -0.9, 0.6>, then 

 0.3* 0.6* 0.4* 0.9*Eq Eq
A AInputs a d outputs b c     

   (9) 

Thus, for the generic variable Si the ratio between equilibrium flow and equilibrium value is  
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2.2 Reckoning network what-if at equilibrium 

Another important issue is how and how much the network equilibrium values change if one network 

parameter (let’s say p) changes.  Network what-if analysis can disentangle the directionality and the degree of 

network change at equilibrium for a given change of each network parameter. It can be computed as follows 
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In case we vary simultaneously two parameters p and q, we must calculate  
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and so on for m parameters. 

 

2.3 Reckoning network sensitivity at equilibrium 

If we densify what-if analysis at equilibrium by multiple simulated parameter changes, we have a sensitivity 

analysis. For example, we can vary 1000 times the parameter p by a ±5%. In pseudo code: 
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3 An applicative Example 

Let’s consider the classic Lotka-Volterra predator-prey model (Lotka, 1925; Volterra, 1926). The Lotka-

Volterra equations are a combination of first-order, non-linear, differential equations widely used to describe 

the dynamics of biological systems with two species interacting (one as a prey and the other as a predator).  

The Lotka-Volterra model makes five assumptions about the environment and the dynamics of the two 

interacting species: 1) the prey population finds food at any times; 2) the food supply for the predator depends 

completely on the size of the prey population; 3) the rate of change of each population is proportional to its 

size; 4) during the interaction, the environment remains unvarying; 5) predators have unbounded appetency. 

Since differential equations are used, the solution is deterministic and continuous; this means that the 

generations of both the predator and prey continually overlap.  

The nonlinear Lotka-Volterra model with logistic grow of the prey S1 is a particular case of Eq.1, and it 

reads as follows 
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with initial values 
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and co-domain limits  
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Let’s consider the Lotka-Volterra system of Eq. 14 with the following parameters and constants: 
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Fig. 1 Time plot of the nonlinear Lotka-Volterra system under study. 

 

This network has eigenvalues < –0.32 +3.65i, –0.32 -3.65i > which means that the equilibrium point is 

stable (both the real parts of the two eigenvalues are negative) with oscillations that reduce the amplitude while 

nearing the steady point (the sum of imaginary parts is 0). The previous system goes at the steady state with S1 

= 80.00 and S2 = 67.20 (Fig. 1). 

At equilibrium, the previous biological network has the following flows computed through Eq. 8: 
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Thus, the ratios between flows and values at equilibrium are 
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A two-parameter what-if analysis with α = 4.1 (instead of 4) and δ=3.8 (instead of 4), imposed exactly at 

network equilibrium TEq, produces the changes in network dynamics illustrated in Fig. 2 and Fig. 3 and 

computed using Eq. 11. It is very interesting to note the evident shift in the network equilibrium due to the 

post-equilibrium change in the α and δ parameters. All the analyses have been carried out using the software 

Control-Lab 8 (Ferrarini, 2016b). 

 

 

 
 

Fig. 2 Two-parameter what-if analysis at equilibrium of the Lotka-Volterra system under study (phase plot). 
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Fig. 3 Two-parameter what-if analysis at equilibrium of the Lotka-Volterra system under study (time plot). 

 

4 Conclusions 

The equilibrium of dynamical networks is a well-studied topic both in ecology and in biology. In this paper, I 

have adopted a different perspective: instead of analyzing the stability of a generic biological or ecological 

network, I have focused on three underrated topics: equilibrium flows, equilibrium what-if analysis and 

equilibrium sensitivity analysis. 

I have showed that these three topics provide useful details about the way a biological or ecological 

network behaves, thus providing a deeper perspective into the equilibrium of biological and ecological 

networks. 
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