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Abstract

In this paper, a discrete-time predator-prey system with a functional response of Ivlev type is examined to
reveal its chaotic dynamics. We algebraically show that the system undergoes a flip bifurcation and/or
Neimark-Sacker (NS) bifurcation in the interior of R% when one ofthe model parameter crosses its threshold
value. Via application of the center manifold theorem and bifurcation theorems, we determine the existence
conditions and direction of bifurcations. Numerical simulations are employed to validate analytical results
which include bifurcations, phase portraits, periodic orbits, invariant closed cycle, sudden disappearance of
chaotic dynamics and abrupt emergence of chaos, and attracting chaotic sets. Furthermore, maximum
Lyapunov exponents and fractal dimension are computed numerically to justify the existence of chaos in the

system. Finally, we apply a strategy of feedback control to control chaotic trajectories exist in the system.
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1 Introduction

Predation is a very common species interaction in many ecological systems. In population ecology, the
classical and dominant themes are the interaction between predator and prey species which have long been
studied due to their universal existence and importance, such as resource-consumer, plant-herbivore, and
phytoplankton-zooplankton forms. In recent decades, mathematical modeling is a promising approach to
understand and analyze various complex dynamics of such systems in various circumstances. The dynamic
complexity of predator-prey system depends on predator’s rate of feeding on the prey, which is called
functional response. Holling type II (others are as Holling type I, III, IV) functional response is mostly used
functional response among arthropod predators. To investigate the dynamical relationship between two species
predator and prey, Ivlev (1961) suggested another functional response, called Ivlev functional response:
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p(x) =b(1 — ™) (1

where b, a are positive constants and represent the maximumrate of predation and the efficiency of the
predator for capturing prey, respectively. It is both monotonically increasing and uniformly bounded.

A number of famous ecologist and mathematician have been given attention and investigated extensively
the predator-prey systems with Ivlev’s functional response (May, 1972; Kooij, 1996; Sugie, 1998; Guo et al.,
2013; Kimun, 2015). In these empirical works the authors studied on the existence and the uniqueness of limit
cycles and on numerical computation of the phase portraits.

Despite plenty and extensive results on dynamics of continuous predator-prey system, a lots of exploratory
works have recommend that if population size is small, or population generations are relatively discrete (non-
overlapping), studies on discrete predator-prey model are more appropriate as it shows richer and very
complex dynamics than the corresponding continuous model. Besides, for insects with non-overlapping
generations, predator-prey system can be modeled in a discrete-time form and numerical computation also
requires to discretize a continuous-time model (He and Lai, 2011; He and Li, 2014; Rana, 2015, 2017, 2019;
Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches explored many complex properties
including the possibility of bifurcations (flip and Neimark-Sacker) and stable orbits and chaotic attractors
which had been derived either by numerically or by normal form and center manifold theory.

In this paper, we consider the following predator-prey system with Ivlev functional response:

= rx (1 —%) —(1 - ey

! 2)
1 —-e)y—-ay

where x and y stand densities of prey and predator, respectively; r, K, a,d are all positive constants. The
parameter r is the intrinsic growth rate of the prey, the parameter K is the carring capacity of the prey and
the parameter d is the mortality rate of the predator.

To get following two-dimensional discrete system, forward Euler scheme with integral step size & is

applied to system (2):

(x)H<x+5pw(1—§)—(1—-aﬂﬂyb 3)

Y \y+8[(1 — em®)y —dy]

The objective is to see how model parameters affect on the dynamics of system (3). Especially, we discuss
systematically the existence condition of a bifurcation (flip or NS bifurcation) in the interior of R2 using
bifurcation theory and center manifold theory (Kuzenetsov, 1998). Because in the discrete predator-prey
system, Flip bifurcation and NS bifurcation both are the important mechanisms for the generation of complex
dynamics and both bifurcations cause the system to jump from stable window to chaotic states through
periodic and quasi-periodic states, and trigger a route to chaos.

This paper is organized as follows. Section 2 deals the existence condition for fixed points of system (3)
and their stability criterion. In Section 3, we determine the direction of bifurcation for system (3) under certain
parametric condition. In Section 4, we present numerical simulations of the system for one or more control
parameters which include diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and Fractal
dimensions. In Section 5, we use the method of feedback control to stabilize chaos at unstable trajectories.
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Finally we carry out a short discussion in Section 6.

2 Existence Conditions and Stability Analysis of Fixed Points
2.1 Fixed points and their existence
A simple algebraic computation shows that for all feasible values of parameters, the model system (3)
possesses the following three fixed points:
i The trivial fixed point E,(0,0),
ii.  The predator free fixed point E;(K,0). The biological interpretation of this boundary fixed point is
that the prey population reaches in the carrying capacity inthe absence of predators,

iii. ~ The unique coexistence fixed point E,(x* y*) if d <1—e 9 where x* = %ln (ﬁ) and

yete ()

2.2 Dynamical behavior: stability analysis

We investigate stability of system (3) at fixed points. Note that the magnitude of eigenvalues of Jacobian
matrix evaluated at fixed point E'(x,y) determines the local stability of that fixed point. The Jacobian matrix
of system (3) evaluated at fixed point E(x,y) is given by

Jeyy = (1 2) @)
21 J22

where

Jjiu = 1+ (—%+r(1—§)—ae‘a"y)5,

1:12 = (—} +e7%)6, (5)

Jj21 = ae”%ys,

j22 = 1+ (1_d_e_ax)6.

The characteristic equation of matrix J is

2 +pxyA+qxy)=0 (6)
where p(x,y) = —tr] = —(j11 + j22) and det] = ji1j22 — j12j21.Using Jury’s criterion (Elaydi, 1996), we
state the following stability conditions of fixed points.

Proposition 2.1 For the trivial fixed point E,(0,0), the following topological classification true

. . . 2
i. E,isasourceif § > -
. . . 2
ii. E,isasaddleif 6 < -
. - . 2
iii.  E,isanon-hyperbolicif § = 'L

Proposition 2.2 For the predator free fixed point E; (K, 0), the following topological classification true
a. if d>1—e 9% then

i Ejisasinkif 0 <8 <minfl,—2_1

r’d—1+e9K
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ii. E,isasourceif § > max {3 ;}

r’d—1+e"

2

. - . 2
iii.  Ejisanon-hyperbolicif § = ~or ——

b. ifd <1—e % then

. . . 2
I. Ejsasourceif &> =
.. . . 2
Ii. E; isasaddleif § < -

iii.  E;is anon-hyperbolic if § = %
c. ifd =1 — e~?K then E,is always non-hyperbolic.

2

It is obvious that when & =2 or —_—
r d—1+e~ ¢

then one of the eigenvalues of J(E;) are 4, =1 —1r§ and

Ay =1+6—ds —e %5 is —1 and the other is not equal to +1. Therefore, a flip bifurcation can occur if
parameters change in small vicinity of FBg or FBE :

2
FBg, ={(T,K,a,d,5)E(O,+oo):5:;,5¢ d>1—e-a1<}

d—1+ eaK’

2
d-1+e—aK’

orF BZ, = {(r, K,a,d,8) € (0,+): 8 = §+#2,d>1- e—aK}.

At E,(x*,y™), we write equation (6) as
FQA):=2—-2+A)A+ (1+45+08%) =0,

where

2rx*

A=1-d+r— - —e™ (1 + ay*),

. . . rx* X .
Q= —ae ¥ (<1 +e )y + (1-d —em) (=Tt r(1-T) — ey
Then F(1) =Q8%>0 and F(—1) =4+ 2A5 + Q5% We state following Proposition about stability

criterion of E,.

*

Proposition 2.3 Suppose that fixed point E,(x*,y*) of system (3) exists. Thenitis a
(i) sink if one of the following conditions holds

(i) £2-4020 and 6 <=0

(i2) £2—40<0 and 6<-2;
(ii) source if one of the following conditions holds

(i) 224020 and §>=2022
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ii2) A2—40<0 and &> -2
n

(iii) non-hyperbolic if one of the following conditions holds

—A+VAZ-40 2 4
_ 5 #*—=,—=
0 A

(iii.l) 42-40>0 and 6= .

iii2) 22—40<0 and &§=—2:
n

(iv) saddle if otherwise.

From Proposition 2.3, we see that two eigenvalues of J(E,) are ;4 = —1 and A, # +1 if condition

(iii.1) holds. We rewrite the term (iii.1) as follows

—A—VAZ - 40 2 4
FBi, ={(r,K,a,d,8) € (0,40):6 =—————, A*-4020,6#——,— ¢,
2 Q AT A
or FBE, = {(r,K,a,d,6) € (0, +o0): § = —AATT20 é“‘“ A2—40>0,8 # —%,—%}.

Therefore, a flip bifurcation can appear at E, if parameters vary arround the set F B,}2 or F B,f—z.
Also we rewrite the term (iii.2) as follows

A
NSBg, = {(r,K,a,d,(S) € (0,400):6 = o A% —4Q0 < 0},

and if the parameters change in small vicinity of NSBg,, two eigenvalues A, of J(E;) are complex having

magnitude one and then NS bifurcation can emerge from fixed point E,.

3 Direction and Stability Analysis of Bifurcation

In this section, we will give attention to recapitulate flip and NS bifurcations of system (3) around E, by
using the theory of bifurcation (Kuzenetsov, 1998). We set § as a bifurcation parameter.

3.1 Flip bifurcation

Consider the system (3) at the fixed point E,(x*,y*) with arbitrary parameter (r,K,a,d,d) € F ngz. Similar

—A—VAZ-4Q

fashion for the case of F B,Ez. Since the parameters lie in F B,}z, let § =6 = — Y then the eigenvalues
of positive fixed point E,(x*,y*) are
A(6r) =—1 and 2,(6r) =3 + Adg.
The condition |1,(8z)| # 1 leads to
ASp # —2,—4 (7

Using the transformation ¥ = x —x*, ¥ =y —y* and writing A(8) = J(x*,y*), we shift the fixed
point (x*,y*) of system (3) to the origin. After Taylor expansion, system (3) reduces to

()10 ()+ (mz75) ®

where X = (%, 7)7is the vector of the transformed systemand
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Fi(%5,8) =-—;a?e " #28(-35 + a%y") - % + e x6(—25 + axy) + O(I X I*)
¥ 5 1 2 —ax 32 S Fr* 1 -ax* S Far* 4 ©)
F,(%,7,6) =ca‘e X 6(—3y+axy)—§ae x6(=29 + axy*) + O(ll X II*)

The system (8) can be expressed as

1 1
Xns1 = AX, + EB(Xn'Xn) + EC(Xn'Xn'Xn) +0(ll X, "4)

B ) C ) ) . g .
where B(x,y) = ( B; g’ ig) and (x,y,u) = < C; g‘ i]]’ Z%) are symmetric multilinear vector functions of
x,y,u € R? and defined as follows:

8§%F,(§,6) 21%, V.6 . .
Bi(x,y) = W XYk = —T+ ae M §(—x3y¥1 — X1V, + ax1y1y")
jk=1 J §=0
82F,(&,6) . .
By(x,y) = W XjY = —ae” " §(—xy, — 1Y, + axy )1y,
k=1 J75k le=g
52F,1(§,6) —ax* *
Gy u) = ik,l=1 55151&551 ; XiyrU = —a?e™ ™ §(—uyx1ys — uy (X1 + X1 (V2 — ay1y*))),
=0
2
852F,(§,6) S .
C(x,yu) = Z 555—5@& XjyrUp = a-e O(—uzx1y1 — Uy (21 + 1 (y2 — ay1y™))),
jki=1 >/ £=0

and & = 6.
Let p,q € R? be two eigenvectors of A for eigenvalue A,(6p) = —1 such that A(5r)q = —qand
AT (8p)p = —p. Then by direct calculation we get

q~(2+ 67 — dSp — e~ 55, —ae ™4 5,y"),

p~(2 + 8z — dSz — €% 8, (1 — e9%)5;) .
We use the standard scalar product in R? defined by (p,q) = p1q; + P2q,, to normalize p,q such that

(p,q) = 1. Todo, weset p = yF(Z + 8 —dSp — e~ 5, (1 — e_“x*)SF)T, where

1
(248 —dSp — e )2 —ae¥ §2y*(1 — e~

YF

The direction of the flip bifurcation is obtained by the sign [;(6r), the coefficient of critical normal form

(Kuzenetsov, 1998) and is given by

L (88) = 2(p,C(q,9,9)) —5 (P, B(q, (A — D7*B(q,9))) (10)

We state the following result on direction and stability of flip bifurcation according to above analysis.

Theorem 3.1 If (7) holds, [;(6z) # 0 and the parameter § changes its value around &, then system (3)
undergoes a flip bifurcation at positive fixed point E,(x*,y*). Moreover, the period-2 orbits that bifurcate
from E,(x*,y*) are stable (resp., unstable) if 1;(6z) > 0 (resp., 1;(dr) < 0).
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3.2 Neimark-Sacker bifurcation
Next, we consider system (3) at fixed point E,(x",y*) with arbitrary (1, K, a,d,§) € NSBg,. From equation

(6), the eigenvalues are given by

s OEN OO

2

i

Since the parameters belong to NSBg,, so the eigenvalues will be complex and 4, A=1+ A?a + ?6\/49 — A2,

Let § = 6ys=—7 (11)

Therefore, we have|A| = /q(8), q(6ys) = 1.

From the transversality condition, we get

ajaA(d)| A
aiAoN =—==%0 12
dé 5=6ps 2 ( )

Moreover, nondegenerate condition p(dys) # 0,1, obviously satisfies

AZ

= * 23 (13)
and we have

A(bys) #1 for k =1,23,4 (14)

Suppose q,p € C? are two eigenvectors of A(Sys) and AT (Sys) for eigenvalues A(Sys) and A(Sys)
such that

A(6ns)q = A(6ns)q,  A(Gns)q = Z(5N5)‘7

and

AT (8ys)p = A(Sns)p, AT (8ns)D = A(Sns)P-
Then by direct computation we obtain
Q~(1 + Oys — dbys — €7 Sys — A, _ae_ax*aNSy*)T'
p~(1 + 61\15 - d6NS - e_ax*SNS - /‘I, (1 - e_ax*)(st)T.

For normalization of vectors p and g, we set p = yNS(l + 8ys — dSys — €™ Sys — A, (1 - e_ax*)cYNs)T,

1
(1+8n5-dSys—e~% Sys—1) ~ae=0" % gy (1-e~ax")’

where yyng =

Then it is clear that (p,q) = 1 where (p,q) = p1q, + P»q; for p,q € C2>. Now, we decompose
vector X € R%as X = zq + zq, for § close to Sys and z € C. Obviously, z = (p, X). Thus, we obtain the
following transformed form of system (8) for |§| near Syg:

ze AM6)z+ g(z,z,06),
where 1(8) = (1 + ¢(8))e!?® with ¢(Sys) =0 and g(z,2z,6) is a smooth complex-valued function.
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After Taylor expression of g with respectto (z,Z), we obtain

1
9(2,2,6) = z G247, with g €€ kl=01,
k+lz2
According to multilinear symmetric vector functions, the coefficients g; are

920(6ns) = (P, B(q,©)),  911(ns) = (p, B(q, D)
902(8ns) =0, B(3, Q) 921(6ns) = (p,C(q, 9, D),
The invariant closed curve appear in the direction which is determined by the coefficient l,(dys) and

calculated via

e—i9(5Ns)921> ((1 — 2e10(0ns5)) =26 (ONs)

1 2 1 2
2 2(1 —eie(‘SNs)) 920911 _Elglll _Z|902| ’

L, (6ns) = Re(

where e@@ns) = 1(8ys).

Summarizing above analysis, we present the following theorem for direction and stability of Neimark-Sacker

bifurcation.

Theorem 3.2 If (13) holds, [,(Sys) # 0 and the parameter & changes its value in small vicinity of NSBg,,
then system (3) passes through a Neimark-Sacker bifurcation at positive fixed point E,. Moreover, if
1,(6ys) < 0 (resp.,> 0), then there exists a unique attracting (resp., repelling) invariant closed curve
bifurcates from E,.

4 Numerical Simulations

Here, bifurcation diagrams, phase portraits, maximum Lyapunov exponents and fractal dimension of system (3)
will be drawn to validate our theoretical results using numerical simulation. We assume that § is a bifurcation
parameter unless stated. We consider different set of parameter values in the following examples for

bifurcation analysis.

Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter &

We fix the parameters r = 0.85,K = 0.3,a = 0.5,d = 0.1 and varying § in range 3.5 <6 <4.1. By
calculation, we find that the fixed point system (3) is E,(0.210721,0.533034), and the critical point for flip
bifurcationa is § = §p~3.70721. At the critical bifurcation point, the two eigenvalues are 4, = —1,4, =
0.835172, a(6r) = 94.4515 and (1,K,a,d,§) € FB,_};Z. This verifies Theorem 3.1.

According to bifurcation diagrams shown in Fig. 1(a-b), we see that stability of fixed point E, happens
for § < 6F, loses its stability at § = 6z and a period doubling phenomena lead to chaos for § > §z. The
maximum Lyapunov exponents and fractal dimension related to Fig. 1(a-b) are computed and shown in Fig.
I(c-d). We observe that the period -2,-4, -8, -16 orbits occur for & € [3.5,4.022], chaotic set for § €
[4.022,4.1]. As determined by the maximum Lyapunov exponent, the status of stable, periodic or chaotic
dynamics are compatible with sign in Fig. 1(c-d). The phase portraits of bifurcation diagrams in Fig. 2(a-b) for
different values of & are displayed in Fig. 2.
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Fig. 1 Flip bifurcation and Lyapunov exponent of system (2). (a) bifurcation for prey, (b) bifurcation for predator, (¢) maximum

Lyapunov exponents related to (a-b), (d) Fractal dimension corresponding to (a). Initial value (x,,y,) = (0.21,0.533).

Example 2: Neimark-Sacker bifurcation of system (3) with respect to bifurcation parameter §
We fix the parameters r = 1.0,K = 1.1,a = 0.5,d = 0.2 and varying § in range 3.0 < § < 4.015. After
calculation, we observe that a NS bifurcation appears at fixed point E,(0.446287,1.32611) for 6 =
Sns~3.22253. Also, we have 4,1 = 0.44914965 + 0.893457i,
g20 = —0.8287361517048926 + 0.98504593690546741,
g11 = 0.9854786934961157 — 2.3345502905662221,
Joz = 2.0014289480044947 + 3.7805618158725003i,
g21 — 1.1973007849269635 — 0.3720620335464 6841,
a(Sys) = —8.120394164511106
and (r,K,a,d,8) € NSBg,. This verifies Theorem 3.2.
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Fig. 2 Phase portraits (xy-plane) of bifurcation diagrams Fig. 1(a-b) for different values of §.

The bifurcation diagrams shown in Fig. 3(a-b) demonstrate that stability of E, happens for § < &ys, loses
its stability at § = dyg and an attracting invariant curve appears if§ > dys. We dispose the maximum
Lyapunov exponents in Fig. 3(c) relating bifurcation in Fig. 3(a-b), which confirm the existences of chaos and
period window as parameter § varying. When §~4.12, the sign of maximum Lyapunov exponent confirming
presence of chaos. Fig. 3(d) is local amplification of Fig. 3(a) for 6§ € [3.66,4.06].

The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of § are displayed in Fig. 4,
which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and
increases its radius. As § grows, disappearance of closed curve occurs suddenly and a period -5, -10, -15, -20,
and period -40 orbits appear at §~3.85, §~3.96, §~4.092,5~4.02, and §~4.05 respectively. We also see
that a fully developed chaos in system (2) occurs at §~4.15.

(@ (b)

IAEES WWW.iaees.org



Network Biology, 2020, 10(2): 45-61 55

T
015k 1 08
ok | 07}
I~
0Bt I‘
e n0sft 1
3 i
E = :
£ osp
i 4 ok | :
= v i Lr
nar
i
qosk g
03f b
01k L L L L L L B no L L L L
0756 085 0.95 1.05 115 1.28 135 366 376 386 396 408
3 8

(© (d)

o = =
{531 m m
T i T
. , .

!

o
b
m
T
L

Fractal dimension

=
in
T
I

o
Py
)
T
L

L L L
3 315 33 345 36 375 39 4.05 4.2

(=]

Fig. 3 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c)
maximum Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for § € [3.0,4.15] (e) Fractal dimension

associated with (a). Initial value (xq,y,) = (0.44,1.32).
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Fig. 4 Phase portraits (xy-plane) of bifurcation diagrams Fig. 3(a-b) for different values of §.

Example 3: Neimark-Sacker bifurcation of system (3) with respect to bifurcation parameter a

With the variation of other parameter values (e.g., parameter a), the predator-prey system may exhibit richer
dynamical behaviors in the Neimark-Sacker bifurcation diagram. When we set the parameter values as given in
Example 2 with § = 3.22253, and varying a in range 0.4 < a < 0.67, a new Neimark-Sacker bifurcation
diagram is obtained as disposed in Fig. 5(a-b). The system undergoes a Neimark-Sacker bifurcation at
a = ays~0.5. Similar nonlinear characteristics to Figures 3 and 4 are found in this case, such as route to chaos,
invariant curves, chaotic attractors, and periodic windows. The maximum Lyapunov exponent corresponding
to Fig. 5(a-b) is computed and plotted in Fig. 5(c), which confirm the existences of chaos and period window
as parameter a varying. We observe from Fig. 5(a-b) that stability of system (3) happens for a < ayg, loses
its stability at a = ays and an attracting invariant curve appears if a > ayg. Also, on the route to chaos,
periodic windows with period -6, -10, -12, -18, and period -24 orbits and attracting chaotic sets are found. On
each branch, the predator-prey system (3) undergoes a sub-Neimark-Sacker bifurcation, flip bifurcation and

periodic window with the increase of a value.

0.4 0.45 0s 0.55 06 0.65 0.4 0.45 05 055 06 0.65
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Fig. 5 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c)

maximum Lyapunov exponents related to (a-b), (d) Fractal dimension associated with (a). Initial value (xg,y,) = (0.44,1.32).

Example 4: Maximum Lyapunov exponents for two control parameters § and a
The dynamic complexity of system (3) can be observed when more parameters vary. We fix the parameters
r=10,K=11,d =0.2 and varying § in range 3.0 <6 < 4.1, and a in range 0.44 < a < 0.64. The
sign of maximum Lyapunov exponents quantifies the existence of chaos in system (3). The 2D projection of
3D maximum Lyapunov exponents for two control parameters onto (§,a) plane is plotted in Fig. 6. It is easy
to find values of control parameters for which the dynamics of system (3) is in status of non-chaotic, periodic
or chaotic. For instance, there is a chaotic dynamics for § = 4.1,a = 0.5, and the non-chaotic dynamics for
6 = 3.85,a = 0.5 (see Fig. 4), which are compatible with the signs of maximum Lyapunov exponents in Fig.
6. As shown in Fig. 6, we observe that the increases values of control parameters § and a, the dynamics of
system (3) changes from chaotic to non-chaotic status. Moreover, we find that the predator-prey system
experiences flip bifurcation and Neimark- Sacker bifurcation simultaneously.

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by

i=1 h;
|y
where hy, hy, ..., h, are Lyapunov exponents and j is the largest integer such that Z{zl h; =0 and
Y <o.

For our two-dimensional system (3), the fractal dimension takes the form

dL=]+

hy

dL=1+M,

hy > 0> hyand hy + h, <O0.

With parameter values as in Example 2, the fractal dimension of system (3) is plotted in Fig. 3(e). The strange
attractors given in Fig. 4 and its corresponding fractal dimension illustrate that the increase values of parameter

§ causes a chaotic dynamics for the predator-prey system (3).
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Fig. 6 Diagnostic of system (2) for control parameters & and a. The 2D projection of 3D maximum Lyapunov exponents onto

(6,a) plane.

5 Chaos Control
To stabilize chaos at the state of unstable trajectories of system (3), a state feedback control method (Elaydi,

1996) is applied. By adding a feedback control law as the control force u,, to system (3), the controlled form

of system (3) becomes

Xp41 = Xp+06 [rxn (1 - %") -1 - e'axn)yn] +u, (15)
Yne1 = Ynt 6[(1 - e_ax")}’n - dyn]
and

Up = =k (0 —x7) — k(W —¥")
where the feedback gains are denoted by kj;and k, and (x*,y*) represent positive fixed point of system (3).

2 . .
|2

T T
[ I:l stable eigenvalues

1
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Fig. 7 Control of chaotic trajectories of system (17). (a) Stability region in (kq, k,) plane (b-c) Time series for states x and y

respectively.

The Jacobian matrix J. of the controlled system (15) is given by

]C(x*’y*) — (jll - kl j12 - kZ) (16)

J21 J22
where j,4, 0,4 = 1,2 givenin (5) are evaluated at (x*,y"). The characteristic equation of (16) is

A2 —(trJ)A+det]. =0 (17)
where tr], = ji1 + jo2 — k1 and det]. = j,5(ji1 — k1) — j21 (12 — k3). Let 41 and A, be the roots of (17).
Then

M+ =j11+ )2 — ke (18)
and
MAz = Jo2(11 — k1) — J21 U1z — k2) (19)

The solution of the equations A; = +1 and A;4, = 1 determines the lines of marginal stability. These
conditions confirm that |4, ,| < 1. Suppose that A;4, = 1, then from (19) we have
ly:jazks = Ja1k2 = Jarj2z = jizj21 — 1.
Assume that A, = 1, then from (18) and (19) we get
Lyt (1 = ja2dka + jarka = jix +J22 = 1 — jivj2z + 12021
Next, assume that 4; = —1, then from (18) and (19) we obtain

ls: (L + j22)kq — jaika = ji1 22 + 1+ j11j22 — jizJo1-

Then the lines [y, 1,,and l; (see Fig. 7(a)) in the (kq,k,) plane determine a triangular region which keeps
eigenvalues with magnitude less than 1.

In order to check how the implementation of feedback control method works and controls chaos at unstable

state, we have performed numerical simulations. Parameter values are fixed as § = 4.12 and rest as in
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Example 2. The initial value is (X, y9) = (0.44,1.32), and the feedback gains are k; = 0.5 and k, = 0.032.
Figures 7(b) and 7(c) show that at the fixed point (0.210721,0.533034), the chaotic trajectory is stabilized.

6 Discussion

This work is concerned with the dynamics of a discrete-time predator-prey system with Ivlev functional
response in the closed first quadrant R2. We prove via center manifold theorem and bifurcation theory, the
system (3) can undergo a bifurcation (flip or NS) at unique positive fixed point if § varies around the sets
F B,}Z or F B,%2 and NSBg,. Based on Figures, we notice that the small integral step size § can stabilize the
dynamical system (3), but the large integral step size may destabilize the system producing more complex
dynamical behaviors. Numerical simulations present unpredictable behaviors of the system through a flip
bifurcation which include orbits of period-2, -4, -8, -16 orbits and through a NS bifurcation which include an
invariant cycle, orbits of period-5, -6, -10, -12, -15, -18, -20, -24, and period-40 orbits and chaotic sets
respectively. These indicate that at the state of chaos, the system is unstable and particularly, the predator goes
to extinct or goes to a stable fixed point when the dynamic of prey is chaotic. We confirm about the existence
of chaos through the computation of maximum Lyapunov exponents and fractal dimension. In addition, we see
that the appropriate choice of parameter acan stabilize the dynamical system (3). The two bifurcations cause
the system to jump from steady state to chaotic dynamical behavior via periodic and quasi-periodic states and
trigger routes to chaos; that is, chaotic dynamics appear or disappear along with the emergence of bifurcations.
Moreover, system (3) exhibits very rich nonlinear dynamical behaviors by the variation of two control
parameters and one can directly observe from the two-dimensional parameter-spaces when the system
dynamics will be periodic, quasi-periodic and chaotic. We observe that the increases values of control
parameters § and a, can destabilize the dynamical system (3) producing more complex dynamical behaviors,
but the small values may stabilize the system. Finally, the chaotic trajectories at unstable state are controlled
by implementing the strategy of feedback control. However, it is still a challenging problem to explore
multiple parameter bifurcation in the system. We expect to obtain some more analytical results on this issue in
the future.
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