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Abstract 

This paper deals with the qualitative study of a discrete-time prey-predator model with Holling type-II 

response. Particularly, we obtained a dynamically consistent prey-predator discrete-time model by applying a 

nonstandard difference scheme. We explore the novel explicate parametric conditions for the local stability of 

positive equilibrium point. Moreover, it is shown that there exists Nimark-sacker bifurcation for the unique 

positive steady-state of given system. In order to control the bifurcation, we introduced a new control strategy. 

Moreover, some interesting numerical simulations are provided in order to verify the theoretical discussion and 

to explore the effectiveness and feasibility of new design control strategy.  

 

Keywords prey-predator model; Holling type-II response; nonstandard difference scheme; Nimark-sacker 

bifurcation; comparison of control techniques.  

 

 

 

 

 

 

 

1 Introduction 

The modeling of prey-predator interaction is first time introduced by Lotka-Volterra (Malthus, 1798; Verhulst, 

1838; Brauer and Sanchez, 1975; Lotka, 1925; Volterra, 1926). The response function used by them was the 

most simplest case in which they consider simple proportionality between response function and number of 

predators. It is well described by many researchers that prey-predator species follow different growth functions, 

among these growth functions, Logistic function of growth is important one (Gause, 1934; Holling, 1959; Xiao 

and Ruan, 2001). Verhulst (1838) use the Logistic function to explain human growth. Later Feller (1940) 

explained that almost each population which has asymptotically increasing behavior, satisfies Logistic law of 

growth of some degree. Gompertz (1825) and May (1973) suggested some other growth functions. The 
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response function between predator and prey species plays an important role for long term survival of life in 

ecosystem. The response function has many types some of them are, Logistic response, ratio dependent 

response, Holling types of responses (Holling, 1959) and Beddington response functions (Beddington and May, 

1975). 

    The direct consequence of stability of species in ecological system is the stability of ecological system. 

Moreover, this is the fundamental concern in study of ecology. Ecological models such as Angelis et al. (1975) 

Reeve (1988), Murdoch et al. (1992) and Holling (1965) are stability describing mathematical models for 

verity of systems. The dynamical relationship between predator and its prey is the topic of interest of many 

researchers from many years in the past. In recent years it will continue to be one of the major topics in the 

study of mathematical ecology (Berryman, 1992; Din et al., 2018). Except lots of good work done on 

Lotka-Volterra predator-prey models there are many mistakes and unreliability emerge out this study. Holling 

(1965) explained three types of functional response of predator specie, and they are now named as Holling 

type-I, type-II and type-III response respectively (Ping and Hong1986). Holling type-II response proposed by 

Holling (1965) is described mathematically as 

 Ψሺݔሻ ൌ
௦௫

௔ା௫
, 0 ൑ ݏ ൏ 1, 

is any constant. The Holling type-II response is often illustrated by a slow ingestion rate, which tracks from the 

supposition that the consumer is restricted by its capability to produce food. This response if frequently 

modeled mathematically by using rectangular hyperbola. Albert et al. (1980) explained the use of Holling type 

response function in prey-predator interaction models. Later Kaung (1988) explained that the study of 

prey-predator interactions by using Holling functional response is much batter than study of prey-predator 

interactions without it. Notice that, due to rich dynamics and remarkable computing results, discrete dynamical 

system is more suitable then continuous one (Murray, 1989; Agarwal and Wong, 1997). Furthermore, in case 

of non-overlapping species models this arguments works more efficiently (Din, 2018a, 2018b, 2018c, 2018d). 

    Recently, many researchers explore the dynamics of discrete-time prey-pradator models (Din et al., 2018; 

Din, 2017). Din (2017) explore the complexity and chaos in prey-predator model in discrete form. Furthermore, 

Roy and Ghosh (2013) explored the stability and chaotic motion in discrete-time prey-predator model with 

generalized Holling response. For study of some interesting theory and analysis of functional response in 

discrete form we refer reader to Huang et al. (2018) and Cui et al. (2016). In this paper, we consider the 

continuous-time prey-predator model presented by Jha and Ghorai (2017). They considered four continuous 

time prey-predator models with three types of Holling type response and selective harvesting of prey and 

predator. Existing work on these models does not cover all dynamical properties produced by Holling type-II 

response. Hence, we consider the two dimensional continuous-time prey-predator model with Holling type-II 

proposed by Jha and Ghorai (2017) and its mathematical form is given as follows: 

ௗ௫

ௗ௧
ൌ ݔߙ ቀ1 െ

௫

௞
ቁ െ

ఉ௫௬

௔ା௫
,

ௗ௬

ௗ௧
ൌ

ఋ௫௬

௔ା௫
െ .ݕߛ

                                (1) 

According to Strogatz et al. (1994), chaos can exists in 3-dimensional phase space continuous system at 

least. Therefore it is clear that, in system (1) chaos can not be observed. While in case of counter discrete-time 

map, chaos can be observed in 1-dimension. Motivated by aforemention rich properties of discrete-time 

dynamical systems, it is necessary and interesting to study qualitative the discrete-time version of system (1). 
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Therefore, we explored the stability analysis and bifurcation of discrete-time version of system (1). The 

investigation of such discrete-time models can be found in Din (2017a, 2017b). Moreover, by applying a 

non-standard finite difference scheme to (1) we have the following discrete-time prey-predator model:  

௡ାଵݔ ൌ
௫೙ሺଵା௛ఈ௫೙ሻ

ଵା௛ቀఈೣ೙
ೖ
ାఉ ೤೙

ೌశೣ೙
ቁ
,

௡ାଵݕ ൌ
௬೙ା௛ቀ

ഃೣ೙೤೙
ೌశೣ೙

ቁ

ଵା௛௥
.

                         (2) 

Here in (2), 0 ൏ ݄ ൏ 1 is step size, ߙ represent intrinsic growth rate of prey, ߚ is the rate of predation of 

prey, ߛ is the death rate of predator, ܽ is half saturation constant. Moreover, the conversion rate of predator 

is represented by ߜ and all constants ߙ, ,ߚ ݇, ܽ, ,ߛ  are positive. Recently, Din (2018a, b) explored the ߜ

qualitative behavior of discrete-time chemical reactions models and shows that OGY methodm cannot be 

applied for controlling the bifurcation while keeping the step size ݄ as bifurcation parameter, see Ott (1990). 

Therefore, to overcome this deficiency we introduce a new hybrid control methodology for controlling the 

bifurcation. 

The novel assistance of this article are given as follows; 

  A novel discrete-time prey-predator model with Holling type-II (2) is obtained which is dynamically 

consistent. 

  Novel explicit parametric conditions are obtained for possible qualitative behavior of system (2). 

  A generalized Hybrid control technique is proposed for controlling the bifurcation. 

  In order to shows the effectiveness of newly introduced technique, a comparison is given with existing 

hybrid control methodology and rich numerical simulation are given. 

The remaining part of this manuscript organized as; the existence of equilibrium point and local stability 

of model (2) is investigated in section 2, bifurcation analysis of unique positive equilibrium point of system (2) 

is discussed in section 3. In order to control Neimark-sacker bifurcation we proposed a modified-hybrid 

control strategy in section 4. Finally, a comprehensive numerical simulations are provided to support each 

theoretical investigation. 

The next section is dedicated to existence of fixed points and their stability.  

 

2 Existence of Positive Fixed Point and Local Stability 

By performing simple algebraic manipulation, it is easy to see that system (2) has three fixed points 

்ܨ ൌ ሺ0,0ሻ, ܨ஻ ൌ ሺ݇, 0ሻ and the unique positive equilibrium point ܨ௎ ൌ ቀ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ whenever 

ሺܽ ൅ ݇ሻߛ ൏ ߜ and ߜ݇ ൐   .ߛ

Firstly, we describe a general results for local stability of fixed points of system (2). Let כܨ be any 

arbitrary fixed point of (2) then we have the next discussion about the local stability of כܨ. Let  

ሻכܨ௃ሺܨ  ൌ ቂ
݁ଵଵ ݁ଵଶ
݁ଶଵ ݁ଶଶ

ቃ  

be the variational matrix evaluated at כܨ. Then the quadratic characteristic polynomial of the matrix ܨ௃ሺכܨሻ is:  

ԯሺ߷ሻ ൌ ߷ଶ െ ଵܶ߷ ൅  ଵ,                       (3)ܦ

where  
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ଵܶ ൌ ሺ݁ଵଵ ൅ ݁ଶଶሻ, 

and  

ଵܦ  ൌ ݁ଵଵ݁ଶଶ െ ݁ଵଶ݁ଶଵ. 

In order to discuss the stability of fixed points, we have the following Lemma (see Liu and Xiao, 2007).  

Lemma 2.1 Let ԯሺ߷ሻ ൌ ߷ଶ െ ଵܶ߷ ൅ ଵ, and ԯሺ1ሻܦ ൐ 0. Moreover, ߷ଵ,߷ଶ are root of ԯሺ߷ሻ ൌ 0, then: 

(i) |߷ଵ| ൏ 1 and |߷ଶ| ൏ 1 if and only if ԯሺെ1ሻ ൐ 0 and ܦଵ ൏ 1; 

(ii) |߷ଵ| ൐ 1 and |߷ଶ| ൐ 1 if and only if ԯሺെ1ሻ ൐ 0 and ܦଵ ൐ 1; 

(iii) |߷ଵ| ൏ 1 and |߷ଶ| ൐ 1 or ሺ|߷ଵ| ൐ 1 and |߷ଶ ൏ |1ሻif and only if ԯሺെ1ሻ ൏ 0; 

(iv) ߷ଵ and ߷ଶ represent complex conjugates with |߷ଵ| ൌ 1 ൌ |߷ଶ| if and only if ଵܶ
ଶ െ ଵܦ4 ൏ 0 

and ܦଵ ൌ 1. 

As ߷ଵ and ߷ଶ are eigenvalues of (2) then we have the following topological type results related to the 

stability of כܨ .כܨ is known as sink if |߷ଵ| ൏ 1 and |߷ଶ| ൏ 1, as sink is the point of suction hence it is locally 

asymptotic stable. כܨ is known as source if |߷ଵ| ൐ 1and |߷ଶ| ൐ 1, as source is repeller hence it remains 

unstable. כܨ is known as saddle if |߷ଵ| ൏ 1 and |߷ଶ| ൐ 1 or |߷ଵ| ൐ 1 and |߷ଶ| ൏  is said to be non כܨ .1

hyperbolic if condition ሺ݅ݒሻ of the Lemma 2.1 is satisfied.  

Firstly, we study the behavior of model (2) at ்ܨ, we assume that ܨ௃ሺ்ܨሻ be the variational matrix of 

model (2) at point ்ܨ such that; 

ሻ்ܨ௃ሺܨ  ൌ ቆ
1 ൅ ߙ݄ 0
0

ଵ

ଵା௛ఊ
ቇ. 

Then the quadratic characteristic polynomial of the matrix ܨ௃ሺ்ܨሻ is:  

ԯଵሺ߷ሻ ൌ ߷ଶ െ ቀ1 ൅ ߙ݄ ൅
ଵ

ଵା௛ఊ
ቁ ߷ ൅

ଵା௛ఈ

ଵା௛ఊ
,                            (4) 

    Furthermore, by performing some acceptable algebraic manipulation it follows that ԯଵሺ߷ሻ ൌ 0 has two 

roots ߷ଵ ൌ 1 ൅ and  ߷ଶ  ߙ݄ ൌ
ଵ

ଵା௛ఊ
. Clearly, ்ܨ is always saddle in nature.  

Furthermore, to describe nature of system (2) about ܨ஻, we assume that ܨ௃ሺܨ஻ሻ be the variational matrix 

of model (2) at point ܨ஻ such that:  

஻ሻܨ௃ሺܨ  ൌ ൮

ଵ

ଵା௛ఈ
െ

௛௞ఉ

ሺ௔ା௞ሻሺଵା௛ఈሻ

0
ଵା೓ೖഃ

ೌశೖ

ଵା௛ఊ

൲. 

Then the quadratic characteristic polynomial of the matrix ܨ௃ሺܨ஻ሻ is given as:  

ԯଶሺ߷ሻ ൌ ߷ଶ െ ቆ
ଵ

ଵା௛ఈ
൅

ଵା೓ೖഃ
ೌశೖ

ଵା௛ఊ
ቇ ߷ ൅

௔ା௞ା௛௞ఋ

ሺ௔ା௞ሻሺଵା௛ఈሻሺଵା௛ఊሻ
                                       (5) 

Moreover, ԯଶሺ߷ሻ ൌ 0 has two values ߷ଵ ൌ
ଵ

ଵା௛ఈ
  and  ߷ଶ ൌ

௔ା௞ା௛௞ఋ

ሺ௔ା௞ሻሺଵା௛ఊሻ
. In addition, ܨ஻ is stable and 

saddle if and only if ݇ߜ ൏ ሺܽߛ ൅ ݇ሻ and ݇ߜ ൐ ሺܽߛ ൅ ݇ሻ respectively. 

Finally, let ܨ௃ሺܨ௎ሻ be variational matrix of the system (2) about ܨ௎. Then ܨ௃ሺܨ௎ሻ is given as: 
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௎ሻܨ௃ሺܨ  ൌ ቌ

௔௛ఈఊሺఊାఋሻା௞ሺఊିఋሻሺఋା௛ఈሺఊାఋሻሻ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
െ

௛ఉఊ

ఋା௛ఈఋ
௛ఈሺሺି௔ି௞ሻఊା௞ఋሻ

௞ఉሺଵା௛ఊሻ
1

ቍ. 

Then, the characteristic polynomial of ܨ௃ሺܨ௎ሻ is given as: 

ԯሺ߷ሻ ൌ ߷ଶ െ ൬1 ൅
ߛሺߛߙ݄ܽ ൅ ሻߜ ൅ ݇ሺߛ െ ߜሻሺߜ ൅ ߛሺߙ݄ ൅ ሻሻߜ

݇ሺ1 ൅ ߛሻሺߙ݄ െ ߜሻߜ
൰ ߷ 

 ൅
௔௛ఈఊሺఊାఋାଶ௛ఊఋሻା௞ሺఊିఋሻሺ௛ఈఊାఋା௛ሺఈାఊାଶ௛ఈఊሻఋሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
, 

Furthermore, by performing simple algebraic manipulation and letting ݇ߜ ൐ ሺܽߛ ൅ ݇ሻ and ߜ ൐  :we get ,ߛ

ԯሺ1ሻ ൌ
௛మఈఊሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻఋ
൐ 0                                 (6) 

 

ԯሺെ1ሻ ൌ
௔௛ఈఊሺଶఋାఊሺଶା௛ሺఊାଷఋሻሻሻା௞ሺఊିఋሻሺସఋା௛ሺଶఈఊାସሺఈାఊሻఋା௛ఈఊሺఊାହఋሻሻሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
     (7) 

 

 

ԯሺ0ሻ ൌ
௔௛ఈఊሺఊାఋାଶ௛ఊఋሻା௞ሺఊିఋሻሺ௛ఈఊାఋା௛ሺఈାఊାଶ௛ఈఊሻఋሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
                   (8) 

 

From (6) we see that ԯሺ1ሻ ൐ 0. Therefore, the following results can be deduced by applying Lemma 2.1. 

Theorem 2.1 Assume that ݇ߜ ൐ ሺܽߛ ൅ ݇ሻ and ߜ ൐ ௎ܨ such that ߛ ൌ ቀ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ represent the 

unique positive steady state of (2), then the following results remains true: 

(i) ܨ௎ is locally asymptotically stable if and only if 

ߜሺ2ߛߙ݄ܽ ൅ ሺ2ߛ ൅ ݄ሺߛ ൅ ሻሻሻߜ3 ൅ ݇ሺߛ െ ߜሻሺ4ߜ ൅ ݄ሺ2ߛߙ ൅ 4ሺߙ ൅ ߜሻߛ ൅ ߛሺߛߙ݄ ൅ ሻሻሻߜ5 ൐ 0 

and 

ߛሺ݇ሺߛߙ݄ െ ሻሺ1ߜ ൅ ሻߜ݄ ൅ ܽሺߛ ൅ ߜ ൅ ሻሻߜߛ2݄ ൏ 0 

(ii) ܨ௎ is unstable equilibrium point if and only if  

ߜሺ2ߛߙ݄ܽ ൅ ሺ2ߛ ൅ ݄ሺߛ ൅ ሻሻሻߜ3 ൅ ݇ሺߛ െ ߜሻሺ4ߜ ൅ ݄ሺ2ߛߙ ൅ 4ሺߙ ൅ ߜሻߛ ൅ ߛሺߛߙ݄ ൅ ሻሻሻߜ5 ൐ 0 

and  

ߛሺ݇ሺߛߙ݄ െ ሻሺ1ߜ ൅ ሻߜ݄ ൅ ܽሺߛ ൅ ߜ ൅ ሻሻߜߛ2݄ ൐ 0 

 

(iii) ܨ௎ is saddle point if and only if 

 

ߜሺ2ߛߙ݄ܽ ൅ ሺ2ߛ ൅ ݄ሺߛ ൅ ሻሻሻߜ3 ൅ ݇ሺߛ െ ߜሻሺ4ߜ ൅ ݄ሺ2ߛߙ ൅ 4ሺߙ ൅ ߜሻߛ ൅ ߛሺߛߙ݄ ൅ ሻሻሻߜ5 ൐ 0 

 

(iv) The roots of equation (5) are complex conjugates with magnitude one if and only if 

 

ቀ1 ൅
௔௛ఈఊሺఊାఋሻା௞ሺఊିఋሻሺఋା௛ఈሺఊାఋሻሻ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
ቁ
ଶ
൏

ସሺ௔௛ఈఊሺఊାఋାଶ௛ఊఋሻା௞ሺఊିఋሻሺ௛ఈఊାఋା௛ሺఈାఊାଶ௛ఈఊሻఋሻሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
       (9) 
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and  

݄ ൌ
ߜ݇ െ ߛܽ െ ߛ݇ െ ߜܽ
ߛሺ2ܽߜ ൅ ߛ݇ െ ሻߜ݇

. 

 

3 Bifurcation Analysis 

In this section, the parametric conditions for existence of Niemark-Scaker bifurcation of unique positive 

equilibrium point of the system are discussed. Considering the system (2) about the equilibrium point 

௎ܨ ൌ ቀ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ then the characteristic polynomial matrix ܨ௃ሺܨ௎ሻ of (2) can be evaluated as  

ԯሺ߷ሻ ൌ ߷ଶ െ ቀ1 ൅
௔௛ఈఊሺఊାఋሻା௞ሺఊିఋሻሺఋା௛ఈሺఊାఋሻሻ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
ቁ ߷ ൅

௔௛ఈఊሺఊାఋାଶ௛ఊఋሻା௞ሺఊିఋሻሺ௛ఈఊାఋା௛ሺఈାఊାଶ௛ఈఊሻఋሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
. (10) 

According to Lemma 2.1, the characteristic equation (10) has two complex conjugate roots with modulus one, 

if condition ሺ݅ݒሻ of Theorem 2.1 is satisfied. Hence ܨ௎ undergoes Neimark-sacker bifurcation if parameters 

varies in the neighborhood of the following set; 

 

Յௌ ൌ ൜ߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ݄ א Ըା: ሺ9ሻ  ݄ݏ݈݀݋, 0 ൏ ݄ ൏ ݄  ݄ݐ݅ݓ  1 ൌ
ߜ݇ െ ߛܽ െ ߛ݇ െ ߜܽ
ߛሺ2ܽߜ ൅ ߛ݇ െ ሻߜ݇

ൠ. 

Let ൫ߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ത݄൯ א Յௌ then system (2) can be written as; 

 

ቆ
ݔ
ݕ ቇ ՜

ۉ

ۈ
ۇ

௫ା௛ഥఈ௫

ଵା௛ഥቀഀೣ
ೖ
ା ഁ೤
ೌశೣ

ቁ

௬ା௛ഥቀ
ഃೣ೤
ೌశೣ

ቁ

ଵା௛ഥఊ

ی

ۋ
ۊ
.                   (11) 

where ത݄ ൌ
௞ఋି௔ఊି௞ఊି௔ఋ

ఋሺଶ௔ఊା௞ఊି௞ఋሻ
. Let | ෨݄| ا 1 be a perturbation parameter, then map (11) can be expressed as;  

ቆ
ݔ
ݕ ቇ ՜

ۉ

ۈ
ۇ

௫ାሺ௛ഥା௛෩ሻఈ௫

ଵାሺ௛ഥା௛෩ሻቀഀೣ
ೖ
ା ഁ೤
ೌశೣ

ቁ

௬ାሺ௛ഥା௛෩ሻቀഃೣ೤
ೌశೣ

ቁ

ଵାሺ௛ഥା௛෩ሻఊ

ی

ۋ
ۊ
.                    (12) 

Next, under transformations ሺܪ, ܲሻ ൌ ቀݔ െ
௔ఊ

ఋିఊ
, ݕ െ

௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ, the model (12) can be described by the 

following system: 

൭
ܪ
ܲ ൱ ՜ ቆ

ଵଵݎ ଵଶݎ
ଶଵݎ ଶଶቇݎ ൭

ܪ
ܲ ൱ ൅ ൭

ଵܰሺܪ, ܲሻ
ଶܰሺܪ, ܲሻ൱,                    (13) 

where ݔ ൌ
௔ఊ

ఋିఊ
 and ݕ ൌ

௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
 implies  

ଵܰሺܪ, ܲሻ ൌ ଶܪଵଷݎ ൅ ܲܪଵସݎ ൅ ଵହܲଶݎ ൅ ଷܪଵ଺ݎ ൅ ଶܲܪଵ଻ݎ ൅ ଶܲܪଵ଼ݎ ൅ ଵଽܲଷݎ ൅ ܱሺሺ|ܪ| ൅ |ܲ|ሻସ, 
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ଶܰሺܪ, ܲሻ ൌ ଶܪଶଷݎ ൅ ܲܪଶସݎ ൅ ଷܪଶହݎ ൅ ଶܲܪଶ଺ݎ ൅ ܱሺ|ܪ| ൅ |ܲ|ሻସ, 

ଵଵݎ  ൌ
௞మሺଵା௛ఈሻሺሺ௔ା௫ሻమା௛ሺ௔ାଶ௫ሻ௬ఉሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻమ
, ଵଶݎ ൌ െ

௛௞మ௫ሺ௔ା௫ሻሺଵା௛ఈሻఉ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻమ
, 

ଵଷݎ  ൌ െ
௛௞మሺଵା௛ఈሻሺሺ௔ା௫ሻయఈା௬ሺି௔௞ା௛ሺ௔మାଷ௔௫ାଷ௫మሻఈሻఉି௛௞௬మఉమሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻయ
, 

ଵସݎ  ൌ െ
௛௞మሺଵା௛ఈሻఉሺሺ௔ା௫ሻሺ௔௞ି௛௫ሺ௔ାଶ௫ሻఈሻା௛௞ሺ௔ାଶ௫ሻ௬ఉሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻయ
, 

ଵହݎ  ൌ
௛మ௞య௫ሺ௔ା௫ሻሺଵା௛ఈሻఉమ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻయ
, 

ଵ଺ݎ  ൌ
ቀ௛௞మሺଵା௛ఈሻሺା௬ሺି௔௞మିଶ௔௛௞ሺ௔ାଶ௫ሻఈା௛మሺ௔ାଶ௫ሻሺ௔మାଶ௔௫ାଶ௫మሻఈమሻఉሻቁ

/ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻర
 

 ൅
ሺ௛ሺ௔ା௫ሻరఈమା௛௞మሺଵା௛ఈሻሺି௛௞௬మሺ௞ାଶ௛ሺ௔ାଶ௫ሻఈሻఉమሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻర
, 

ଵ଻ݎ  ൌ
൬௛௞మሺଵା௛ఈሻఉቀሺ௔ା௫ሻሺ௔௞మାଶ௔௛௞ሺ௔ାଶ௫ሻఈି௛మ௫ሺ௔మାଷ௔௫ାଷ௫మሻఈమሻቁ൰

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻర
 

 ൅
ሺ௛௞మሺଵା௛ఈሻఉሺଶ௛௞௬ሺ௞௫ା௛ሺ௔ାଶ௫ሻమఈሻఉି௛మ௞మ௬మఉమሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻర
, 

ଵ଼ݎ  ൌ
௛మ௞యሺଵା௛ఈሻఉమሺିሺ௔ା௫ሻሺ௞ሺି௔ା௫ሻାଶ௛௫ሺ௔ାଶ௫ሻఈሻା௛௞ሺ௔ାଶ௫ሻ௬ఉሻ

ሺሺ௔ା௫ሻሺ௞ା௛௫ఈሻା௛௞௬ఉሻర
, 

ଵଽݎ  ൌ െ
௛యఉయሺ௔ା௫ሻ௞రሺ௛ఈାଵሻ௫

ሺ௫ఈ ௛௔ା௫మఈ ௛ାఉ ௛௬௞ା௞௔ା௞௫ሻర
 

ଶଵݎ  ൌ
௔௛௬ఋ

ሺ௔ା௫ሻమሺଵା௛ఊሻ
, ଶଶݎ ൌ

ሺఋ ௛௫ା௔ା௫ሻ

ሺ௔ା௫ሻሺఊ ௛ାଵሻ
, ଶଷݎ ൌ െ

௬ఋ ௛௔

ሺ௔ା௫ሻయሺ௛ఊାଵሻ
, 

ଶସݎ  ൌ
ఋ ௛௔

ሺ௔ା௫ሻమሺ௛ఊାଵሻ
, ଶହݎ ൌ

ఋ ௛௔

ሺ௔ା௫ሻమሺ௛ఊାଵሻ
, ଶ଺ݎ ൌ െ

ఋ ௛௔

ሺ௔ା௫ሻయሺ௛ఊାଵሻ
. 

The characteristic equation of Jacobian matrix of map (13) computed at ሺ0,0ሻ can be described as follows:  

߷ଶ െ ܶሺ ෨݄ሻ߷ ൅ ሺܦ ෨݄ሻ ൌ 0,                               (14) 

where  

 ܶሺ ෨݄ሻ ൌ ቀ1 ൅
௔ሺ௛ഥା௛෩ሻఈఊሺఊାఋሻା௞ሺఊିఋሻሺఋାሺ௛ഥା௛෩ሻఈሺఊାఋሻሻ

௞ሺଵାሺ௛ഥା௛෩ሻఈሻሺఊିఋሻఋ
ቁ 

and  

ሺ෨݄ሻܦ  ൌ
௔ሺ௛ഥା௛෩ሻఈఊሺఊାఋାଶሺ௛ഥା௛෩ሻఊఋሻା௞ሺఊିఋሻሺሺ௛ഥା௛෩ሻఈఊାఋାሺ௛ഥା௛෩ሻሺఈାఊାଶሺ௛ഥା௛෩ሻఈఊሻఋሻ

௞ሺଵାሺ௛ഥା௛෩ሻఈሻሺଵାሺ௛ഥା௛෩ሻఊሻሺఊିఋሻఋ
. 

Since ൫ߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ത݄൯ א Յௌ and equation (14) has pair of complex conjugate roots with unit modulus then 

we have;  

 ߷ଵ, ߷ଶ ൌ
்ሺ௛෩ሻ

ଶ
േ

௜

ଶ
ට4ܦሺ ෨݄ሻ െ ܶଶሺ ෨݄ሻ. 
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Therefore, we have  

 |߷ଵ| ൌ |߷ଶ| ൌ ටܦሺ෨݄ሻ, 

൬
ௗඥ஽ሺ௛෩ሻ

ௗ௛෩
൰
௛෩ୀ଴

ൌ
ఈఊቀ௔ఊሺ௛ഥమఈఊିଵሻି௔ሺଵା௛ഥఊሺସା௛ഥሺఈାଶఊሻሻሻఋି௞ሺఊିఋሻሺଵି௛ഥమఈఊା௛ഥሺଶା௛ഥሺఈାఊሻሻఋሻቁ

ଶ௞ሺଵା௛ഥఈሻమሺଵା௛ഥఊሻమఋሺఋିఊሻටೌ೓
ഥഀംሺംశഃశమ೓ഥംഃሻశೖሺംషഃሻሺ೓ഥഀംశഃశ೓ഥሺഀశംశమ೓ഥഀംሻഃሻ

ೖሺభశ೓ഥഀሻሺభశ೓ഥംሻሺംషഃሻഃ

് 0.     (15) 

Since ൫ߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ത݄൯ א Յௌ , this implies that ܶሺ0ሻ ሿא െ 2,2ሾ . Thus ܶሺ0ሻ ് 0,1, േ2  gives 

߷ଵ. ߷ଵ. . . . . . ݏ݁݉݅ݐ  ݉ ് 1  ܽ݊݀  ߷ଶ. ߷ଶ. . . . . . . ݏ݁݉݅ݐ  ݉ ് 1 for all ݉ א ሼ1,2,3,4ሽ at ෨݄ ൌ 0. Hence, zeros of 

(14) do not lie in the intersection of the unit circle with the coordinate axes at ෨݄ ൌ 0 and if the following 

condition is true:  

2 ൅
௛ఈఊሺ௞ሺఊିఋሻା௔ሺఊାఋሻሻ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
് 0, ߛሺߛߙ݄ܽ ൅ ሻߜ ൅ ݇ሺߛ െ ߜሻ൫ߜ ൅ ߛሺߙ݄ ൅ ሻ൯ߜ ് 0     (16) 

Assume that ߦ ൌ
்ሺ଴ሻ

ଶ
ߞ , ൌ

ଵ

ଶ
ඥ4ܦሺ0ሻ െ ܶଶሺ0ሻ, then normal form of (13) at ෨݄ ൌ 0 can be expressed as: 

൭
ܪ
ܲ ൱ ൌ ൭

ଵଶݎ 0
ߦ െ ଵଵݎ െߞ൱ቆ

ݑ
ݒ ቇ.                                        (17) 

hence, by using map (17) we get: 

ቆ
ݑ
ݒ ቇ ՜ ൭

ߦ െߞ
ߞ ߦ ൱ቆ

ݑ
ݒ ቇ ൅ ൭

݃ଵ෦ሺݑ, ሻݒ
݃ଶ෦ሺݑ,  ሻ൱,                                (18)ݒ

 where  

݃ଵ෦ሺݑ, ሻݒ ൌ
ଷܪଵ଺ݎ

ଵଶݎ
൅
ଶܲܪଵ଻ݎ
ଵଶݎ

൅
ଶܪଵଷݎ

ଵଶݎ
൅
ଶܲܪଵ଼ݎ

ଵଶݎ
൅
ܲܪଵସݎ
ଵଶݎ

൅
ଵଽܲଷݎ

ଵଶݎ
൅
ଵହܲଶݎ

ଵଶݎ
൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|

݃ଶ෦ሺݑ, ሻݒ ൌ ൬
ଵ଺ݎߣ
ଵଶܶݎ

െ
ଶହݎ
ܶ
൰ܪଷ ൅ ൬

ଵ଻ݎߣ
ଵଶܶݎ

െ
ଶ଺ݎ
ܶ
൰ܪଶܲ ൅ ൬

ଵଷݎߣ
ଵଶܶݎ

െ
ଶଷݎ
ܶ
൰ܪଶ ൅

ଶܲܪଵ଼ݎߣ

ଵଶܶݎ
 

 ൅ቀ
ఒ௥భర
௥భమ்

െ
௥మర
்
ቁܲܪ ൅

ఒ௥భవ௉య

௥భమ்
൅

ఒ௥భఱ௉మ

௥భమ்
൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|

where ߣ ൌ ሺߦ െ ܪ ଵଵሻ, andݎ ൌ ܲ and ݑଵଶݎ ൌ ሺߦ െ ݑଵଵሻݎ െ  Therefore, we define the following nonzero .ݒߞ

real number: 

Υ ൌ ቆቈܴ݁ሺ߷ଶ߬ଶଵሻ െ ܴ݁ ቆ
ሺ1 െ 2߷ଵሻ߷ଶ

ଶ

1 െ ߷ଵ
߬ଶ଴߬ଵଵቇ െ

1
2
|߬ଵଵ|ଶ െ |߬଴ଶ|ଶ቉ቇ

௛෩ୀ଴

, 

where  

߬ଶ଴ ൌ
1
8
ൣ݃ଵ෦௨௨ െ ݃ଵ෦௩௩ ൅ 2݃ଶ෦௨௩ ൅ ݅൫݃ଶ෦௨௨ െ ݃ଶ෦௩௩ െ 2݃ଵ෦௨௩൯൧, 

߬ଵଵ ൌ
1
4
ൣ݃ଵ෦௨௨ ൅ ݃ଵ෦௩௩ ൅ ݅൫݃ଶ෦௨௨ ൅ ݃ଶ෦௩௩൯൧, 

߬଴ଶ ൌ
1
8
ൣ݃ଵ෦௨௨ െ ݃ଵ෦௩௩ െ 2݃ଶ෦௨௩ ൅ ݅൫݃ଶ෦௨௨ െ ݃ଶ෦௩௩ ൅ 2݃ଵ෦௨௩൯൧, 
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߬ଶଵ ൌ
1
16

ൣ݃ଵ෦௨௨௨ ൅ ݃ଵ෦௨௩௩ ൅ ݃ଶ෦௨௨௩ ൅ ݃ଶ෦௩௩௩ ൅ ݅൫݃ଶ෦௨௨௨ ൅ ݃ଶ෦௨௩௩ െ ݃ଵ෦௨௨௩ െ ݃ଵ෦௩௩௩൯൧. 

Hence, we have the following conclusions for direction and existence of Neimark-Sacker bifurcation according 

to aforemention calculation (Guckenheimer and Holmes, 1984; Robinson, 1998; Wiggins, 2003; Wan, 1978). 

Theorem 3.1 There exists Neimark-Sacker bifurcation at ܨ௎ ൌ ቀ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ whenever ݄ varies in 

small neighborhood of ത݄ ൌ
௞ఋି௔ఊି௞ఊି௔ఋ

ఋሺଶ௔ఊା௞ఊି௞ఋሻ
. In addition, if ߓ ൏ 0, ሺߓ ൐ 0ሻ, respectively, then an attracting or 

repelling invariant closed curve bifurcates from the equilibrium point for ݄ ൐ ത݄ ሺ݄ ൏ ത݄ሻ, respectively. 

 

4 Chaos Control 

In last few centuries, chaos and unusual behavior of non-linear discrete dynamical system attracted the 

attention of scientists. Chaotic behavior examined in almost every field, such as chemistry, physics, ecology, 

biology, chemical engineering, telecommunications etc. During the past decades, the trend of publication in 

this field grow rapidly. Ott et al (1990) proposed a chaos control strategy which was the development of this 

field. The proposed methodology is known as OGY method. Latter on, many control schemes have proposed 

see also (Parthasarathy, 1992; Molgedey et al., 1992). In this section we proposed a generalized hybrid control 

technique for controlling Neimark-sacker bifurcation, period-doubling bifurcation and chaos under the 

influence of period-doubling bifurcation. The original scheme is first time proposed by Liu et al. (2003) for 

controlling the period-doubling bifurcation and considered as control strategy (Din, 2018a, 2018b; Elabbasy et 

al., 2014; He and Lai 2011; Ott, 1990). Therefore, we modified this existing technique to control 

period-doubling bifurcation, the Neimark-sacker bifurcation and chaos under the influence of period-doubling 

bifurcation. The proposed control strategy is more feasible and efficient as compared to other control schemes. 

Moreover, it is applicable to almost every discrete-time dynamical system. 

Consider the following an n-dimensional discrete dynamical system:  

௡ାଵݔ ൌ ݂ሺݔ௡, ߱ሻ (19) 

where ݔ௡ א ܴ௡, ݊ א ܼ and the bifurcation parameter for system (19) is ߱ א ܴ. Assuming that there exists 

bifurcation for parameter ߱. 

The main objective of this technique is to restore the stability of system (19). For this purpose, we 

proposed the following modified hybrid control strategy by applying state feedback along with parameter 

perturbation; 

௡ା௞ݔ ൌ ,௡ݔଷ݂ሺ௞ሻሺכߠ ߱ሻ ൅ ሺ1 െ  ௡ (20)ݔଷሻכߠ

where 0 ൏ כߠ ൏ 1  is control parameter, ݂ሺ௞ሻ  is ݄݇ݐ  iteration of ݂ሺ. ሻ  and ݇  is positive integer. For 

כߠ ൌ 1 one has the original system (19). Applying technique (20) on model (2) we have the following control 

model:  
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௡ାଵݔ ൌ ଷכߠ ቆ
௫೙ሺଵା௛ఈ௫೙ሻ

ଵା௛ቀఈೣ೙
ೖ
ାఉ ೤೙

ೌశೣ೙
ቁ
ቇ ൅ ሺ1 െ ,௡ݔଷሻכߠ

௡ାଵݕ ൌ ଷכߠ ቆ
௬೙ା௛ቀ

ഃೣ೙೤೙
ೌశೣ೙

ቁ

ଵା௛ఊ
ቇ ൅ ሺ1 െ ,௡ݕଷሻכߠ

       (21) 

where 0 ൏ כߠ ൏ 1 is control parameter. Furthermore, the controlled system (21) and original model (2) has 

the same equilibrium points. The variational matrix for (21) at positive fixed point 

௎ܨ ൌ ቀ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ is written below as:  

൮
1 ൅

௛ఈఊሺ௞ሺఊିఋሻା௔ሺఊାఋሻሻఏכయ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
െ

௛ఉఊఏכయ

ఋା௛ఈఋ

െ
௛ఈሺሺ௔ା௞ሻఊି௞ఋሻఏכయ

௞ఉሺଵା௛ఊሻ
1

൲. (22) 

    The following result properly describes the conditions for local asymptotic stability of positive 

equilibrium ܨ௎ of the controlled system (21). 

Theorem 4.1 Assume that ሺܽ ൅ ݇ሻߛ ൏ ߜ and ߜ݇ ൐ then the equilibrium ቀ ,ߛ
௔ఊ

ఋିఊ
,
௔ఈఋሺ௞ఋିሺ௔ା௞ሻఊሻ

௞ఉሺఋିఊሻమ
ቁ of 

controlled system (21) is locally asymptotically stable if and only if the following conditions hold.  

 ฬ2 ൅
௛ఈఊሺ௞ሺఊିఋሻା௔ሺఊାఋሻሻఏכయ

௞ሺଵା௛ఈሻሺఊିఋሻఋ
ฬ ൏ 2 ൅

௛ఏכయሺఈఊሺଵା௛ఊሻሺ௞ሺఊିఋሻା௔ሺఊାఋሻሻିሺఊିఋሻሺሺ௔ା௞ሻఊି௞ఋሻሻ

௞ሺଵା௛ఈሻሺଵା௛ఊሻሺఊିఋሻఋ
, 

and  

ሺ1ߙ݄݇ ൅ ሺ1ߛሻߙ݄ ൅ ߛሻሺߛ݄ െ ൫െሺ1כߠߜሻߜ ൅ ߛሻሺ݇ሺߛ݄ െ ሻߜ ൅ ܽሺߛ ൅ ሻሻߜ ൅ ݄ሺߛ െ ሻሺሺܽߜ ൅ ݇ሻߛ െ ଷ൯כߠሻߜ݇

൐ 0. 

 

5 Numerical Simulation and Discussion 

The present part of the manuscript is related to verification of above theoretical work. In first example, we 

explored the existence of bifurcation and the direction of bifurcation numerically. Second example is related to 

the verification of controllability of system (2). 

 

Fig. 1 Bifurcation diagram for ݔ௡ 
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Fig. 2 Bifurcation diagram for ݕ௡ 

 

 

Fig. 3 Maximum Lyapunov exponents 

 

     Fig. 1-3 are bifurcation diagrams and MLE for system (2) for ݄ א ሺ0,1ሻ with ሺߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ݄ሻ ൌ

ሺ26.995,0.78,0.29,7.35,0.6,27.9,0.540711777ሻ  and initial conditions 

଴ݔ ൌ 0.140773584, ଴ݕ ൌ 554.41161850 

 

 

Fig. 4 
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Fig. 5 

 

Fig. 6 

 

Fig. 7 

 

Fig. 8 
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Fig. 9 

 

 

Fig. 10 

 

 

Fig. 11 

 

Fig. 4-11 are phase portrait for system (2). when ݄ א ሺ0,1ሻ with 

ሺߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ݄ሻ ൌ ሺ26.995,0.78,0.29,7.35,0.6,27.9,0.5407117772ሻ and initial conditions ݔ଴ ൌ

0.140773584, ଴ݕ ൌ 554.41161850. 

 

Example 5.1 First we assume the special case of system (2) by takingݔ଴ ൌ 0.1407735849056605, 
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and ݕ଴ ൌ 554.4116185079969ሻ and parametric values ሺߙ, ݇, ,ߚ ܽ, ,ߜ ሻߛ ൌ

ሺ26.995,0.78,0.29,7.35,0.6,27.9ሻ,where0 ൏ ݄ ൏ 1 is taken as bifurcation parameter. Particularly, if 

݄ ൌ 0.5407117772709169  then system (2) undergoes Neimark-sacker bifurcation. Fig.1-3 shows that both 

populations undergo Neimark-sacker bifurcation 

about ܨ௎ ൌ ሺ0.1407735849056605, 554.4116185079969ሻ(see Fig. 1 and Fig. 2) and corresponding 

maximum Lyapunov exponents are shown in Fig.3. Furthermore, for ݄ ൌ 0.5407117772709169, the unique 

positive fixed point ܨ௎ ൌ ሺ0.1407735849056605, 554.4116185079969ሻ, undergoes Neimrk-sacker 

bifurcation (see Fig.1 and Fig. 2). Finally, some phase portrait are given in Fig. 4-11 for0 ൏ ݄ ൏ 1. 

The characteristic polynomial of system (2) computed at fixed point ܨ௎ ൌ ሺ0.1407735,554.4116185ሻ 

is given by  

 ԯሺ߷ሻ ൌ ߷ଶ െ 1.82213635874߷ ൅ 1. 

Then roots of ԯሺ߷ሻ ൌ 0  are ߷ଵ,ଶ ൌ 0.9110681162 േ 0.4122576585݅  with |߷ଵ| ൌ 1 ൌ |߷ଶ|  so that 

ሺߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ݄ሻ ൌ ሺ26.995,0.78,0.29,7.35,0.6,27.9,0.5407117772709169ሻ א Յௌ . Next, we observe that 

ܶሺ0ሻ ൌ 1.8221363587481079 ് 0,1 thus condition (16) is satisfied. Moreover, some careful calculation 

gives  

 ԯሺ1ሻ ൌ 0.1778636412518920 ൐ 0 

with  

ଵܰሺܪ, ܲሻ ൌ 0.14042388074 ൅ ܪ 0.8607478357 െ 0.01980727908 ܲ െ  ଶܪ0.9711662538

െ0.09325300047 ܲܪ ൅ 0.02719991324ܲଶ ൅ ଷܪ1.082124448 ൅  ଶܲܪ0.02540617346

൅0.009379928897 ܲܪଶ െ 0.003735168660ܲଷ ൅ ܱሺሺ|ܪ| ൅ |ܲ|ሻସ, 

ଶܰሺܪ, ܲሻ ൌ 554.4477758 ൅ ܪ 827.1585276 ൅ 0.9694020796 ܲ െ ଶܪ110.4206974 ൅ ܲܪ 1.491957419

൅ ଷܪ14.74050017 െ ଶܲܪ0.1991673582 ൅ ܱሺ|ܪ| ൅ |ܲ|ሻସ, 

݃ଵ෦ሺݑ, ሻݒ ൌ ଷݑ0.0001974767127 ൅ ݒଶݑ0.0001626365117 ൅ ଶݑ0.0001419592457

൅ ଶݒݑ 0.0002078002466 ൅ ݒݑ 0.0004414176552 െ ଷݒ0.0001321270057

െ ଶݒ0.02333888815 ൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|
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݃ଶ෦ሺݑ, ሻݒ ൌ െ0.0002396156133ݑଷ ൅ ݒଶݑ0.0003990084800 ൅ ଶݑ0.0006390664085

െ ଶݒݑ 0.001623804978 െ ݒݑ 0.0002416366123 െ ଷݒ0.0001612745780

െ ଶݒ0.002848750955 ൅ ܱሺሺ|ݑ| ൅  ,ሻସሻ|ݒ|

 

߬ଶ଴ ൌ
1
8
ൣ݃ଵ෦௨௨ െ ݃ଵ෦௩௩ ൅ 2݃ଶ෦௨௩ ൅ ݅൫݃ଶ෦௨௨ െ ݃ଶ෦௩௩ െ 2݃ଵ෦௨௩൯൧ ൌ 0.00334279 െ 0.00872559݅, 

 

߬ଵଵ ൌ
1
4
ൣ݃ଵ෦௨௨ ൅ ݃ଵ෦௩௩ ൅ ݅൫݃ଶ෦௨௨ ൅ ݃ଶ෦௩௩൯൧ ൌ െ0.00457148179001 ൅ 0.0001770956565݅, 

 

߬଴ଶ ൌ
1
8
ൣ݃ଵ෦௨௨ െ ݃ଵ෦௩௩ െ 2݃ଶ෦௨௩ ൅ ݅൫݃ଶ෦௨௨ െ ݃ଶ෦௩௩ ൅ 2݃ଵ෦௨௩൯൧ ൌ 0.000154246 ൅ 0.000133453݅, 

ଶଵߦ ൌ
1
16

ൣ݃ଵ෦௨௨௨ ൅ ݃ଵ෦௨௩௩ ൅ ݃ଶ෦௨௨௩ ൅ ݃ଶ෦௩௩௩ ൅ ݅൫݃ଶ෦௨௨௨ ൅ ݃ଶ෦௨௩௩ െ ݃ଵ෦௨௨௩ െ ݃ଵ෦௩௩௩൯൧ ൌ 

 0.000052609321087625 െ 0.000020903940143125݅, 

and  

 Υ ൌ ቀቂെܴ݁ ቀ
ሺଵିଶఠభሻఠమ

మ

ଵିఠభ
߬ଶ଴߬ଵଵቁ െ

ଵ

ଶ
|߬ଵଵ|ଶ െ |߬଴ଶ|ଶ ൅ ܴ݁ሺ߱ଶ߬ଶଵሻቃቁ

௖̃ୀ଴
ൌ 

െ0.00004374348897384201 ൏ 0. 

which proves the correctness of Theorem 3.1.  

 

Example 5.2 In this example we implements the modified hybrid control technique to control the 

Neimark-sacker bifurcation. Thus by applying the modified hybrid control technique for controlling the 

Neimark-sacker bifurcation, we have the following scheme;  

௡ାଵݔ ൌ ଷכߠ ቆ
௫೙ሺଵାሺ଴.଻଺଴଻ଵଵ଻଻଻ሻଶ଺.ଽଽହ௫೙ሻ

ଵା଴.଻଺଴଻ଵଵ଻଻଻ቀଶ଺.ଽଽହ ೣ೙
బ.ళఴ

ା଴.ଶଽ ೤೙
ళ.యఱశೣ೙

ቁ
ቇ ൅ ሺ1 െ ,௡ݔଷሻכߠ

௡ାଵݕ ൌ ଷכߠ ቆ
௬೙ା଴.଻଺଴଻ଵଵ଻଻଻ቀ

బ.లೣ೙೤೙
ళ.యఱశೣ೙

ቁ

ଵାሺ଴.଻଺଴଻ଵଵ଻଻଻ሻଶ଻.ଽ
ቇ ൅ ሺ1 െ ,௡ݕଷሻכߠ

           (23) 
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Fig. 12 Controlled diagram for ݔ௡ 

 

 

Fig. 13 Controlled diagram for ݕ௡ 

 

 

Fig. 14 Controlled diagram for ݔ௡ 
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Fig. 15 Controlled diagram for ݕ௡ 

 

 

     Fig. 12-15 are controlled diagrams for system (2)when ݄ א ሺ0,1ሻ  with 

ሺߙ, ݇, ,ߚ ܽ, ,ߜ ,ߛ ݄ሻ ൌ ሺ26.995,0.78,0.29,7.35,0.6,27.9,0.760711777ሻ  and initial conditions 

଴ݔ ൌ 0.1607735849, ଴ݕ ൌ 554.41161850. 

     Here 0 ൏ כߠ ൏ 1  is the control parameter. In this case unique positive equilibrium pointܨ௎ ൌ

ሺ0.1607735849,554.41161850ሻ is positive fixed point of original map (2). Hence by using Lemma 2.1 the 

controlled map (23) is locally asymptotically stable if and only if 0 ൏ כߠ ൏ 0.920606005. Moreover, it can 

be easily seen that the stability of original system (2) is successfully restored for maximum range of control 

parameter כߠ (see Fig. 12-13). 

 

6 Conclusion 

In this article we discussed the prey-predator discrete-time biological model proposed by Jha and Ghorai 

(2017). We discretized the system of differential equations and obtained dynamically consistent discrete-time 

model for prey-predator interaction model. Particularly, we discussed the local asymptotic stability of 

equilibrium point map (2). It is shown that there exists the Neimark-sacker bifurcation for equilibrium point of 

constructed discrete-time model by assuming the step size ݄ as bifurcation parameter. We computed the 

parametric conditions for the existence and direction of the Neimark-sacker bifurcation. The novel contribution 

of this work is to develop a modified hybrid control strategy for controlling the Neimark-sacker bifurcation. 

Therefore, to show the effectiveness of newly modified technique, a comparison with existing hybrid control 

methodology (Luo et al., 2003) is given here. For this, we take the parametric values used in example 5.2. In 

this case the corresponding scheme is given as;  

௡ାଵݔ ൌ ଵߠ ቆ
௫೙ሺଵାሺ଴.ହସ଴଻ଵଵ଻଻଻ଶ଻଴ଽଵ଺ଽሻଶ଺.ଽଽହ௫೙ሻ

ଵା௛ቀଶ଺.ଽଽହ ೣ೙
బ.ళఴ

ା଴.ଶଽ ೤೙
ళ.యఱశೣ೙

ቁ
ቇ ൅ ሺ1 െ ,௡ݔଵሻߠ

௡ାଵݕ ൌ ଵߠ ቆ
௬೙ା଴.ହସ଴଻ଵଵ଻଻଻ଶ଻଴ଽଵ଺ଽቀ

మళ.వೣ೙೤೙
ళ.యఱశೣ೙

ቁ

ଵାሺ଴.ହସ଴଻ଵଵ଻଻଻ଶ଻଴ଽଵ଺ଽሻ଴.଺
ቇ ൅ ሺ1 െ ,௡ݕଵሻߠ

       (24) 

where ߠଵ ሿ0,1ሾא  is control parameter. Moreover, the Jacobian matrix of (24) about equilibrium point 

௎ܨ ൌ ሺ0.1407735,554.4116185ሻ is given by  

 ൬
1 െ ଵߠ0.177864 െ0.000216214ߠଵ
ଵߠ822.629 1 ൰. 

According to Lemma 2.1 system (24) is stable if and only if 0 ൏ ଵߠ ൏ 0.780227783 (see Fig. 14 and Fig. 
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15). On the other hand, the newly modified control methodology (20) for similar parametric values applied to 

map (2) in example 5.2 and stable region is shown in Fig. 12 and Fig. 13. Moreover, a comparison of modified 

Hybrid technique with original Hybrid technique for different values of ݄ is presented in Table 1. It can be 

seen from Table 1 that newly given technique is very better than old Hybrid technique. In Table.1, ܫଵ 

represents the controlled interval for Hybrid method and controlled interval for modified Hybrid method is 

represented by ܫଶ. Hence, the modified control methodology is more efficient then existing hybrid control 

scheme and applicable for every class of discrete-time maps. 

 

Table 1 Comparison between Hybrid method and modified Hybrid method for system (2) for ݄ א ሺ0,1ሻ and ሺߙ, ݇, ,ߚ ܽ, ,ߜ ሻߛ ൌ

ሺ26.995,0.78,0.29,7.35,0.6,27.9ሻ with initial conditions ݔ଴ ൌ 0.16077358, ଴ݕ ൌ 553.411618507 

Values of ݄ ܫଵ ܫଶ Length of ܫଵ Length of ܫଶ 

0.66271777 0 ൏ ଵߠ ൏ 0.860996893 0 ൏ כߠ ൏ 0.951335846 0.860996893 0.951335846 

0.76271777 0 ൏ ଵߠ ൏ 0.780227783 0 ൏ כߠ ൏ 0.920606005 0.780227783 0.920606005 

0.86271777 0 ൏ ଵߠ ൏ 0.718183014 0 ൏ כߠ ൏ 0.895526365 0.718183014 0.895526365 

0.96271777 0 ൏ ଵߠ ൏ 0.669027748 0 ൏ כߠ ൏ 0.874610547 0.669027748 0.874610547 
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