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Abstract 

The immune system can detect and respond against pathogens in time that does not vary with the size of the 

host animal. We suggest that this is due to the architecture of lymph nodes. Lymph nodes are anatomical 

structures that facilitate the otherwise serendipitous encounter of immune system cells with pathogens. We 

develop two complementary mathematical approaches to derive the optimal distribution of lymph nodes that 

enable a rapid immune response. Our work gives insights into the optimal design and architecture of the 

immune system and provides valuable inspiration for designing efficient computing systems. 
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1 Introduction 

The immune system can detect and respond against pathogens in time that does not vary with the size of the 

host animal. Larger animals like elephants can detect and respond to pathogens in the same time as small 

animals like mice.  

We suggest that this is due to the architecture of lymph nodes. Lymph nodes are anatomical structures that 

facilitate the otherwise serendipitous encounter of immune system cells with pathogens. 

The area of tissue that drains into a lymph node is called the draining region. Immune system cells called 

dendritic cells sample the tissue in the draining region for pathogens. Upon encountering pathogens, dendritic 

cells migrate to the nearest lymph node and signal to other immune system cells called B cells to secrete 

chemicals called antibodies. 

An animal 10,000 times larger than a mouse must generate 10,000 times more absolute quantities of 

antibody to achieve the same concentration of antibody in the blood (where blood volume is ∝M (host body 

mass); Peters, 1983). A fixed antibody concentration is required to fight infections. 

If organisms of all body sizes activated the same number of B cells, the time for a fixed number of B cells 

to produce antibody Ab is ∝ log M (since immune system cells reproduce exponentially through clonal 
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amplification). For example, since it takes 4 days of exponential growth of activated B cells to produce 

sufficient neutralizing antibody in mice against West Nile virus (Diamond et al., 2003), then the 

corresponding time for a horse would be more than 2 months. This conflicts with empirical data on horses 

(Banerjee and Moses, 2010). We assume that the immune system of larger organisms must activate several 

antigen-specific B cells ∝M, to build up the critical density of antibodies in a fixed period. 

Since only a very small number of pathogen-specific B cells reside inside the lymph node (1 in 106 

immune system cells) (Banerjee and Moses, 2010), this implies that as the organism size increases, the 

infected site lymph node must recruit increasing numbers of B cells from other lymph nodes. However, 

having a larger lymph node means that the volume of the draining region it services will be very large (since 

the total amount of lymphoid tissue is proportional to body mass), which will increase the average time taken 

by immune system cells to reach the lymph node.  

There is a tradeoff between having a larger lymph node (reduces global communication time involved in 

recruiting additional immune system cells to ensure a global antibody response) and a smaller lymph node 

(reduces local communication time involved in trafficking antigen-loaded dendritic cells to the draining 

lymph node). The optimal architecture that balances these two opposing goals is one where lymph nodes 

become larger as the host body size increases as well as more numerous (Banerjee and Moses, 2010; Moses 

and Banerjee, 2011; Banerjee, 2013; Banerjee et al., 2013).  

In this work, I describe two different approaches for deriving how the number of lymph nodes should 

scale with host body mass, M. We then compare it against available empirical data. 

 

2 Analysis and Results 

I use the following model of antigen detection and dendritic cell trafficking. Each lymph node has a tissue 

draining region which it frequently samples for foreign pathogens. The general model of immune system 

dynamics in the lymph node and its draining region are shown in Fig. 1 and summarized as follows: 

a) Stage 1: Dendritic cells randomly search for antigen in a local draining region. The time taken to detect 

antigen is denoted by ݐௗ௘௧௘௖௧
஽஼  

b) Stage 2: Dendritic cells migrate to a local lymph node along a chemotactic gradient. The time taken to 

migrate is ݐ௠௜௚௥௔௧௘
஽஼  

c) Stage 3: Antigen-specific T cell in a lymph node detects antigen on a dendritic cell and the time taken to 

detect is ݐௗ௘௧௘௖௧
஽஼,௖்௖௘௟௟ 

d) Stage 4: T cells then activate cognate B cells which undergo clonal amplification, an exponential growth 

process which produces some number of B plasma cells that then secrete antibody. The process of recruiting 

B cells (and hence cognate antigen-specific B cells) to the lymph node takes time ݐ௥௘௖௥௨௜௧ 
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lymph node will have proportionally more high endothelial venules 

 

ratecomm.VLN          (3) 

 

Combining (2) and (3), and noting that Ab∝M we get 

 

௥௘௖௥௨௜௧ݐ ן 
ெ

௏ಽಿ
      మ         (4) 

  

From simulations with an agent-based model (Banerjee and Moses, 2010), it was established that ݐௗ௘௧௘௖௧
஽஼ and 

ௗ௘௧௘௖௧ݐ
஽஼,௖்௖௘௟௟ do not scale with lymph node or draining region dimensions. Furthermore ݐ௠௜௚௥௔௧௘

஽஼ scales as rDR - 

rLN which in turn scales as  ௅ܸே
ଵ/ଷ 
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Differentiating with respect to VLN we get 

 

௅ܸே ן  ଷ/଻ ܯ

 

which in turn the gives the desired relation between number of lymph nodes (N) and host mass (M) 

 

ܰ ן  ସ/଻ ܯ

  

Hence, our method suggests that lymph node numbers should increase sub-linearly (slope < 1) with host body 

size. 

 

2.2 Lymph node size changes over time as the infection progresses 

We also look at another approach that considers the fact that the infected site lymph node size is increasing 

with time (after infection) due to the following reasons:  

1) upregulation of ligands near high endothelial venules  

2) more high endothelial venules in infected site  

3) expansion of blood vessel feeding lymph nodes, and  

4) antigen specific immune system cells retained within lymph nodes (“lymphocyte shutdown”) 

We augment equation (4) with a time-varying lymph node size 

 

௥௘௖௥௨௜௧ݐ ן  
ெ

௏ሺ௧ሻಽಿ
   మ       (5) 

 

Lymph node size increases linearly over time after infection (Soderberg et al., 2005), giving us the functional 

form:VLN(t)  VLN,B * t where VLN,B is the initial or baseline volume of the lymph node. Substituting this in 

Eq. 4, we get 
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and assuming t ~ T we have  
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Substituting in equation (1) we have 
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With the usual substitutions, we have 
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Rearranging in terms of T  
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The solution of the cubic equation (real root) is 
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Neglecting the term within the square root of the square root and differentiating with respect to VDR,B we have 

upon considerable simplification: 
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Using this to bound the exponent on M, we have for the largest exponent 
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4 Discussion  

The immune system can detect and respond against pathogens in time that does not vary with the size of the 

host animal. We suggest that this is due to the architecture of lymph nodes. Lymph nodes are anatomical 

structures that facilitate the otherwise serendipitous encounter of immune system cells with pathogens. We 

develop two complementary mathematical approaches to derive the optimal distribution of lymph nodes that 

enable a rapid immune response. 

Using two approaches, we analytically derive how the number and size of lymph nodes should scale with 

host body size to respond against pathogens in time that is invariant with body size. Our second approach 

explicitly accounts for the increase in lymph node size over time as the infection progresses. Both approaches 

suggest that the scaling exponent is sub-linear (< 1), suggesting that lymph node numbers and volumes both 

increase with host body size (although not as fast as linearly).  

   Our model predictions agree with available empirical data suggesting that the volume of lymph nodes 

increases sub-linearly with body size. We are not able to rule out a specific scaling exponent. As more data on 

lymph node numbers and sizes becomes available, it should be possible to make better estimates of the 

scaling exponent. 

Our models give us mechanistic insight into how the immune system can efficiently remove pathogens in 

a timely manner. This can also lead to immune system inspired architectures and strategies that replicate these 

dynamics in human-engineered distributed systems like robots, intrusion detection systems and peer-to-peer 

networks (Banerjee and Moses, 2010; Moses and Banerjee, 2011; Banerjee, 2013; Banerjee et al., 2013; 

Banerjee, 2015; Banerjee, 2016; Banerjee, 2017a; Banerjee, 2017b). 
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