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Abstract 

In this paper, a discrete-time predator-prey system with a functional response of Ivlev type is examined to 

reveal its chaotic dynamics. We algebraically show that the system undergoes a flip bifurcation and/or 

Neimark-Sacker (NS) bifurcation in the interior of Թା
ଶ  when one ofthe model parameter crosses its threshold 

value. Via application of the center manifold theorem and bifurcation theorems, we determine the existence 

conditions and direction of bifurcations. Numerical simulations are employed to validate analytical results 

which include bifurcations, phase portraits, periodic orbits, invariant closed cycle, sudden disappearance of 

chaotic dynamics and abrupt emergence of chaos, and attracting chaotic sets. Furthermore, maximum 

Lyapunov exponents and fractal dimension are computed numerically to justify the existence of chaos in the 

system. Finally, we apply a strategy of feedback control to control chaotic trajectories exist in the system. 

 

Keywords predator-prey system with Ivlev functional response; bifurcations; chaos; Lyapunov exponents; 

feedback control. 

 

 

 

 

 

 

 

 

1 Introduction 

Predation is a very common species interaction in many ecological systems. In population ecology, the 

classical and dominant themes are the interaction between predator and prey species which have long been 

studied due to their universal existence and importance, such as resource-consumer, plant-herbivore, and 

phytoplankton-zooplankton forms. In recent decades, mathematical modeling is a promising approach to 

understand and analyze various complex dynamics of such systems in various circumstances. The dynamic 

complexity of predator-prey system depends on predator’s rate of feeding on the prey, which is called 

functional response. Holling type II (others are as Holling type I, III, IV) functional response is mostly used 

functional response among arthropod predators. To investigate the dynamical relationship between two species 

predator and prey, Ivlev (1961) suggested another functional response, called Ivlev functional response: 
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ሻݔሺ ൌ ܾሺ1  െ ݁ି௫ሻ           (1) 

 

where ܾ, ܽ are positive constants and represent the maximumrate of predation and the efficiency of the 

predator for capturing prey, respectively. It is both monotonically increasing and uniformly bounded. 

A number of famous ecologist and mathematician have been given attention and investigated extensively 

the predator-prey systems with Ivlev’s functional response (May, 1972; Kooij, 1996; Sugie, 1998; Guo et al., 

2013; Kimun, 2015). In these empirical works the authors studied on the existence and the uniqueness of limit 

cycles and on numerical computation of the phase portraits. 

Despite plenty and extensive results on dynamics of continuous predator-prey system, a lots of exploratory 

works have recommend that if population size is small, or population generations are relatively discrete (non- 

overlapping), studies on discrete predator-prey model are more appropriate as it shows richer and very 

complex dynamics than the corresponding continuous model. Besides, for insects with non-overlapping 

generations, predator-prey system can be modeled in a discrete-time form and numerical computation also 

requires to discretize a continuous-time model (He and Lai, 2011; He and Li, 2014; Rana, 2015, 2017, 2019; 

Liu and Cai, 2019; Zhao et al., 2016; Zhao et al., 2017). These researches explored many complex properties 

including the possibility of bifurcations (flip and Neimark-Sacker) and stable orbits and chaotic attractors 

which had been derived either by numerically or by normal form and center manifold theory. 

In this paper, we consider the following predator-prey system with Ivlev functional response: 

 

ሶݔ ൌ ݔݎ ቀ1 െ
௫


ቁ െ ሺ1  െ ݁ି௫ሻݕ

ሶݕ ൌ ሺ1  െ ݁ି௫ሻݕ െ ݕ݀
         (2) 

 

where ݔ and ݕ stand densities of prey and predator, respectively; ݎ, ,ܭ ܽ, ݀ are all positive constants. The 

parameter ݎ is the intrinsic growth rate of the prey, the parameter ܭ is the carring capacity of the prey and 

the parameter ݀ is the mortality rate of the predator. 

To get following two-dimensional discrete system, forward Euler scheme with integral step size ߜ is 

applied to system (2): 

 

ቀ
ݔ
ቁݕ հ ቆ

ݔ  ߜ ቂݔݎ ቀ1 െ
௫


ቁ െ ሺ1  െ ݁ି௫ሻݕቃ

ݕ   ሾሺ1ߜ െ ݁ି௫ሻݕ െ ሿݕ݀
ቇ        (3) 

 

The objective is to see how model parameters affect on the dynamics of system (3). Especially, we discuss 

systematically the existence condition of a bifurcation (flip or NS bifurcation) in the interior of Թା
ଶ  using 

bifurcation theory and center manifold theory (Kuzenetsov, 1998). Because in the discrete predator-prey 

system, Flip bifurcation and NS bifurcation both are the important mechanisms for the generation of complex 

dynamics and both bifurcations cause the system to jump from stable window to chaotic states through 

periodic and quasi-periodic states, and trigger a route to chaos. 

This paper is organized as follows. Section 2 deals the existence condition for fixed points of system (3) 

and their stability criterion. In Section 3, we determine the direction of bifurcation for system (3) under certain 

parametric condition. In Section 4, we present numerical simulations of the system for one or more control 

parameters which include diagrams of bifurcation, phase portraits, maximum Lyapunov exponents and Fractal 

dimensions. In Section 5, we use the method of feedback control to stabilize chaos at unstable trajectories. 
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Finally we carry out a short discussion in Section 6. 

 

2 Existence Conditions and Stability Analysis of Fixed Points 

2.1 Fixed points and their existence 

A simple algebraic computation shows that for all feasible values of parameters, the model system (3) 

possesses the following three fixed points: 

i. The trivial fixed point ܧሺ0,0ሻ, 

ii. The predator free fixed point ܧଵሺܭ, 0ሻ. The biological interpretation of this boundary fixed point is 

that the prey population reaches in the carrying capacity inthe absence of predators, 

iii. The unique coexistence fixed point ܧଶሺכݔ, ሻכݕ  if ݀ ൏ 1 െ ݁ି  where כݔ ൌ
ଵ


ln ቀ

ଵ

ଵିௗ
ቁ and 

כݕ ൌ


ௗ
כݔ ቀ1 െ

௫כ


ቁ. 

2.2 Dynamical behavior: stability analysis 

We investigate stability of system (3) at fixed points. Note that the magnitude of eigenvalues of Jacobian 

matrix evaluated at fixed point ܧሺݔ,  ሻ determines the local stability of that fixed point. The Jacobian matrixݕ

of system (3) evaluated at fixed point ܧሺݔ,  ሻ is given byݕ

 

,ݔሺܬ ሻݕ ൌ ൬
݆ଵଵ ݆ଵଶ
݆ଶଵ ݆ଶଶ

൰           (4) 

 

where 

݆ଵଵ ൌ 1  ቀെ
௫


 ݎ ቀ1 െ

௫


ቁ െ ܽ݁ି௫ݕቁ ,ߜ

݆ଵଶ ൌ ሺെ1  ݁ି௫ሻߜ,
݆ଶଵ ൌ ܽ݁ି௫ߜݕ,
݆ଶଶ ൌ 1  ሺ1 െ ݀ െ ݁ି௫ሻߜ.

        (5) 

 

The characteristic equation of matrix ܬ is  

ଶߣ  ,ݔሺ ߣሻݕ  ,ݔሺݍ ሻݕ ൌ 0          (6) 

where ሺݔ, ሻݕ ൌ െܬݎݐ ൌ െሺ݆ଵଵ  ݆ଶଶሻ  and  ݀݁ܬݐ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ.Using Jury’s criterion (Elaydi, 1996), we 

state the following stability conditions of fixed points. 

 

Proposition 2.1 For the trivial fixed point ܧሺ0,0ሻ, the following topological classification true 

i. ܧ is a source if  ߜ  ଶ

ௗ
, 

ii. ܧ is a saddle if  ߜ ൏ ଶ

ௗ
, 

iii. ܧ is a non-hyperbolic if ߜ ൌ ଶ

ௗ
.  

 

Proposition 2.2 For the predator free fixed point ܧଵሺܭ, 0ሻ, the following topological classification true 

a. if ݀  1 െ ݁ି then  

i. ܧଵis a sink if 0 ൏ ߜ ൏ ݉݅݊ ቄଶ

, ଶ

݀ି1ା݁െܽܭ
ቅ,  
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ii. ܧଵis a source if ߜ  ݔܽ݉ ቄଶ

, ଶ

݀ି1ା݁െܽܭ
ቅ 

iii. ܧଵis a non-hyperbolic if ߜ ൌ ଶ


  ݎ  ଶ

݀ି1ା݁െܽܭ
.  

b. if ݀ ൏ 1 െ ݁ି then  

i. ܧଵis a source if  ߜ  ଶ


, 

ii. ܧଵ isa saddle if  ߜ ൏ ଶ


, 

iii. ܧଵis a non-hyperbolic if ߜ ൌ ଶ


.  

c. if݀ ൌ 1 െ ݁ି then ܧଵis always non-hyperbolic. 

It is obvious that when ߜ ൌ
ଶ


  or  

ଶ

ௗିଵା షೌ಼
, then one of the eigenvalues of ܬሺܧଵሻ are ߣଵ ൌ 1 െ  and ߜݎ

ଶߣ ൌ 1  ߜ െ ߜ݀ െ ݁ିߜ is െ1 and the other is not equal to േ1. Therefore, a flip bifurcation can occur if 

parameters change in small vicinity of ܤܨாభ
ଵ  or ܤܨாభ

ଶ : 

 

ாభܤܨ
ଵ ൌ ൜ሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0, ∞ሻ: ߜ ൌ

2
ݎ
, ߜ ്

2
݀ െ 1  ݁ି

, ݀  1 െ ݁ିൠ 

orܤܨாభ
ଶ ൌ ቄሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0,∞ሻ: ߜ ൌ

ଶ

ௗିଵା షೌ಼
, ߜ ്

ଶ


, ݀  1 െ ݁ିቅ. 

 

At ܧଶሺכݔ,   ሻ, we write equation (6) asכݕ

 

ሻ:ൌߣሺܨ ଶߣ െ ሺ2  Δߜሻߣ  ሺ1  Δߜ  Ωߜଶሻ ൌ 0, 

 

where 

Δ ൌ 1 െ ݀  ݎ െ
ଶ௫כ


െ ݁ି௫

כ
ሺ1    ,ሻכݕܽ

Ω ൌ െܽ݁ି௫
כ
൫െ1  ݁ି௫

כ
൯כݕ  ൫1 െ ݀ െ ݁ି௫

כ
൯ ൬െ

כݔݎ

ܭ
 ݎ ൬1 െ

כݔ

ܭ
൰ െ ܽ݁ି௫

כ
 ൰כݕ

Then ܨሺ1ሻ ൌ Ωߜଶ  0  and ܨሺെ1ሻ ൌ 4  2Δߜ  Ωߜଶ. We state following Proposition about stability 

criterion of ܧଶ.  

 

Proposition 2.3 Suppose that fixed point ܧଶሺכݔ,   ሻ of system (3) exists. Then it is aכݕ

 (i) sink if one of the following conditions holds  

  (i.1) ߂ଶ െ ߗ4  ߜ    ݀݊ܽ    0 ൏
ି௱ି√௱మିସఆ

ఆ
;  

  (i.2) ߂ଶ െ ߗ4 ൏ ߜ    ݀݊ܽ    0 ൏ െ
௱

ఆ
;  

 (ii) source if one of the following conditions holds  

  (ii.1) ߂ଶ െ ߗ4  ߜ    ݀݊ܽ    0 
ି௱ା√௱మିସఆ

ఆ
;  
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  (ii.2) ߂ଶ െ ߗ4 ൏ ߜ    ݀݊ܽ    0  െ
௱

ఆ
;  

 (iii) non-hyperbolic if one of the following conditions holds  

  (iii.1) ߂ଶ െ ߗ4  ߜ    ݀݊ܽ    0 ൌ
ି௱േ√௱మିସఆ

ఆ
ߜ ; ് െ

ଶ

௱
, െ

ସ

௱
 

  (iii.2) ߂ଶ െ ߗ4 ൏ ߜ    ݀݊ܽ    0 ൌ െ
௱

ఆ
;  

 (iv) saddle if otherwise.  

 

From Proposition 2.3, we see that two eigenvalues of ܬሺܧଶሻ are ߣଵ ൌ െ1 and ߣଶ ്  if condition 1ט

(iii.1) holds. We rewrite the term (iii.1) as follows  

ாమܤܨ
ଵ ൌ ቊሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0, ∞ሻ: ߜ ൌ

െΔ െ √Δଶ െ 4Ω
Ω

, Δଶ െ 4Ω  0, ߜ ് െ
2
Δ
,െ

4
Δ
ቋ, 

or ܤܨாమ
ଶ ൌ ൜ሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0, ∞ሻ: ߜ ൌ

ିା√మିସΩ

Ω
, Δଶ െ 4Ω  0, ߜ ് െ

ଶ


, െ

ସ


ൠ. 

Therefore, a flip bifurcation can appear at ܧଶ if parameters vary arround the set ܤܨாమ
ଵ or ܤܨாమ

ଶ . 

Also we rewrite the term (iii.2) as follows  

ாమܤܵܰ ൌ ൜ሺݎ, ,ܭ ܽ, ݀, ሻߜ א ሺ0,∞ሻ: ߜ ൌ െ
Δ
Ω
, Δଶ െ 4Ω ൏ 0ൠ, 

and if the parameters change in small vicinity of ܰܵܤாమ, two eigenvalues ߣଵ,ଶ of ܬሺܧଶሻ are complex having 

magnitude one and then NS bifurcation can emerge from fixed point ܧଶ. 

 

3 Direction and Stability Analysis of Bifurcation 

In this section, we will give attention to recapitulate flip and NS bifurcations of system (3) around ܧଶ by 

using the theory of bifurcation (Kuzenetsov, 1998). We set ߜ as a bifurcation parameter. 

3.1 Flip bifurcation 
Consider the system (3) at the fixed point ܧଶሺכݔ, ,ݎሻ with arbitrary parameter ሺכݕ ,ܭ ܽ, ݀, ሻߜ א ாమܤܨ

ଵ . Similar 

fashion for the case of ܤܨாమ
ଶ . Since the parameters lie in ܤܨாమ

ଵ , let ߜ ൌ ிߜ ൌ
ିି√మିସΩ

Ω
, then the eigenvalues 

of positive fixed point ܧଶሺכݔ,  ሻ areכݕ

 

ிሻߜଵሺߣ ൌ െ1    and    ߣଶሺߜிሻ ൌ 3  Δߜி. 

 

The condition |ߣଶሺߜிሻ| ് 1 leads to  

 

Δߜி ് െ2,െ4            (7) 

 

Using the transformation ݔ ൌ ݔ െ ݕ    ,כݔ ൌ ݕ െ כݕ  and writing ܣሺߜሻ ൌ ,כݔሺܬ  ሻ, we shift the fixedכݕ

point ሺכݔ,  ሻ of system (3) to the origin. After Taylor expansion, system (3) reduces toכݕ

 

൬
ݔ
൰ݕ ՜ ሻߜሺܣ ൬

ݔ
൰ݕ  ൬

,ݔଵሺܨ ,ݕ ሻߜ
,ݔଶሺܨ ,ݕ ሻߜ

൰          (8) 

where ܺ ൌ ሺݔ,   ሻ்is the vector of the transformed systemandݕ
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,ݔଵሺܨ ,ݕ ሻߜ ൌ െ
ଵ


ܽଶ݁ି௫

כ
ݕሺെ3ߜଶݔ  ሻכݕݔܽ െ

௫మఋ




ଵ

ଶ
ܽ݁ି௫

כ
ݕሺെ2ߜݔ  ሻכݕݔܽ  ܱሺצ ܺ ସሻצ

,ݔଶሺܨ ,ݕ ሻߜ ൌ
ଵ


ܽଶ݁ି௫

כ
ݕሺെ3ߜଶݔ  ሻכݕݔܽ െ

ଵ

ଶ
ܽ݁ି௫

כ
ݕሺെ2ߜݔ  ሻכݕݔܽ  ܱሺצ ܺ ସሻצ

  (9) 

The system (8) can be expressed as 

ܺାଵ ൌ ܺܣ 
1
2
,ሺܺܤ ܺሻ 

1
6
,ሺܺܥ ܺ, ܺሻ  ܱሺצ ܺ  ସሻצ

whereܤሺݔ, ሻݕ ൌ ൬
,ݔଵሺܤ ሻݕ
,ݔଶሺܤ ሻݕ

൰  and ሺݔ, ,ݕ ሻݑ ൌ ൬
,ݔଵሺܥ ,ݕ ሻݑ
,ݔଶሺܥ ,ݕ ሻݑ

൰  are symmetric multilinear vector functions of 

,ݔ ,ݕ ݑ א Թଶ and defined as follows: 

,ݔଵሺܤ ሻݕ ൌ   

ଶ

,ୀଵ

,ߦଵሺܨଶߜ ሻߜ
ߦߜߦߜ

ቤ
కୀ

ݕݔ ൌ െ
ߜଵݕଵݔݎ2

ܭ
 ܽ݁ି௫

כ
ଵݕଶݔሺെߜ െ ଶݕଵݔ  ሻכݕଵݕଵݔܽ

,ݔଶሺܤ ሻݕ ൌ   

ଶ

,ୀଵ

,ߦଶሺܨଶߜ ሻߜ
ߦߜߦߜ

ቤ
కୀ

ݕݔ ൌ െܽ݁ି௫
כ
ଵݕଶݔሺെߜ െ ଶݕଵݔ  ,ሻכݕଵݕଵݔܽ

 

,ݔଵሺܥ ,ݕ ሻݑ ൌ ∑  ଶ
,,ୀଵ

ఋమிభሺక,ఋሻ

ఋకೕఋకೖఋక
ฬ
కୀ

ݑݕݔ ൌ െܽଶ݁ି௫
כ
ଵݕଵݔଶݑሺെߜ െ ଵݕଶݔଵሺݑ  ଶݕଵሺݔ െ  ,ሻሻሻכݕଵݕܽ

,ݔଶሺܥ ,ݕ ሻݑ ൌ   

ଶ

,,ୀଵ

,ߦଶሺܨଶߜ ሻߜ
ߦߜߦߜߦߜ

ቤ
కୀ

ݑݕݔ ൌ ܽଶ݁ି௫
כ
ଵݕଵݔଶݑሺെߜ െ ଵݕଶݔଵሺݑ  ଶݕଵሺݔ െ  ,ሻሻሻכݕଵݕܽ

and ߜ ൌ   .ிߜ

Let , ݍ א Թଶ  be two eigenvectors of ܣ  for eigenvalue ߣଵሺߜிሻ ൌ െ1  such that ܣሺߜிሻݍ ൌ െݍ and 

ிሻߜሺ்ܣ ൌ െ. Then by direct calculation we get  

൫2~ݍ  ிߜ െ ிߜ݀ െ ݁ି௫
כ
,ிߜ െܽ݁ି௫

כ
൯כݕிߜ

்
, 

൫2~  ிߜ െ ிߜ݀ െ ݁ି௫
כ
,ிߜ ൫1 െ ݁ି௫

כ
൯ߜி൯

்
.  

We use the standard scalar product in Թଶ defined by ۃ, ۄݍ ൌ ଵݍଵ  , ଶ, to normalizeݍଶ  such that ݍ

,ۃ ۄݍ ൌ 1. To do, we set  ൌ F൫2ߛ  ிߜ െ ிߜ݀ െ ݁ି௫
כ
,ிߜ ൫1 െ ݁ି௫

כ
൯ߜி൯

்
, where  

Fߛ ൌ
1

ሺ2  ிߜ െ ிߜ݀ െ ݁ି௫ߜכிሻଶ െ ܽ݁ି௫ߜכி
ଶכݕሺ1 െ ݁ି௫כሻ

. 

 

The direction of the flip bifurcation is obtained by the sign ݈ଵሺߜிሻ, the coefficient of critical normal form 

(Kuzenetsov, 1998) and is given by 

݈ଵሺߜிሻ ൌ
ଵ


,ۃ ,ݍሺܥ ,ݍ ۄሻݍ െ

ଵ

ଶ
,ۃ ,ݍሺܤ ሺܣ െ ,ݍሺܤሻିଵܫ  (10)      ۄሻሻݍ

We state the following result on direction and stability of flip bifurcation according to above analysis. 

 

Theorem 3.1 If (7) holds, ݈ଵሺߜிሻ ് 0 and the parameter ߜ changes its value around ߜி, then system (3) 

undergoes a flip bifurcation at positive fixed point ܧଶሺכݔ,  ሻ. Moreover, the period-2 orbits that bifurcateכݕ

from ܧଶሺכݔ, ிሻߜሻ are stable (resp., unstable) if ݈ଵሺכݕ  0 (resp., ݈ଵሺߜிሻ ൏ 0).  
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3.2 Neimark-Sacker bifurcation 

Next, we consider system (3) at fixed point ܧଶሺכݔ, ,ݎሻ with arbitrary ሺכݕ ,ܭ ܽ, ݀, ሻߜ א  ாమ. From equationܤܵܰ

(6), the eigenvalues are given by  

,ߣ ҧߣ ൌ
െሺߜሻ േ ඥሺߜሻଶ െ ሻߜሺݍ4

2
. 

Since the parameters belong to ܰܵܤாమ, so the eigenvalues will be complex and ߣ, ҧߣ ൌ 1 
ఋ

ଶ
േ

ఋ

ଶ
√4Ω െ Δଶ. 

Let ߜ ൌ ேௌߜ ൌ െ


Ω
          (11) 

Therefore, we have|ߣ| ൌ ඥݍሺߜሻ,    ݍሺߜேௌሻ ൌ 1. 

From the transversality condition, we get  

ௗ|ఒሺఋሻ|

ௗఋ
ቚ
ఋୀఋಿೄ

ൌ െ


ଶ
് 0          (12) 

Moreover, nondegenerate condition ሺߜேௌሻ ് 0,1, obviously satisfies 

మ

Ω
് 2,3           (13) 

and we have 

 

ேௌሻߜሺߣ ് 1    for  ݇ ൌ 1,2,3,4         (14) 

 

Suppose ݍ,  א ԧଶ are two eigenvectors of ܣሺߜேௌሻ and ்ܣሺߜேௌሻ for eigenvalues ߣሺߜேௌሻ and ߣҧሺߜேௌሻ 

such that  

ݍேௌሻߜሺܣ ൌ തݍேௌሻߜሺܣ      ,ݍேௌሻߜሺߣ ൌ  തݍேௌሻߜҧሺߣ

and 

ேௌሻߜሺ்ܣ ൌ ҧேௌሻߜሺ்ܣ      ,ேௌሻߜҧሺߣ ൌ  .ҧேௌሻߜሺߣ

 

Then by direct computation we obtain  

൫1~ݍ  ேௌߜ െ ேௌߜ݀ െ ݁ି௫
כ
ேௌߜ െ െܽ݁ି௫,ߣ

כ
൯כݕேௌߜ

்
, 

൫1~  ேௌߜ െ ேௌߜ݀ െ ݁ି௫
כ
ேௌߜ െ ,ҧߣ ൫1 െ ݁ି௫

כ
൯ߜேௌ൯

்
. 

For normalization of vectors  and ݍ, we set  ൌ NS൫1ߛ  ேௌߜ െ ேௌߜ݀ െ ݁ି௫
כ
ேௌߜ െ ,ҧߣ ൫1 െ ݁ି௫

כ
൯ߜேௌ൯

்
, 

where ߛNS ൌ
ଵ

൫ଵାఋಿೄିௗఋಿೄିషೌೣ
ఋಿೄିఒഥ൯כ

మ
ିషೌೣכఋಿೄ

మ ௬כ൫ଵିషೌೣכ൯
. 

 

Then it is clear that ۃ, ۄݍ ൌ 1 where ۃ, ۄݍ ൌ ଶݍҧଵ  , ଵ forݍҧଶ ݍ א ԧଶ.  Now, we decompose 

vector ܺ א Թଶas ܺ ൌ ݍݖ  ݖ ேௌ andߜ close to ߜ ത, forݍҧݖ א ԧ. Obviously, ݖ ൌ ,ۃ  Thus, we obtain the .ۄܺ

following transformed form of system (8) for |ߜ| near ߜேௌ:  

ݖ հ ݖሻߜሺߣ  ݃ሺݖ, ,ҧݖ  ,ሻߜ

whereߣሺߜሻ ൌ ሺ1  ߮ሺߜሻሻ݁ఏሺఋሻ  with ߮ሺߜேௌሻ ൌ 0  and ݃ሺݖ, ,ҧݖ ሻߜ  is a smooth complex-valued function. 
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After Taylor expression of ݃ with respect to ሺݖ,   ҧሻ, we obtainݖ

݃ሺݖ, ,ҧݖ ሻߜ ൌ   
ାஹଶ

1
݇! ݈!

݃ሺߜሻݖݖҧ,    with    ݃ א ԧ, ݇, ݈ ൌ  .ڮ,0,1

According to multilinear symmetric vector functions, the coefficients ݃ are  

݃ଶሺߜேௌሻ ൌ ,ۃ ,ݍሺܤ ேௌሻߜଵଵሺ݃    ,ۄሻݍ ൌ ,ۃ ,ݍሺܤ  ۄതሻݍ

݃ଶሺߜேௌሻ ൌ ,ۃ ,തݍሺܤ ேௌሻߜଶଵሺ݃    ,ۄതሻݍ ൌ ,ۃ ,ݍሺܥ ,ݍ  ,ۄതሻݍ

The invariant closed curve appear in the direction which is determined by the coefficient ݈ଶሺߜேௌሻ and 

calculated via 

݈ଶሺߜேௌሻ ൌ R݁ ቆ
݁ିఏሺఋಿೄሻ݃ଶଵ

2
ቇ െ R݁ ቆ

ሺ1 െ 2݁ఏሺఋಿೄሻሻ݁ିଶఏሺఋಿೄሻ

2ሺ1 െ ݁ఏሺఋಿೄሻሻ
݃ଶ݃ଵଵቇ െ

1
2
|݃ଵଵ|ଶ െ

1
4
|݃ଶ|ଶ, 

where ݁ఏሺఋಿೄሻ ൌ   .ேௌሻߜሺߣ

 

Summarizing above analysis, we present the following theorem for direction and stability of Neimark-Sacker 

bifurcation. 

 

Theorem 3.2 If (13) holds, ݈ଶሺߜேௌሻ ് 0 and the parameter ߜ changes its value in small vicinity of ܰܵܤாమ, 

then system (3) passes through a Neimark-Sacker bifurcation at positive fixed point ܧଶ . Moreover, if 

݈ଶሺߜேௌሻ ൏ 0 (resp., 0), then there exists a unique attracting (resp., repelling) invariant closed curve 

bifurcates from ܧଶ.  

 

4 Numerical Simulations 

Here, bifurcation diagrams, phase portraits, maximum Lyapunov exponents and fractal dimension of system (3) 

will be drawn to validate our theoretical results using numerical simulation. We assume that ߜ is a bifurcation 

parameter unless stated. We consider different set of parameter values in the following examples for 

bifurcation analysis. 

 

Example 1: Flip bifurcation of system (3) with respect to bifurcation parameter ߜ 

We fix the parameters ݎ ൌ 0.85, ܭ ൌ 0.3, ܽ ൌ 0.5, ݀ ൌ 0.1  and varying ߜ  in range 3.5  ߜ  4.1 . By 

calculation, we find that the fixed point system (3) is ܧଶሺ0.210721,0.533034ሻ, and the critical point for flip 

bifurcationa is ߜ ൌ ଵߣ ி~3.70721. At the critical bifurcation point, the two eigenvalues areߜ ൌ െ1, ଶߣ ൌ

0.835172, ܽሺߜிሻ ൌ 94.4515 and ሺݎ, ,ܭ ܽ, d, ሻߜ א ாమܤܨ
ଵ . This verifies Theorem 3.1. 

According to bifurcation diagrams shown in Fig. 1(a-b), we see that stability of fixed point ܧଶ happens 

for ߜ ൏ ߜ ி, loses its stability atߜ ൌ ߜ ி and a period doubling phenomena lead to chaos forߜ   ி. Theߜ

maximum Lyapunov exponents and fractal dimension related to Fig. 1(a-b) are computed and shown in Fig. 

1(c-d). We observe that the period -2,-4, -8, -16 orbits occur for ߜ א ሾ3.5,4.022ሿ, chaotic set for ߜ א

ሾ4.022,4.1ሿ. As determined by the maximum Lyapunov exponent, the status of stable, periodic or chaotic 

dynamics are compatible with sign in Fig. 1(c-d). The phase portraits of bifurcation diagrams in Fig. 2(a-b) for 

different values of ߜ are displayed in Fig. 2. 
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 (a)                                      (b) 

 

 (c)                                    (d) 

Fig. 1 Flip bifurcation and Lyapunov exponent of system (2). (a) bifurcation for prey, (b) bifurcation for predator, (c) maximum 

Lyapunov exponents related to (a-b), (d) Fractal dimension corresponding to (a). Initial value ሺݔ, ሻݕ ൌ ሺ0.21,0.533ሻ. 

 

Example 2: Neimark-Sacker bifurcation of system (3) with respect to bifurcation parameter ߜ 

We fix the parameters ݎ ൌ 1.0, ܭ ൌ 1.1, ܽ ൌ 0.5, ݀ ൌ 0.2 and varying ߜ in range 3.0  ߜ  4.015. After 

calculation, we observe that a NS bifurcation appears at fixed point ܧଶሺ0.446287,1.32611ሻ  for ߜ ൌ

,ߣ ேௌ~3.22253. Also, we haveߜ ҧߣ ൌ 0.44914965 േ  0.893457݅,  

݃ଶ ൌ െ0.8287361517048926  0.9850459369054674݅, 

݃ଵଵ ൌ 0.9854786934961157 െ 2.334550290566222݅, 

݃ଶ ൌ 2.0014289480044947  3.7805618158725003݅,  

݃ଶଵ െ 1.1973007849269635 െ 0.3720620335464684݅,  

ܽሺߜேௌሻ ൌ െ8.120394164511106 

and ሺݎ, ,ܭ ܽ, ݀, ሻߜ א  .ாమ. This verifies Theorem 3.2ܤܵܰ

 

 

53



Network Biology, 2020, 10(2): 45-61 

 IAEES                                                                                     www.iaees.org

 

 

 

Fig. 2 Phase portraits (ݕݔ-plane) of bifurcation diagrams Fig. 1(a-b) for different values of ߜ. 

 

The bifurcation diagrams shown in Fig. 3(a-b) demonstrate that stability of ܧଶ happens for ߜ ൏  ேௌ, losesߜ

its stability at ߜ ൌ ேௌߜ  and an attracting invariant curve appears ifߜ  ேௌߜ . We dispose the maximum 

Lyapunov exponents in Fig. 3(c) relating bifurcation in Fig. 3(a-b), which confirm the existences of chaos and 

period window as parameter ߜ varying. When 4.12~ߜ, the sign of maximum Lyapunov exponent confirming 

presence of chaos. Fig. 3(d) is local amplification of Fig. 3(a) for ߜ א ሾ3.66,4.06ሿ. 

The phase portraits of bifurcation diagrams in Fig. 3(a-b) for different values of ߜ are displayed in Fig. 4, 

which clearly illustrates the act of smooth invariant curve how it bifurcates from the stable fixed point and 

increases its radius. As ߜ grows, disappearance of closed curve occurs suddenly and a period -5, -10, -15, -20, 

and period -40 orbits appear at 4.092~ߜ ,3.96~ߜ ,3.85~ߜ,  respectively. We also see 4.05~ߜ and ,4.02~ߜ

that a fully developed chaos in system (2) occurs at 4.15~ߜ. 

 

 
   (a)                                      (b) 
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Fig. 4 Phase portraits (ݕݔ-plane) of bifurcation diagrams Fig. 3(a-b) for different values of ߜ. 

 

 

Example 3: Neimark-Sacker bifurcation of system (3) with respect to bifurcation parameter ܽ 

With the variation of other parameter values (e.g., parameter ܽ), the predator-prey system may exhibit richer 

dynamical behaviors in the Neimark-Sacker bifurcation diagram. When we set the parameter values as given in 

Example 2 with ߜ ൌ 3.22253, and varying ܽ in range 0.4  ܽ  0.67, a new Neimark-Sacker bifurcation 

diagram is obtained as disposed in Fig. 5(a-b). The system undergoes a Neimark-Sacker bifurcation at 

ܽ ൌ ܽேௌ~0.5. Similar nonlinear characteristics to Figures 3 and 4 are found in this case, such as route to chaos, 

invariant curves, chaotic attractors, and periodic windows. The maximum Lyapunov exponent corresponding 

to Fig. 5(a-b) is computed and plotted in Fig. 5(c), which confirm the existences of chaos and period window 

as parameter ܽ varying. We observe from Fig. 5(a-b) that stability of system (3) happens for ܽ ൏ ܽேௌ, loses 

its stability at ܽ ൌ ܽேௌ and an attracting invariant curve appears if ܽ  ܽேௌ. Also, on the route to chaos, 

periodic windows with period -6, -10, -12, -18, and period -24 orbits and attracting chaotic sets are found. On 

each branch, the predator-prey system (3) undergoes a sub-Neimark-Sacker bifurcation, flip bifurcation and 

periodic window with the increase of ܽ value. 

 

 
    (a)                                     (b) 
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  (c)                                  (d) 

Fig. 5 NS bifurcation and Lyapunov exponent of system (2). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c) 

maximum Lyapunov exponents related to (a-b), (d) Fractal dimension associated with (a). Initial value ሺݔ, ሻݕ ൌ ሺ0.44,1.32ሻ. 

 

Example 4: Maximum Lyapunov exponents for two control parameters ߜ and ܽ 

The dynamic complexity of system (3) can be observed when more parameters vary. We fix the parameters 

ݎ ൌ 1.0, ܭ ൌ 1.1, ݀ ൌ 0.2 and varying ߜ in range 3.0  ߜ  4.1, and ܽ in range 0.44  ܽ  0.64. The 

sign of maximum Lyapunov exponents quantifies the existence of chaos in system (3). The 2D projection of 

3D maximum Lyapunov exponents for two control parameters onto ሺߜ, ܽሻ plane is plotted in Fig. 6. It is easy 

to find values of control parameters for which the dynamics of system (3) is in status of non-chaotic, periodic 

or chaotic. For instance, there is a chaotic dynamics for ߜ ൌ 4.1, ܽ ൌ 0.5, and the non-chaotic dynamics for 

ߜ ൌ 3.85, ܽ ൌ 0.5 (see Fig. 4), which are compatible with the signs of maximum Lyapunov exponents in Fig. 

6. As shown in Fig. 6, we observe that the increases values of control parameters ߜ and ܽ, the dynamics of 

system (3) changes from chaotic to non-chaotic status. Moreover, we find that the predator-prey system 

experiences flip bifurcation and Neimark- Sacker bifurcation simultaneously.  

The measure of fractal dimensions characterizes the strange attractors of a system. By using Lyapunov 

exponents, the fractal dimension (Cartwright, 1999; Kaplan and Yorke, 1979) is defined by 

݀ ൌ ݆ 
∑  
ୀଵ ݄
| ݄|

 

where݄ଵ, ݄ଶ, . . . , ݄  are Lyapunov exponents and ݆  is the largest integer such that ∑  
ୀଵ ݄  0  and 

∑  ାଵ
ୀଵ ݄ ൏ 0. 

For our two-dimensional system (3), the fractal dimension takes the form  

݀ ൌ 1 
భ
|మ|

,    ݄ଵ  0  ݄ଶ and ݄ଵ  ݄ଶ ൏ 0. 

With parameter values as in Example 2, the fractal dimension of system (3) is plotted in Fig. 3(e). The strange 

attractors given in Fig. 4 and its corresponding fractal dimension illustrate that the increase values of parameter 

 .causes a chaotic dynamics for the predator-prey system (3) ߜ
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Fig. 6 Diagnostic of system (2) for control parameters ߜ and ܽ. The 2D projection of 3D maximum Lyapunov exponents onto 

ሺߜ, ܽሻ plane. 

 

5 Chaos Control 

To stabilize chaos at the state of unstable trajectories of system (3), a state feedback control method (Elaydi, 

1996) is applied. By adding a feedback control law as the control force ݑ to system (3), the controlled form 

of system (3) becomes 

ାଵݔ ൌ ݔ  ߜ ቂݔݎ ቀ1 െ
௫

ቁ െ ሺ1  െ ݁ି௫ሻݕቃ  ݑ

ାଵݕ ൌ ݕ   ሾሺ1ߜ െ ݁ି௫ሻݕ െ ሿݕ݀
     (15) 

and 

ݑ ൌ െ݇ଵሺݔ െ ሻכݔ െ ݇ଶሺݕ െ  ሻכݕ

where the feedback gains are denoted by ݇ଵand  ݇ଶ and ሺכݔ,  .ሻ represent positive fixed point of system (3)כݕ

 

 

(a) 
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           (b)                                         (c) 

Fig. 7 Control of chaotic trajectories of system (17). (a) Stability region in ሺ݇ଵ, ݇ଶሻ plane (b-c) Time series for states ݔ and ݕ 

respectively. 

 

 

The Jacobian matrix ܬ of the controlled system (15) is given by 

,כݔሺܬ ሻכݕ ൌ ൬
݆ଵଵ െ ݇ଵ ݆ଵଶ െ ݇ଶ
݆ଶଵ ݆ଶଶ

൰        (16) 

 

where ݆, , ݍ ൌ 1,2 given in (5) are evaluated at ሺכݔ,  ሻ. The characteristic equation of (16) isכݕ

 

ଶߣ െ ሺܬݎݐሻߣ  ܬݐ݁݀ ൌ 0         (17) 

where ܬݎݐ ൌ ݆ଵଵ  ݆ଶଶ െ ݇ଵ and ݀݁ܬݐ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ. Let ߣଵ  and  ߣଶ be the roots of (17). 

Then 

ଵߣ  ଶߣ ൌ ݆ଵଵ  ݆ଶଶ െ ݇ଵ         (18) 

and 

ଶߣଵߣ ൌ ݆ଶଶሺ݆ଵଵ െ ݇ଵሻ െ ݆ଶଵሺ݆ଵଶ െ ݇ଶሻ        (19) 

 

The solution of the equations ߣଵ ൌ േ1  and  ߣଵߣଶ ൌ 1 determines the lines of marginal stability. These 

conditions confirm that |ߣଵ,ଶ| ൏ 1. Suppose that ߣଵߣଶ ൌ 1, then from (19) we have  

݈ଵ: ݆ଶଶ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ െ 1. 

Assume that ߣଵ ൌ 1, then from (18) and (19) we get  

݈ଶ: ሺ1 െ ݆ଶଶሻ݇ଵ  ݆ଶଵ݇ଶ ൌ ݆ଵଵ  ݆ଶଶ െ 1 െ ݆ଵଵ݆ଶଶ  ݆ଵଶܽଶଵ. 

Next, assume that ߣଵ ൌ െ1, then from (18) and (19) we obtain  

݈ଷ: ሺ1  ݆ଶଶሻ݇ଵ െ ݆ଶଵ݇ଶ ൌ ݆ଵଵ  ݆ଶଶ  1  ݆ଵଵ݆ଶଶ െ ݆ଵଶ݆ଶଵ. 

 

Then the lines ݈ଵ, ݈ଶ, and  ݈ଷ (see Fig. 7(a)) in the ሺ݇ଵ, ݇ଶሻ plane determine a triangular region which keeps 

eigenvalues with magnitude less than 1. 

In order to check how the implementation of feedback control method works and controls chaos at unstable 

state, we have performed numerical simulations. Parameter values are fixed as ߜ ൌ 4.12 and rest as in 
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Example 2. The initial value is ሺݔ, ሻݕ ൌ ሺ0.44,1.32ሻ, and the feedback gains are ݇ଵ ൌ 0.5  and  ݇ଶ ൌ 0.032. 

Figures 7(b) and 7(c) show that at the fixed point ሺ0.210721,0.533034ሻ, the chaotic trajectory is stabilized.  

 

6 Discussion 

This work is concerned with the dynamics of a discrete-time predator-prey system with Ivlev functional 

response in the closed first quadrant Թା
ଶ . We prove via center manifold theorem and bifurcation theory, the 

system (3) can undergo a bifurcation (flip or NS) at unique positive fixed point if ߜ varies around the sets 

ாమܤܨ
ଵ  or ܤܨாమ

ଶ  and ܰܵܤாమ. Based on Figures, we notice that the small integral step size ߜ can stabilize the 

dynamical system (3), but the large integral step size may destabilize the system producing more complex 

dynamical behaviors. Numerical simulations present unpredictable behaviors of the system through a flip 

bifurcation which include orbits of period-2, -4, -8, -16 orbits and through a NS bifurcation which include an 

invariant cycle, orbits of period-5, -6, -10, -12, -15, -18, -20, -24, and period-40 orbits and chaotic sets 

respectively. These indicate that at the state of chaos, the system is unstable and particularly, the predator goes 

to extinct or goes to a stable fixed point when the dynamic of prey is chaotic. We confirm about the existence 

of chaos through the computation of maximum Lyapunov exponents and fractal dimension. In addition, we see 

that the appropriate choice of parameter ܽcan stabilize the dynamical system (3). The two bifurcations cause 

the system to jump from steady state to chaotic dynamical behavior via periodic and quasi-periodic states and 

trigger routes to chaos; that is, chaotic dynamics appear or disappear along with the emergence of bifurcations. 

Moreover, system (3) exhibits very rich nonlinear dynamical behaviors by the variation of two control 

parameters and one can directly observe from the two-dimensional parameter-spaces when the system 

dynamics will be periodic, quasi-periodic and chaotic. We observe that the increases values of control 

parameters ߜ and ܽ, can destabilize the dynamical system (3) producing more complex dynamical behaviors, 

but the small values may stabilize the system. Finally, the chaotic trajectories at unstable state are controlled 

by implementing the strategy of feedback control. However, it is still a challenging problem to explore 

multiple parameter bifurcation in the system. We expect to obtain some more analytical results on this issue in 

the future.   
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