Network Biology, 2019, 9(3): 58-77

Article

Stability, bifurcation and chaos control in a discrete-time
prey-predator model with Holling type-Ill response

Muhammad Salman Khan*, Muhammad Asif Khan?, Muhammad Sajjad Shabbir®, Qamar Din?
lDepartment of Mathematics, Quaid-1-Azam University Islamabad, 44230, Pakistan

2Department of Mathematics, University of the PoonchRawalakot, Rawalakot 12350, Pakistan

®Department of Mathematics, Air University Islamabad, 44230, Pakistan

E-mail: mskhan@math.qau.edu.pk, asif31182@gmail.com,sajjadmust@g mail.com, gamar.sms@gmail.com

Received 11 May 2019; Accepted 10 June 2019; Published 1 September 2019
(o) EEN

Abstract

This paper deals with the qualitative study of a discrete-time prey-predator model with Holling type-I1I
response. Particularly, we obtained a dynamically consistent prey-predator discrete-time model by applying a
nonstandard difference scheme. We explore the novel explicate parametric conditions for the local stability of
positive equilibrium point. Moreover, it is shown that there exists Nimark-sacker bifurcation for the unique
positive steady-state of given system. In order to control the bifurcation, we introduced a new control strategy.
Moreover, some interesting numerical simulations are provided in order to verify the theoretical discussion and
to explore the effectiveness and feasibility of new design control strategy.

Keywords prey-predator model; Holling type-Il response; nonstandard difference scheme; Nimark-sacker
bifurcation; comparison of control techniques.

Network Biology

ISSN 2220-8879

URL: http://www.iaees.org/publications/journals/nb/online-version.asp
RSS: http://www.iaees.org/publications/journals/nb/rss.xml

E-mail: networkbiology@iaees.org

Editor-in-Chief: WenJun Zhang

Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

The modeling of prey-predator interaction is first time introduced by Lotka-Volterra (Malthus, 1798; Verhulst,
1838; Brauer and Sanchez, 1975; Lotka, 1925; Volterra, 1926). The response function used by them was the
most simplest case in which they consider simple proportionality between response function and number of
predators. It is well described by many researchers that prey-predator species follow different growth functions,
among these growth functions, Logistic function of growth is important one (Gause, 1934; Holling, 1959; Xiao
and Ruan, 2001). Verhulst (1838) use the Logistic function to explain human growth. Later Feller (1940)
explained that almost each population which has asymptotically increasing behavior, satisfies Logistic law of
growth of some degree. Gompertz (1825) and May (1973) suggested some other growth functions. The
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response function between predator and prey species plays an important role for long term survival of life in
ecosystem. The response function has many types some of them are, Logistic response, ratio dependent
response, Holling types of responses (Holling, 1959) and Beddington response functions (Beddington and May,
1975).

The direct consequence of stability of species in ecological system is the stability of ecological system.
Moreover, this is the fundamental concern in study of ecology. Ecological models such as Angelis et al. (1975)
Reeve (1988), Murdoch et al. (1992) and Holling (1965) are stability describing mathematical models for
verity of systems. The dynamical relationship between predator and its prey is the topic of interest of many
researchers from many years in the past. In recent years it will continue to be one of the major topics in the
study of mathematical ecology (Berryman, 1992; Din et al., 2018). Except lots of good work done on
Lotka-Volterra predator-prey models there are many mistakes and unreliability emerge out this study. Holling
(1965) explained three types of functional response of predator specie, and they are now named as Holling
type-I, type-11 and type-I11 response respectively (Ping and Hong1986). Holling type-I1 response proposed by
Holling (1965) is described mathematically as

‘P(x)=%,0$s<1,

is any constant. The Holling type-11 response is often illustrated by a slow ingestion rate, which tracks from the
supposition that the consumer is restricted by its capability to produce food. This response if frequently
modeled mathematically by using rectangular hyperbola. Albert et al. (1980) explained the use of Holling type
response function in prey-predator interaction models. Later Kaung (1988) explained that the study of
prey-predator interactions by using Holling functional response is much batter than study of prey-predator
interactions without it. Notice that, due to rich dynamics and remarkable computing results, discrete dynamical
system is more suitable then continuous one (Murray, 1989; Agarwal and Wong, 1997). Furthermore, in case
of non-overlapping species models this arguments works more efficiently (Din, 2018a, 2018b, 2018c, 2018d).

Recently, many researchers explore the dynamics of discrete-time prey-pradator models (Din et al., 2018;
Din, 2017). Din (2017) explore the complexity and chaos in prey-predator model in discrete form. Furthermore,
Roy and Ghosh (2013) explored the stability and chaotic motion in discrete-time prey-predator model with
generalized Holling response. For study of some interesting theory and analysis of functional response in
discrete form we refer reader to Huang et al. (2018) and Cui et al. (2016). In this paper, we consider the
continuous-time prey-predator model presented by Jha and Ghorai (2017). They considered four continuous
time prey-predator models with three types of Holling type response and selective harvesting of prey and
predator. Existing work on these models does not cover all dynamical properties produced by Holling type-II
response. Hence, we consider the two dimensional continuous-time prey-predator model with Holling type-II
proposed by Jha and Ghorai (2017) and its mathematical form is given as follows:

@

dy _ 6xy
dt ~  a+x

According to Strogatz et al. (1994), chaos can exists in 3-dimensional phase space continuous system at
least. Therefore it is clear that, in system (1) chaos can not be observed. While in case of counter discrete-time
map, chaos can be observed in 1-dimension. Motivated by aforemention rich properties of discrete-time
dynamical systems, it is necessary and interesting to study qualitative the discrete-time version of system (1).
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Therefore, we explored the stability analysis and bifurcation of discrete-time version of system (1). The
investigation of such discrete-time models can be found in Din (2017a, 2017b). Moreover, by applying a
non-standard finite difference scheme to (1) we have the following discrete-time prey-predator model:

X _ xn(1+haxy)
n+l 1+h(ax7"+ﬁaizn)' @
_ ()
Yn+1 = 70

Here in (2), 0 < h <1 is step size, a represent intrinsic growth rate of prey, B is the rate of predation of
prey, y is the death rate of predator, a is half saturation constant. Moreover, the conversion rate of predator
is represented by 6 and all constants «,f,k,a,y,5 are positive. Recently, Din (2018a, b) explored the
qualitative behavior of discrete-time chemical reactions models and shows that OGY methodm cannot be
applied for controlling the bifurcation while keeping the step size h as bifurcation parameter, see Ott (1990).
Therefore, to overcome this deficiency we introduce a new hybrid control methodology for controlling the
bifurcation.

The novel assistance of this article are given as follows;

A novel discrete-time prey-predator model with Holling type-11 (2) is obtained which is dynamically
consistent.

Novel explicit parametric conditions are obtained for possible qualitative behavior of system (2).

A generalized Hybrid control technique is proposed for controlling the bifurcation.

In order to shows the effectiveness of newly introduced technique, a comparison is given with existing
hybrid control methodology and rich numerical simulation are given.

The remaining part of this manuscript organized as; the existence of equilibrium point and local stability
of model (2) is investigated in section 2, bifurcation analysis of unique positive equilibrium point of system (2)
is discussed in section 3. In order to control Neimark-sacker bifurcation we proposed a modified-hybrid
control strategy in section 4. Finally, a comprehensive numerical simulations are provided to support each
theoretical investigation.

The next section is dedicated to existence of fixed points and their stability.

2 Existence of Positive Fixed Point and Local Stability

By performing simple algebraic manipulation, it is easy to see that system (2) has three fixed points

Fr = (0,0), F3 = (k,0) and the unique positive equilibrium point Fy = (%,W) whenever

(a+k)y <ké and 6 >v.

Firstly, we describe a general results for local stability of fixed points of system (2). Let F, be any
arbitrary fixed point of (2) then we have the next discussion about the local stability of FE,. Let

BE = ey, o)
be the variational matrix evaluated at F,. Then the quadratic characteristic polynomial of the matrix F;(F,) is:
H(e) = 0* —Tio + Dy, (3)
where
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Ty = (€11 + €32),
and
Dy = ej1€5; — e1z€2;.
In order to discuss the stability of fixed points, we have the following Lemma (see Liu and Xiao, 2007).
Lemma 2.1 Let H(p) = 02 — Ty0 + Dy, and H(1) > 0. Moreover, g;,0, are rootof H(g) = 0, then:
(i) le1l <1 and |o,| <1 ifandonlyif H(—-1) >0 and D; < 1;
(ii) |e4] > 1 and |o;| > 1 ifand only if H(—1) > 0 and D, > 1;
(iii) o1l <1 and ]oz| > 1 or (Je¢] > 1 and |, < [1)if and only if H(—-1) < 0;
(iv) o, and o, represent complex conjugates with |o;| = 1 = |o,| if and only if T;*> —4D; <0
and D, = 1.

As p; and g, are eigenvalues of (2) then we have the following topological type results related to the
stability of F.. F, is known assink if |g;] <1 and |o,| < 1, as sink is the point of suction hence it is locally
asymptotic stable. F, is known as source if |o;| > 1land |g,| > 1, as source is repeller hence it remains
unstable. F, is known as saddle if |o;] <1 and |g,] > 1 or |o4] > 1 and |g,| < 1. F, is said to be non
hyperbolic if condition (iv) of the Lemma 2.1 is satisfied.

Firstly, we study the behavior of model (2) at Fr, we assume that F;(Fr) be the variational matrix of
model (2) at point F; such that;

14+ha O
Fy(Fr) = (0 1 >

1+hy

Then the quadratic characteristic polynomial of the matrix F;(Fr) is:

Hy(0) = 0 — (1+ha+——)o + 10

1+hy e 1+hy’ (4)

Furthermore, by performing some acceptable algebraic manipulation it follows that H; (o) = 0 has two

roots o, =1+ ha and o, = ﬁ Clearly, Fr is always saddle in nature.

Furthermore, to describe nature of system (2) about Fp, we assume that F;(Fg) be the variational matrix
of model (2) at point Fg such that:

1 _ hkpB
1+ha (a+k)(1+ha)
Fy(Fg) = L hks
0 a+tk
1+hy

Then the quadratic characteristic polynomial of the matrix F;(Fg) is given as:

hké
_ 2 1 1+ % a+k+hké
HZ(Q) =0 <1+haz t 1+hy>Q T (a+k)(1+ha)(1+hy) (5)
Moreover, H,(g¢) = 0 has two values ¢, = e and g, = %. In addition, Fy is stable and

saddle ifand only if k6 <y(a+k) and k& > y(a + k) respectively.

Finally, let F,(Fy) be variational matrix of the system (2) about F,. Then F;(Fy) is given as:
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ahay(y+6)+k(y-6)(6+ha(y+6)) _  hBy
_ k(1+ha)(y-6)8 S+has
F] (Fy) = ha((-a-k)y+k&) 1 )
kB (1+hy)

Then, the characteristic polynomial of F;(F;) is given as:

_ ahay(y +8) + k(y — 6)(6 + ha(y + 6))
H(e) = o* - (1 k(1 + ha)(y — 8)5 )

+ ahay(y+6+2hy8)+k(y—6)(hay+S+h(a+y+2hay)d)
k(1+ha)(1+hy)(y—-6)6 !

Furthermore, by performing simple algebraic manipulation and letting kd > y(a + k) and &§ > y, we get:

h2ay(k6—(a+k)y)

H(l) - k(1+ha)(1+hy)d (6)

]HI(—].) __ahay(26+y(2+h(y+36)))+k(y—6)(46+h(2ay+4(a+y)S+hay(y+55))) (7)
- k(1+ha)(1+hy)(y—-8)8
ahay(y+6+2hy8)+k(y—6)(hay+S+h(a+y+2hay)d)

H(0) = 8)

k(1+ha)(1+hy)(y—8)8

From (6) we see that H(1) > 0. Therefore, the following results can be deduced by applying Lemma 2.1.

Theorem 2.1 Assume that k& > y(a + k) and & >y such that F, = (%,%) represent the

unique positive steady state of (2), then the following results remains true:

(i) Fy is locally asymptotically stable if and only if
ahay(26 +y(2+h(y +36)) +k(y —8) (48 + h(Ray + 4(a +y)6 + hay(y + 58))) > 0

and
hay(k(y —8)(1 + hd) + a(y + 8§ + 2hyd)) <0
(ii) Fy is unstable equilibrium point if and only if
ahay(26 +y(2+ h(y +36))) + k(y —8)(46 + h(2ay + 4(a +y)6 + hay(y + 58))) > 0
and
hay(k(y —8)(1 + hd) + a(y + 8 + 2hyé6)) >0
(iii) Fy is saddle point if and only if
ahay(26 +y(2 + h(y +38))) + k(y —6)(46 + h(Qay + 4(a +y)6 + hay(y +56))) > 0
(iv) The roots of equation (5) are complex conjugates with magnitude one if and only if
(1 + ah(xy(y+6)+k(y—6)(6+haf(y+6)))2 < 4(ahay(y+6+2hy8)+k(y—98)(hay+6+h(a+y+2hay)d)) (9)
k(1+ha)(y—8)8 k(1+ha)(1+hy)(y—6)8
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and
_ké—ay—ky—aé
~ 5Qay + ky — k&)’

3 Bifurcation Analysis
In this section, the parametric conditions for existence of Niemark-Scaker bifurcation of unique positive
equilibrium point of the system are discussed. Considering the system (2) about the equilibrium point

FU _ (ﬂ aad(kd—(a+k)y)

5 KRG ) then the characteristic polynomial matrix F;(F,) of (2) can be evaluated as

_ 2 _ ahay(y+8)+k(y—6)(§+ha(y+6)) ahay(y+8+2hy8)+k(y— 6)(hay+6+h(a+y+2hay)6)
H(Q) =@ (1 + k(1+ha)(y-6)6 ) + k(1+ha)(1+hy)(y—96)6

According to Lemma 2.1, the characteristic equation (10) has two complex conjugate roots with modulus one,

(10)

if condition (iv) of Theorem 2.1 is satisfied. Hence F; undergoes Neimark-sacker bifurcation if parameters
varies in the neighborhood of the following set;

k6—ay—ky—a6}

= +. [ =
R {a,k,ﬁ,a,a,y,hem £(9) holds, 0 < h < 1 with h =TT

Let (a,k B,a,8,7,h) € Rs then system (2) can be written as;

x+hax
() \
< ) >y AT (11)
\ 1+hy /

ké—ay—ky—ad

where h = 5@ay tky K3’ Let |h| < 1 be a perturbation parameter, then map (11) can be expressed as;
x+(h+h)ax
x LR ()
<y ) - y+(ﬁ+h)(%) : (12)
1+(h+h)y
. _ _ay _ aad(kd—(a+k)y) .
Next, under transformations (H,P) = (x 5y ETICET ) the model (12) can be described by the

following system:

H 11 T2\ /H Ny (H, P)
<P > - <r21 Tzz) (P ) + <N2 (H, P)), (13)
aad(ké—(a+k)y)

B G—7)? implies

- -
where x = 5=y and y

N;(H,P) = r;3H? + r,HP + 11sP? + 1;gH? + 11, H?P + 1,gHP? + 11oP3 + O((|H| + |P])*,
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Nz(H,P) = 7'231'12 +T‘24HP + 7'25H3 + T26H2P + 0(|H| + |P|)4,

_ k2(1+ha)((a+x)%+h(a+2x)yp) _ __ hk*x(at+x)(1+ha)B
1= ((a+x)(k+hxa)+hkyB)? ' 127 ((a+x)(k+hxa)+hkyB)?’

_ hk?(1+ha)((a+x)3a+y(—ak+h(a?+3ax+3x?)a)B—hky??)
((a+x)(k+hxa)+hkyB)3

)

i3 =

hk?(1+ha)B((a+x)(ak—hx(a+2x)a)+hk(a+2x)yB)
((a+x)(k+hxa)+hkyB)3 !

T4 = —

_ h%k3x(a+x)(1+ha)p?
"15 = (@) (k+hxa) +hky B)?

(hk2 (1+ha)(+y(—ak?-2ahk(a+2x)a+h?(a+2x) (a2+2ax+2x2)a2),8))
/((a+x)(k+hxa)+hkyB)*

e =

(h(a+x)*a?+hk?(1+ha)(—hky?(k+2h(a+2x)a)B?)

+ ((a+x)(k+hxa)+hkyp)* ’
(hk2(1+ha)ﬁ((a+x)(ak2+2ahk(a+2x)a—h2x(a2+3ax+3x2)a2)))
N7 = ((a+x)(k+hxa)+hkyB)*
(hk?(1+ha)B(2hky(kx+h(a+2x)?a)B—h*k2y%B?)
((a+x)(k+hxa)+hkyB)* !
_ RZKk3(1+ha) B2 (—(a+x)(k(—a+x)+2hx(a+2x)a)+hk(a+2x)y )
18 = ((a+x)(k+hxa)+hkyB)* ’
_ h3B3(a+x)k*(ha+1)x
"o = (xa ha+x%2a h+p hyk+ka+kx)*
_ ahys _ (S hx+a+x) _ y8 ha
21 = (a+x)2(1+hy)'r22 T (a+0)(y h+1)'r23 T (a+x)3(hy+1)
r, = 6 ha - S ha o= — 6 ha
24 7 (a+0)?(hy+1)’ 25 T (a+0)P(hy+1)’ 2 T (a+x)3(hy+1)

The characteristic equation of Jacobian matrix of map (13) computed at (0,0) can be described as follows:

e? —=T(h)e + D(h) =0, (14)
where
< a(h+R)ay(y+8)+k(y—8)(§+(h+h)a(y+6))
T(h) = (1 t k(1+(A+R)a)(y—6)8 )

and

a(h+R)ay(y+6+2(h+h)y8)+k(y—8)((h+h)ay+86+(h+h)(a+y+2(h+R)ay)s)

D(h) = k(1+ (Rt R (1+ (A+R)Y) (7—5)

Since (a, k,B,a,6,y, f_l) € R and equation (14) has pair of complex conjugate roots with unit modulus then

T(R i ~ ~
01,00 = "2+ L [ap(R) ~ T2(R).
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Therefore, we have

lo1| = loz| = G/D(E):

<d D(ﬁ)) B ay(ay(R2ay—1)-a(1+hy (4+h(a+2y))6—k(y—8)(1-R2ay +h(2+h(a+7)))) 40 (15)
dh =_ - = N2 = \2 _ ahay(y+8+2hy8)+k(y—8)(hay+8+h(a+y+2hay)s) !
h=0 2k(1+ha)?(1+hy)2?6(8 y)\] QT ha) Lt hy) (7—8)5

Since (a,k,B,a,8,y,h) €Rs, this implies that T(0) €]—2,2[. Thus T(0) = 0,1,+2 gives
01-0pcvee- m times # 1 and 0,.05....... m times # 1 for all m € {1,2,3,4} at h = 0. Hence, zeros of
(14) do not lie in the intersection of the unit circle with the coordinate axes at A = 0 and if the following
condition is true:

hay (k(y=8)+a(y+6))
2+ = mmo—as  * 0 ahay(y +8) + k(y — 6)(6 + haly +8)) # 0 (16)

Assume that & = 0 (= %J4D(0) — T2(0), then normal form of (13) at h = 0 can be expressed as:

2 ’

- 296)

hence, by using map (17) we get:

u § =\ u g1(u,v)
<v ) - (( & ><v ) - (fg‘;(u, v)), (18)

where
reH? 1, H?P 1.H*> 1,gHP? 1, ,HP 71,oP3® 1,cP?

Gi(wv) = w6 Ty sl | Tis REL RECLNNRE +0((lu] + DD,
T12 T2 T12 T2 T12 T12 12
Aryg  Tys Ary; Ty Aryz T3 ArygHP 2

g;(w,v) = -= H3+(———>H2P+(———>H2+—

Fwv) <r12T T ) ol T ol T oo T

3 2
+ (2 _ ) yp 4 o8 ST o ((Ju) + v,

71T T T12T 12T
where A = (¢ —ryy), and H = r,u and P = (¢ — ryy)u — {v. Therefore, we define the following nonzero

real number:

(1—20,)0% 1
Y = { |Re(02721) — Re — : T20T11 | = 5 |T11l? = [702/? ’
1-o04 2

h=0

where

1, — —_ e — =
TZO — § [gluu —_ glvv + Zgzuv + l(gzuu - gzvv - Zgluv)]l

1
T11 = Z [muu + g\zvv + l(gzuu + ‘ngvv)]'
1, — —_— L = e
To2 = 8 [gluu “ Y91y — Zgzuv + l(gzuu =924, t Zgluv)]'
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1. . — — . — — —
T21 = R [gluuu + I1ymw + 9200 + 92000 + l(gzuuu + 9200 ~ I1yuw glvvv)]'

Hence, we have the following conclusions for direction and existence of Neimark-Sacker bifurcation according

to aforemention calculation (Guckenheimer and Holmes, 1984; Robinson, 1998; Wiggins, 2003; Wan, 1978).

ay_ aad(ké—(a+k)y)

5=y’ KkBO—1)? ) whenever h varies in

Theorem 3.1 There exists Neimark-Sacker bifurcation at F; = (

ké—ay—ky—ad

small neighborhood of h = 5@aytky -k’

In addition, if ¥ < 0, (Y > 0), respectively, then an attracting or

repelling invariant closed curve bifurcates from the equilibrium point for h > h (h < h), respectively.

4 Chaos Control
In last few centuries, chaos and unusual behavior of non-linear discrete dynamical system attracted the
attention of scientists. Chaotic behavior examined in almost every field, such as chemistry, physics, ecology,
biology, chemical engineering, telecommunications etc. During the past decades, the trend of publication in
this field grow rapidly. Ott et al (1990) proposed a chaos control strategy which was the development of this
field. The proposed methodology is known as OGY method. Latter on, many control schemes have proposed
see also (Parthasarathy, 1992; Molgedey et al., 1992). In this section we proposed a generalized hybrid control
technique for controlling Neimark-sacker bifurcation, period-doubling bifurcation and chaos under the
influence of period-doubling bifurcation. The original scheme is first time proposed by Liu et al. (2003) for
controlling the period-doubling bifurcation and considered as control strategy (Din, 2018a, 2018b; Elabbasy et
al.,, 2014; He and Lai 2011; Ott, 1990). Therefore, we modified this existing technique to control
period-doubling bifurcation, the Neimark-sacker bifurcation and chaos under the influence of period-doubling
bifurcation. The proposed control strategy is more feasible and efficient as compared to other control schemes.
Moreover, it is applicable to almost every discrete-time dynamical system.

Consider the following an n-dimensional discrete dynamical system:
X1 = f (i, @) (19)
where x, € R, n € Z and the bifurcation parameter for system (19) is w € R. Assuming that there exists
bifurcation for parameter w.

The main objective of this technique is to restore the stability of system (19). For this purpose, we
proposed the following modified hybrid control strategy by applying state feedback along with parameter
perturbation;

Xnsre = 07 F B G, ) + (1= 0"y (20)
where 0 < 0* <1 is control parameter, f®) is kth iteration of f(.) and k is positive integer. For

6* = 1 one has the original system (19). Applying technique (20) on model (2) we have the following control

model:
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«3 xn(1+haxy) %3
xn+1 = 9 < y_n)> + (1 - 9 )xn;

X
1+h(aT"+Ba+Xn

8xnyn
Yor = 6% <yn+h(
n+1 —

: (21)
T ) -6

1+hy

where 0 < 8" < 1 is control parameter. Furthermore, the controlled system (21) and original model (2) has

the same equilibrium points. The wvariational matrix for (21) at positive fixed point

Fy = (%,%) is written below as:
hay(k(y—6)+a(y+6))9*3 hBy9*3
k(1+ha)(y—8)8 "~ 5+has
_ ha((a+k)y-k8)6"* 1
kB(1+hy)

1+

(22)

The following result properly describes the conditions for local asymptotic stability of positive
equilibrium Fy; of the controlled system (21).

Theorem 4.1 Assume that (a + k)y < k& and & > y, then the equilibrium (%,W) of

controlled system (21) is locally asymptotically stable if and only if the following conditions hold.

hay (k(y—8)+a(y+68))0*>
k(1+ha)(y—8)8

ho*> (ay(1+hy) (k(y—8)+a(y +8))—(y—8)((a+k)y—ks))

2+ k(1+ha)(1+hy)(y—5)8

<2+

and
hka(1+ ha)y(1 + hy)(y — 6)59*(—(1 +h)k(y—6)+aly+6)+h(y—956)((a+k)y— k5)9*3)

> 0.

5 Numerical Simulation and Discussion

The present part of the manuscript is related to verification of above theoretical work. In first example, we
explored the existence of bifurcation and the direction of bifurcation numerically. Second example is related to
the verification of controllability of system (2).

Fig. 1 Bifurcation diagram for x,
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Fig. 2 Bifurcation diagram for y,,

Fig. 3 Maximum Lyapunov exponents

Fig. 1-3 are bifurcation diagrams and MLE for system (2) for h € (0,1) with (a,k,B,a,6,y,h) =

(26.995,0.78,0.29,7.35,0.6,27.9,0.540711777) and

xo = 0.140773584,y, = 554.41161850

initial

Fig. 4
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Fig. 5

Fig. 6

Fig. 7

Fig. 8
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Fig. 9

Fig. 10

Fig. 11

Fig. 4-11 are phase portrait for system (2). when h € (0,1) with
(a,k,B,a,6,y,h) = (26.995,0.78,0.29,7.35,0.6,27.9,0.5407117772) and initial conditions x, =
0.140773584,y, = 554.41161850.

Example 5.1 First we assume the special case of system (2) by takingx, = 0.1407735849056605,
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and y, = 554.4116185079969) and parametric values (a, k,8,a,8,y) =
(26.995,0.78,0.29,7.35,0.6,27.9),where0 < h < 1 is taken as bifurcation parameter. Particularly, if
h = 0.5407117772709169 then system (2) undergoes Neimark-sacker bifurcation. Fig.1-3 shows that both
populations undergo Neimark-sacker bifurcation
about F; = (0.1407735849056605, 554.4116185079969)(see Fig. 1 and Fig. 2) and corresponding
maximum Lyapunov exponents are shown in Fig.3. Furthermore, for h = 0.5407117772709169, the unique
positive fixed point Fy = (0.1407735849056605, 554.4116185079969), undergoes Neimrk-sacker
bifurcation (see Fig.1 and Fig. 2). Finally, some phase portrait are given in Fig. 4-11 for0 < h < 1.
The characteristic polynomial of system (2) computed at fixed point F; = (0.1407735,554.4116185)
is given by
H(o) = 0% — 1.82213635874¢ + 1.
Then roots of H(g) =0 are o;, =0.9110681162 + 0.4122576585i with |o;| =1 =|g,| so that
(a,k,B,a,é6,y,h) = (26.995,0.78,0.29,7.35,0.6,27.9,0.5407117772709169) € X;. Next, we observe that
T(0) = 1.8221363587481079 # 0,1 thus condition (16) is satisfied. Moreover, some careful calculation
gives
H(1) = 0.1778636412518920 > 0
with
N;(H,P) = 0.14042388074 + 0.8607478357 H — 0.01980727908 P — 0.9711662538H?
—0.09325300047 HP + 0.02719991324P2 + 1.082124448H3 + 0.02540617346H?P
+0.009379928897 HP? — 0.003735168660P3 + O((|H| + |P|)*,
N,(H,P) = 554.4477758 + 827.1585276 H + 0.9694020796 P — 110.4206974H? + 1.491957419 HP
+ 14.74050017H3 — 0.1991673582H2P + O(|H| + |P|)*,
:i(u,v) = 0.0001974767127u® + 0.0001626365117u?v + 0.0001419592457u?
+ 0.0002078002466 uv? + 0.0004414176552 uv — 0.0001321270057v3

—0.02333888815v2 + 0((|u| + |[v])*),
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g2 (u,v) = —0.0002396156133u3 + 0.0003990084800u?v + 0.0006390664085u?
—0.001623804978 uv? — 0.0002416366123 uv — 0.0001612745780v3

— 0.002848750955v2 + 0((|u| + |[v)%),

T e — .
720 = T = Trow + 2T20p + (T2, — T2y — 201,,)] = 0.00334279 — 0.00872559%,

1
11 = 7 [T + Tiyy + 1Tz + T2,)] = —0.00457148179001 + 0.00017709565654,

T i — .
T2 = g (97, — T1py — 202, + (T2, — T2,y + 207,,)] = 0.000154246 + 0.000133453;,

1. _ _ _ e — — —
$21 = E [gluuu + J1uvw + 92uuv + 924p0 + l('gzuuu + 92uvy ~ J1uw ~ glvvv)] =
0.000052609321087625 — 0.000020903940143125i,

and

Y= ([—Re (%Tzofn) - % 1T111% = |702]* + Re(szzﬂ])f:O =

—0.00004374348897384201 < 0.

which proves the correctness of Theorem 3.1.

Example 5.2 In this example we implements the modified hybrid control technique to control the
Neimark-sacker bifurcation. Thus by applying the modified hybrid control technique for controlling the
Neimark-sacker bifurcation, we have the following scheme;

Xpiq = 6*3 < X, (14(0.760711777)26.995xy,) )) + (1 _ 6*3)xn‘

1+0.760711777(26.99S%+0.297 3§fx
E . n

(23)

3 yn+0.760711777((;‘;’;—2x
Vn+1 =

) %3
1+(0.760711777)27.9 > + (1 =0y,
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Fig. 12 Controlled diagram for x,,

Fig. 13 Controlled diagram for y,

Fig. 14 Controlled diagram for x,,
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Fig. 15 Controlled diagram for y,

Fig. 12-15 are controlled diagrams for system (2)when  h € (0,1) with
(a,k,B,a,6,y,h) = (26.995,0.78,0.29,7.35,0.6,27.9,0.760711777) and initial conditions
x9 = 0.1607735849, y, = 554.41161850.

Here 0 <6* <1 is the control parameter. In this case unique positive equilibrium pointF, =
(0.1607735849,554.41161850) is positive fixed point of original map (2). Hence by using Lemma 2.1 the
controlled map (23) is locally asymptotically stable if and only if 0 < 6* < 0.920606005. Moreover, it can
be easily seen that the stability of original system (2) is successfully restored for maximum range of control
parameter 6* (see Fig. 12-13).

6 Conclusion

In this article we discussed the prey-predator discrete-time biological model proposed by Jha and Ghorai
(2017). We discretized the system of differential equations and obtained dynamically consistent discrete-time
model for prey-predator interaction model. Particularly, we discussed the local asymptotic stability of
equilibrium point map (2). It is shown that there exists the Neimark-sacker bifurcation for equilibrium point of
constructed discrete-time model by assuming the step size h as bifurcation parameter. We computed the
parametric conditions for the existence and direction of the Neimark-sacker bifurcation. The novel contribution
of this work is to develop a modified hybrid control strategy for controlling the Neimark-sacker bifurcation.
Therefore, to show the effectiveness of newly modified technique, a comparison with existing hybrid control
methodology (Luo et al., 2003) is given here. For this, we take the parametric values used in example 5.2. In
this case the corresponding scheme is given as;

X, (1+(0.5407117772709169)26.995x,,)
- Xn yn = |+ (1 - Hl)xn'
1+h(26.995—+0.29 )

Xn+1 = 91(
0.78 7.35+Xn
27.9Xn¥Yn

Yn+0.5407117772709169(212n)
. n
= +(1-26
Yn+1 1 1+(0.5407117772709169)0.6 ( 1Y

(24)

where 6, €]0,1[ is control parameter. Moreover, the Jacobian matrix of (24) about equilibrium point
F; = (0.1407735,554.4116185) is given by

(1 —0.1778646, —0.00021621491)
822.6290, 1 )

According to Lemma 2.1 system (24) is stable if and only if 0 < 6, < 0.780227783 (see Fig. 14 and Fig.
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15). On the other hand, the newly modified control methodology (20) for similar parametric values applied to
map (2) in example 5.2 and stable region is shown in Fig. 12 and Fig. 13. Moreover, a comparison of modified
Hybrid technique with original Hybrid technique for different values of h is presented in Table 1. It can be
seen from Table 1 that newly given technique is very better than old Hybrid technique. In Table.1, I,
represents the controlled interval for Hybrid method and controlled interval for modified Hybrid method is
represented by I,. Hence, the modified control methodology is more efficient then existing hybrid control
scheme and applicable for every class of discrete-time maps.

Table 1 Comparison between Hybrid method and modified Hybrid method for system (2) for h € (0,1) and (@, k,B,a,6,y) =
(26.995,0.78,0.29,7.35,0.6,27.9) with initial conditions x, = 0.16077358,y, = 553.411618507

Values of h I I, Length of I, Length of I,
0.66271777 0 <6, <0.860996893 0 <6*<0.951335846 0.860996893 0.951335846
0.76271777 0 < 6; <0.780227783 0 < 6*<0.920606005 0.780227783 0.920606005
0.86271777 0 <6, <0.718183014 0 < 6* <0.895526365 0.718183014 0.895526365
0.96271777 0<6,<0.669027748 0< 6" <0.874610547 0.669027748 0.874610547
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