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Abstract 

Asthma is a long-term inflammatory disease known to affect the airways in the lungs with variable and 

recurring symptoms. A large number of genes, transcription factors and proteins are involved in this process, 

which makes it polygenic. We investigated the responsible proteins for asthma by conducting in-depth analysis 

in the database of asthma proteins and subsequently examining their differential role in disease progression 

following a computational biological approach. Firstly, we constructed a protein-protein interaction network 

among 1152 proteins, and identified top 20 high degree nodes (known as hubs); considering threshold score of 

≥100 by using Cytoscape 3.1.0 software package. Also we identified seven asthma signal transduction 

pathways from KEGG database and compared them with the pathways derived from NetWalker platform to 

determine the constituted proteins. Secondly, we conducted MCODE (molecular complex detection) analysis 

that divided the network into 27 clusters having threshold score of ≥4.0. These individual clusters of 

constituted proteins were compared with the hubs and the results demonstrated their functional role in asthma. 

We also identified the proteins involved in the regulatory, reactome and metabolic reaction interaction for 

asthma exacerbation, classified different lung functional roles of these proteins, and found hyper-geometric p-

value of ≤0.05. Thus, our in-depth analysis suggests some important consequences for interpreting the 

resulting data significantly and gives more insight about asthma exacerbation. 
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1 Introduction 

Asthma is a chronic airway inflammatory obstruction which affects more than 300 million people worldwide 

with emerging prevalence (Sullivan et al., 2016). Understanding asthma in human is very challenging although 

some molecular and immunological studies have already started to reveal the underlying mechanism of asthma 

using animal models and cell culture techniques (Zosky and Sly, 2007). But in human, asthmatic process is not 

entirely speculated; therefore, molecular mechanism of diseases and identification of their interaction is highly 

necessary (Elias et al., 1999). This complex polygenic disease is regulated by multiple gene-gene and gene-

environment interactions (Ober and Vercelli, 2011; Holloway et al., 2010). Genome-wide association study 

(GWAS) identified that over 100 genes and 150 genes are interconnected with asthma in human and animal 

models respectively (Ober and Hoffjan, 2006) which indicates that asthma is a complex polygenic disease 

(Van Eerdewegh et al., 2002; Xu et al., 2002). The genome wide association study and candidate gene study 

have already attempted to reveal the complexity of this disease (Dahlin and Kelan, 2012). The perturbation of 

high throughput data profiling and computational modeling through network biology approach can enrich the 

underlying principle of this disease more advantageously (Ijaz et al., 2014). 

Previously a single gene or protein was thought to be responsible for a specific disease. But nowadays not 

a single gene but a set of interacting genes and proteins are readily used to characterize the pathways and 

pathological processes of a disease (Strohman et al., 2002). A plethora of computational data analysis methods 

has emerged to minimize the complexity of determining the biomolecular interaction of diseases.  

Considering network biology approach it is revealed that a complex network is formed by multiple 

numbers of nodes which are connected through edges (Zhang, 2012, 2016a, 2016b, 2018). This network is 

scale-free and contains low number of densely connected nodes (hubs) and large number of poorly connected 

nodes (non-hubs) (Barabasi et al., 1999); in Han et al. (2004), the degree cutoff with greater than 5 were 

considered as hubs; in Ekman et al. (2004), it is greater than 8; in Aragues et al. (2007) nodes with degree 

larger than 20 were defined as hub proteins.  In Jin et al. (2007), hubs were defined if one protein had more 

than 12 partners in their top 20% ranking. A highly connected object of a network (hub protein) can be very 

crucial to play a central role in regulatory process of a disease (Kugler et al., 2011). The genome studies 

revealed that removing a hub protein from an organism is more likely to be lethal than removing a non-hub, a 

process widely known as centrality-lethality rule (He and Zhang, 2006). Therefore, hub proteins are 

indispensable part of a global network architecture (Batada et al., 2006). The notion of system biology also 

indicates that hub proteins are evolutionary conserved (Wuchty and Almaas, 2005) and play a central role for 

modular organization in a protein interaction network (Albert et al., 2000; Han et al., 2004).  

The network biology approach aims to integrate complex biological data holistically whereas the classical 

analysis was done by reductionism philosophy (Frank and Dehmer, 2011). The biological network also 

decodes the functional interaction among the biomolecules and analysis of these networks helps in discovering 

new therapeutics and designing new protocol for early diagnosis of diseases (Pavlopoulos et al., 2011; 

Csermely et al., 2013).  

In biological system, most abundant type of biomolecule is protein which interacts with DNA, RNA, 

metabolites and other protein of interest. But, protein-protein interactions (PPIs) build up a functional network 

among all biological molecular pathways (Ibrahim et al., 2011; Paris and Bazzoni, 2011; Zhang and Feng, 

2017; Habib et al., 2018). Consequently, these PPIs help us to understand the inner complexity of an organism 

and lead to decipher the underlying pathogenic mechanisms of diseases (Bahadur, 2010). 

In the present investigation, we established protein-protein interaction network episodes of asthma disease 

using a computational biological approach. We identified asthma signal transduction pathways by searching 

database, and the constituted proteins of those pathways were sorted out by software analysis. Moreover, we 
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classified different lung functional role of the proteins involved in regulatory interaction, reactome interaction 

and metabolic reaction.  

 

2 Material and Methods 

The Phenopedia database (Yu et al., 2009) was used for retrieval of proteins responsible for asthma disease. 

This analysis was performed with 1195 proteins reported for Asthma so far. The possible interacting proteins 

were identified from STRING database (Szklarczyk et al., 2015) and there we found 1152 proteins (nodes) and 

19406 connections (edges). And 11330 protein-protein interactions (PPIs) were discovered having high 

confidence score of 7.0. Next, a network was constructed using Cytoscape 3.1.0 (Shannon et al., 2003) 

software package. A cytoscape plugin MCODE (molecular complex detection) was used for identification of 

densely connected region of this network based on ranking orders. During MCODE analysis we fixed the 

analytical value default such as - find clusters: in whole network; network scoring (advanced option) - a) 

include loops: turn off, b) degree cutoff: 2; cluster finding - a) haircut: turn on, b) fluff: turn off, c) node score 

cutoff: 0.2, d) K-core: 2, e) max. depth: 100. 

To identify the asthma signal transduction pathways (STPs) we used KEGG (Kyoto Encyclopedia of 

Genes and Genomes) database (Kanehisa et al., 2016; Kanehisa and Goto, 2000). Here we discovered seven 

STPs which are associated with asthma disease progression. Furthermore, NetWalker 1.0 software package 

(Zhang et al., 2011) was used for identification of responsible proteins for asthma STPs. Also a network was 

constructed and later split into four cluster networks i.e. protein-protein interaction network, gene regulation 

network, reactome interaction network and metabolic reaction network. Default parameter values were used to 

construct and split the networks. 

 

3 Results and Discussion 

3.1 Network construction and identification of hubs 

The Protein-protein interaction network was visualized by using Cytoscape 3.1.0 platform (Shannon et al., 

2003). Cytoscape mapped 956 nodes with 11330 connections as edges. From this network analysis we 

identified top 20 high degree nodes having threshold score of ≥100 (Supplementary material file 1), which is 

separately highlighted in Fig. 1. These nodes were densely connected and consisted of huge number of edges 

compared with the other nodes in this network. These types of densely connected nodes are considered as hubs 

and they play pivotal role in a complex network. The network analyzer plotted degree against number of nodes 

which showed that the amount of high degree nodes is fewer than the low degree ones (Fig. 2). So it is 

apparent that in a complex network, hubs are the main control unit that is associated with so many objects 

compared with the non-hubs.  
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3.2 Identification of asthma signal transduction pathways 

The asthma signal transduction pathways (STPs) were identified from KEGG pathway database (Kanehisa et 

al., 2016; Kanehisa and Goto, 2000). We retrieved seven pathways mainly responsible for asthma disease 

progression. These pathways were regulated by several proteins and they played crucial role for the 

development of asthma disease. To find out the best possible proteins of asthma STPs, we worked with 

NetWalker 1.0 software package (Zhang et al., 2011). Collaborating with this analysis we identified seven 

STPs by searching autogroup option in NetWalker where 91 proteins were involved in the cytokine receptor 

binding STP. Likewise, cell adhesion molecules, JAK-STAT cascade, antigen processing & presentation, and 

T cell receptor signaling pathway contained 36, 33, 27 and 24 proteins respectively. The B cell receptor 

signaling pathway contained 5 proteins whereas the Fc epsilon R1 signaling pathway had only 2 proteins in it 

(Supplementary material file 2).  

Fig. 1 Construction of asthma protein-protein interaction network in identifying hubs. 
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However, cytokines play a crucial role for the development of asthmatic inflammatory process, which 

leads to inappropriate immune response in the body. This insidious role is mainly orchestrated by T helper 2 

(Th2) cells and these Th2 cells primarily regulate the pathogenic effects of an asthmatic response. Both human 

and mice model had been employed to explain the involvement of Th2 cell in the pathophysiology of asthma 

(Wills-Karp, 1999). The inflammatory asthmatic response controlled by Th2 cytokines (IL-4, IL-5, and IL-13 

proteins) (Pernis et al., 2004). Our network model depicted that these three proteins have high degree 

distribution of 106, 52 and 69 respectively (supplementary file 1). We investigated and found that there are 6 

proteins (TNF, IL-2, IL-4, IL-6, IL-8, and CXCLI2) commonly expressed both in top degree nodes and 

cytokine-cytokine receptor interaction. In JAK-STAT signaling pathway AGT, STAT1, STAT3, IL-2, IL-4, 

IL-6, and JAK2 was found to be common.  

Interestingly, the IL-4 and IL-12 activate the critical JAK-STAT signaling cascade which is a major 

pathway for asthma disease progression. In particular, the cytokines IL-4 and IL-13 induce high production of 

IgE that binds to high-affinity IgE receptors on mast cells and trigger the inflammatory asthmatic response 

(Jiang et al., 2000). On the contrary, IL-12 can block the synthesis of IgE (Yssel et al., 1998). The adequate 

number of nodes (proteins) can link-up with single high degree nodes as per the sensitivity of proteins. For 

example, the IL-4 and IL-6 possessed high degree and can regulate other nodes easily by connectivity of edges 

(interactions line).  

The NFkB is commonly expressed in both T cell receptor signaling pathways and antigen processing and 

presentation STPs; and plays a critical role in asthmatic inflammatory process (explained in next section). 

Wegner and his colleagues (Wegner et al., 1990) first claimed that the cell adhesion molecules are majorly 

responsible for lung inflammation during asthma; though the function, fate and origin of these molecules are 

still unrevealed (Gearing and Newman, 1993). The two-integrin family’s intercellular adhesion molecules 

(ICAM-1) and vascular cell adhesion molecules (VACM-1) are considered as the major markers for asthmatic 

Fig. 2 Network plot parameter of degree against number of nodes. 
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inflammation. Some study reported that after antigen challenge, soluble ICAM-1 and E-selectin were found in 

BAL fluid of asthma patients (Montefort et al., 1994). The VACM-1 expression in the lung also increases 

during asthma inflammation with several other parameters (Fukuda et al., 1996; Ohkawara et al., 1995; Gosset 

et al., 1995). In our predicted network model we detected 36 cell adhesion molecules which are majorly 

responsible for asthma inflammation. In the study we identified that ICAM-1 and VACM-1 were densely 

connected with high degree of 86 and 58 respectively. In B cell receptor signaling pathway we found MAPK1, 

NFATC2, PRKCB, CTLA4 and PTPN22 molecules; and for Fc Epsilon R1 signaling pathway MS4A2 and 

FCER1G are the main responsible molecules for asthma progression.  

3.3 Molecular complex detection  

Molecular Complex Detection (MCODE) method was applied for assessment of yeast-protein interaction 

network by existing established molecular complex data from mass spectrometry of the proteome. This study 

found that highly connected regions of a network form clusters based on their ranking order and they can be 

considered as a molecular complex (Islam et al., 2013). In our analysis the considered molecular complex 

threshold was ≥4.0 and we identified 27 clusters (Fig. 3a, 3b) on the basis of their ranking order. The rank 1 

cluster was highest scoring 59 and in comparison with the top degree nodes AGT, APP, KNG1, IL-8, 

CXCLI2, CCR5 and ANXA1 were noticed to express commonly. Here, the AGT had highest degree 

distribution of 153 and also a common node in comparison with the nodes of JAK-STAT cascade. It is claimed 

that angiotensinogen gene (AGT) tremendously increased the effect of bronchoconstrictors and thereby 

produce a peptide. This peptide gradually accumulates in the airway and leads to progression of asthma in the 

body of the patients (Ying et al., 1991). Apparently, AGT expression has been connected to the lung fibrosis 

and also expressed in pulmonary cells (Uhal et al., 2012). So, AGT is considered as a good candidate hub in 

our network model. Therefore, the role of AGT in asthma exacerbation can be a good experimental tool for 

future studies. Second common node from the top hubs and JAK-STAT cascade was identified STAT1 (degree 

distribution 107) and also it was encountered from MCODE cluster rank 4. In asthmatic subject, STAT1 is 

selectively activated in bronchial epithelial cells and this STAT1 increased the expression of its target proteins: 

ICAM-1, IRF-1, and STAT1 (Sampath et al., 1999). STAT1 is considered as a key regulator of IFN-stimulated 

genes (ISGs) expression (Shornick et al., 2008; Holtzman et al., 2011). The ISGs encode proteins that control 

or defeat high level viral production by activating immune cells (Holtzman et al., 2012).  

The IL-2, IL-4, IL-6 and JAK2 commonly expressed both in cluster rank 5 and JAK-STAT cascade. 

Except JAK2, these three proteins are commonly expressed in cytokine receptor binding STP. Here, IL-6 

contains high degree distribution of 144 whereas IL-2, IL-4 and JAK2 are 113, 106 and 122 respectively. In 

cluster rank 6 of MCODE analysis TP53, STAT3 and EGFR were commonly expressed with the top 20 nodes. 

Here, STAT3 (degree distribution 148) and EGFR (degree distribution 114) are commonly expressed with 

JAK-STAT cascade and cell adhesion molecule. So, STAT3 can be considered as a good candidate hub in this 

network model. Ying and his colleagues claimed that STAT3 is a novel epithelial regulator of allergic response 

and targeting this molecule could be a novel and effective way for the development of therapeutics for asthma 

(Ying et al., 1991). In cluster rank 7, TNF-α (degree distribution 103) was commonly expressed in the top 20 

hubs, JAK-STAT cascade and cell adhesion molecule. TNF-α is a master key regulator for asthma induction. It 

was reported that the airways of asthmatic patients contain TNF-α, which may deregulate the inflammatory 

response in the asthmatic airways and regulates disease progression (Ying et al., 1991; Bradding et al., 1994). 

There are some other key features of TNF-α including induction of histamine release (van Overveld et al., 

1991), enhancement of the cytotoxic effects of eosinophils on endothelial cells (Slungaard et al., 1990), 

activation and cytokine release by T cells (Scheurich et al., 1987) and development of airway hyper 

responsiveness by increasing epithelial expression of adhesion molecules (Walter  et al., 2002). Some studies 
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suggest that refractory asthma can be occurred by recruitment of neutrophils (Thomas et al., 1995), induction 

of glucocorticoid resistance (Franchimont et al., 1999), and myocyte proliferation (Desmoulière et al., 1993). 

Finally, in cluster rank 9, NFkB was commonly expressed in top 20 hubs, antigen processing and presentation, 

and T cell receptor-signaling pathways. This molecule is densely connected in our developed network with 

degree distribution of 114. It is presumed that, the cell adhesion molecules (e.g. ICAM-1, VCAM-1) are 

regulated by the action of NFkB. Thus, NFkB leads to fix the order of inflammatory gene expression and 

immune response in asthmatic airways in order to amplify and perpetuate the inflammatory process (Barnes et 

al., 1997). 

 

 
 
 
 
3.4 Identification of regulatory interaction, reactome interactions and metabolic reaction proteins of 

asthma exacerbation 

The blue color PPIs network showed the interaction of regulatory proteins of asthma (Fig. 4a). The asthma 

exacerbation related proteins are involved in deactivating the defense mechanism and increasing the external 

stimuli, therefore giving protection against immune response. This type of association may disappear when 

exacerbation related proteins are excluded. It is possible to differentiate whether the proteins are disease 

inducing or not by quantifying real-time PCR (RT-PCR) (Aoki et al., 2009). Identification of these types of  

Fig. 3a Molecular complex detection analysis of asthma exacerbated protein-protein interaction based on ranking  
order (rank order 1-15). 
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proteins is important for further target specification. The NetWalker software was used in our analysis to 

separate asthma gene regulatory network from the whole genes constitute network. Based on this software 

analysis, of 956 nodes, 262 were identified crucial for asthma disease progression (Supplementary material file 

3). 

 
 

 
 
 
 

Previously, our network model discovered top 20 high degree nodes (hubs); and in comparison with these 

hubs (except KNG1, JAK2, and CXCL12), all the 17 nodes were found similar. So it can be predicted that the 

hubs are playing major role in every possible reaction of disease progression. We also described the role of 

proteins for different functional stages of lung development with statistically significant data (table 1). Among 

all lung functional proteins, TNF, CTNNB1, FOXP3 and FOXA1 were very crucial as they had high degree 

distribution of 103, 77, 61 and 21 respectively in the predicted network model. We assume these could be the 

possible target proteins for further studies.  

 

Fig. 3b Molecular complex detection analysis of asthma exacerbated protein-protein interaction based on ranking order  
(rank order 16-25). 
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The aquacolor PPIs network showed reactome interaction of asthma (Fig. 4b). The neighboring reaction 

interaction proteins were separated and 297 proteins were identified involved in reactome interaction. 

Incomparison with the 20 hubs we identified 12 which were commonly expressed in reactome interaction. 

Here, we constructed a table (Table 1) based on the proteins having significant lung functional roles and found 

the two pairs of proteins are responsible for metabolic reaction. Here we demonstrated that 99 proteins had 

been playing potential role for metabolic reaction in asthma. The yellow color PPIs showed metabolic reaction 

(Fig. 4c). A very few proteins are responsible for lung functional roles in case of metabolic reaction. Only the    

LTA4H is common for all lung functional roles with significant hyper-geometric p-value showed in Table 1. 

Only TNF as common; it is suggested that other proteins should not be neglected as they have relatively high 

degree distribution. The CTNNB1 is responsible for various lung functional roles having high degree 

distribution of 77 which could also be regarded as a hub in a complex network. We can speculate from the fact 

that the reactome interacted TNF and CTNNB1 are important for further investigation. 

 
 
 

 

Some birth control cohorts claimed that the deficit of lung function development of neonates might initially 

develop asthma or a cause of this disease progression (Turner et al, 2004; Haland et al., 2006). Here, we 

demonstrated an integrative relationship between proteins and various lung functions development of asthma 

and found several responsible proteins for asthma disease progression. The TNF, FOXP3, FOXA1 and 

CTNNB1 are playing critical role for regulation of asthma. In parallel, TNF and CTNNB1 are responsible for 

reaction interaction of asthma whereas, LTA4H is important for metabolic reaction of asthma disease 

Fig. 4 NetWalker software constructed regulatory interaction (a), reactome interaction (b) and metabolic reaction (c)  
network of asthma exacerbation. 
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progression. In a complex network model, data generation through genome-wide association, transcriptome, 

epigenome, microbiome, and metabolome analysis can assist us to understand the complex molecular 

mechanism of diseases. A complex biological network of asthma disease responsible proteins can help us to 

develop a casual relationship among the molecules within a cell or tissue or among themselves. Therefore, an 

integrative system wide data association can help us with the accurate prediction of important proteins 

responsible for disease progression that can be considered as a future reference to understand the disease 

assessment, risk monitoring factors, and therapeutic intervention. 

 

Table 1 Classified lung functional role of regulatory interaction, reactome interaction and metabolic reaction proteins of asthma 
exacerbation. 

annotation 
ID 

Functional annotation hyper-geometric p-value Proteins 

  Regulatory 
interaction 

Reactome 
interaction 

Metabolic 
reaction  

Regulatory 
interaction  

Reactome 
interaction  

Metabolic 
reaction  

GO:0048286 lung alveolus 
development 

0.003 0.03 0 VEGFA, 
PDGFA, 
FOXP3 

VEGFA, 
PDGFA 

No 

GO:0061048 negative regulation of 
branching involved in 
lung morphogenesis 

0 0 0 TNF TNF No 

GO:0061047 positive regulation of 
branching involved in 
lung morphogenesis 

0.0003 0.0004 0 CTNNB1 CTNNB1 No 

GO:0061046 regulation of branching 
involved in lung 
morphogenesis 

0.00006 0.0001 0 TNF, 
CTNNB1 

TNF, 
CTNNB1 

No 

GO:0060916 mesenchymal cell 
proliferation involved in 
lung development 

0.001 0.001 0 CTNNB1 CTNNB1 No 

GO:0060502 epithelial cell proliferation 
involved in lung 
morphogenesis 

0.007 0 0 FOXP3  No 

GO:0060501 positive regulation of 
epithelial cell proliferation 
involved in lung 
morphogenesis 

0.005 0 0 FOXP3  No 

GO:0060492 lung induction 0.001 0.001  CTNNB1 CTNNB1  

GO:0060487 lung epithelial cell 
differentiation 

0.02 0.02 0.003 FOXA1 LTA4H LTA4H 

GO:0060441 epithelial tube branching 
involved in lung 
morphogenesis 

0.0009 0.01 0 TNF, 
CTNNB1, 
FOXA1 

TNF, 
CTNNB1 

No 

GO:0060479 lung cell differentiation 0.0017 0.002 0.004 CTNNB1, 
FOXA1 

CTNNB1, 
LTA4H 

LTA4H 

GO:0060484 lung-associated 
mesenchymal 
development 

0.009 0.0005 0 CTNNB1 CTNNB1, 
FGF9 

No 

GO:0060425 lung morphogenesis 0.0006 0.04 0 TNF, 
CTNNB1, 
FOXA1, 
FOXP3 

TNF, 
CTNNB1 

No 

GO:0060424 lung field specification 0.001 0 0 CTNNB1  No 

GO:0060431 primary lung bud 
formation 

0.003 0.004 0 CTNNB1 CTNNB1 No 

GO:0060428 lung epithelium 
development 

0.008 0 0 FOXA1, 
FOXP3 

 No 
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GO:0030324 lung development 0.0000007 0.000003 0.0003 NOS3, TNF, 
CFTR, 
CTNNB1, 
CRH, VEGFA, 
PDGFA, 
FOXA1, 
FOXP3, 
CEBPA, 
AGER, RBP4 

NOS3, TNF, 
CFTR, 
CTNNB1, 
CRH, VEGFA, 
PDGFA, 
LTA4H, 
ARG1, 
TGFBR1, 
FGF9, 
PDGFRA 

NOS3, 
LTA4H, 
ARG1, 
CYP1A2, 
ARG2 

GO:0060428 lung epithelium 
development 

0 0 0.01 No No LTA4H 

 

4 Conclusions 

The system biology approach is not widely validated yet but the phenomenon has rapidly escaped from its 

boundary. A network-based model can define meaningful information on the complex relationship of 

interacting proteins. This systematic approach outlines to design a higher order combination of target proteins 

of disease-associated pathways or interaction networks. In order to understand the asthma phenotypic 

expression completely, this promising approach can help in identifying large profiling and well-characterized 

asthma cohort’s proteins by constructing a protein-protein interaction network related to disease progression. 

In accordance to our whole analysis, we have explained a predictive scenario of asthma disease responsible 

proteins network and their subsequent role in terms of this disease progression. Although different 

computational approaches had already been placed to design novel therapeutics against this disease but in this 

study we attempted to link up this picture as a whole. In this study, hub proteins were determined based on 

limited connections while it is possible to study with ample of hubs by reducing the degree distribution 

threshold. The large-scale real time data from patients is crucial to build up a complementary system wide 

profiling of asthma disease responsible proteins. Overall from this analysis it can be predicted that TNF-α 

played a critical role for asthma exacerbation and our network model found this molecule as a hub which can 

be a good target for novel drug design. As computational data analysis is very challenging, the refinement of 

real time software and tools is necessary for providing the knowledge of network engineering activities in 

cellular and molecular level of asthma disease episode. 
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