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Abstract 

This paper attempts to set the stage for a prospective interplay between ecology and reliability theory 

concerning the common issue of the concept of a capacitated or flow network. The paper treats the problem of 

species survivability, which pertains to the ability of a specific species to avoid local extinction by migrating 

from a critical habitat patch to more suitable destination habitat patches via perfect stepping stones and 

heterogeneous imperfect corridors. The paper proposes various types of techniques for analyzing a capacitated 

ecological network for the process of migration in a metapopulation landscape network that arises when paths 

to destination habitat patches share common corridors. These techniques include (a) Karnaugh maps, which are 

crucial in providing not only the visual insight necessary to write better future software but also constitute an 

adequate means of verifying such software and, (b) a generalization of the max-flow min-cut theorem that is 

applicable through the identification of minimal cut-sets and minimal paths in the ecological flow network. 

Care is taken to ensure that the reliability expressions obtained are as compact as possible and to check them 

for correctness. The ecological network capacity is a random pseudo-Boolean (-switching) function of the 

corridor successes; and hence, its expected value is easily obtainable from its sum-of-products formula. This 

network capacity has obvious benefits in the representation of nonbinary discrete random functions, which 

commonly arise during the analysis of flow networks. A tutorial example demonstrates these methods and 

illustrates their computational merits with ample details. 

 

Keywords capacitated networks; map method; max-flow min-cut theorem; pseudo-switching function; habitat 

patch; ecological corridor; species migration; species survivability. 

 

 

 

 

 

1 Introduction 

System reliability analysis is a notable field of study within reliability engineering dealing with expressing the 

reliability of a system in terms of the reliabilities of its constituent components. The field encompasses several 

important issues more than its name suggests. It pertains not only to system analysis as such, but also to system 

Network Biology     
ISSN 2220­8879   
URL: http://www.iaees.org/publications/journals/nb/online­version.asp 
RSS: http://www.iaees.org/publications/journals/nb/rss.xml 
E­mail: networkbiology@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 
 



Network Biology, 2021, 11(1): 1-28 

 
IAEES                                                                                     www.iaees.org  

design and optimization, quantification of uncertainty, selection of most important components and optimal 

allocation of redundancy. 

Ecosystem reliability analysis might be described as an advanced application of probability theory. It is 

basically based on the algebra of events (a version of set algebra), which is isomorphic to the bivalent or 

2-valued Boolean algebra (switching algebra) (Crama and Hammer, 2011; Mano, 2017; Nabulsi et al., 2017). 

Instead of using the algebra of events, modern system reliability analysis utilizes switching algebra by 

employing the indicator variables for probabilistic events instead of the events themselves. Though most 

ecological studies merely consider ecological connectivity, this paper deals with the more advanced concept of 

ecological network capacity which represents the number of individual organisms of a migratory wildlife 

species flowing through certain ecological corridors. This network capacity is a pseudo-Boolean (-switching) 

function of the corridor successes (Hammer and Rudeanu, 2012; Rushdi, 1987b; 1987c, 1988, 1989, 1990); 

thus, its mean value is easily obtainable from its sum-of-products formula (Rushdi, 1988). This network 

capacity has obvious benefits in representation of nonbinary discrete random functions, which commonly arise 

in the analysis of flow networks. 

We consider a network of habitat patches, stepping stones and corridors. Long-term survival is possible 

only in habitats or habitat patches, while corridors and stepping stones can only help migration by supporting 

short-term survival. We assume that one of the habitat patches (identified as a critical habitat patch) is strongly 

disturbed, where survival becomes impossible and the local population has to emigrate to other habitat patches. 

Other habitat patches and stepping stones are available for migration from the critical habitat patch, if they are 

connected to this patch by ecological corridors.  

Ecosystem reliability analysis often assumes that the system under study is represented by a probabilistic 

graph in a two-state model, and the ecological system operates successfully if there exists at least one 

successful path from a critical habitat patch to more suitable destination habitat patches. According to this 

point of view, reliability is considered, in fact, as a matter of connectivity only, and hence it does not seem to 

reasonably reflect the nature or capture the essence of most real-life ecological systems. In fact, connectivity 

measures implicitly assume unrealistically that a perfect corridor allows the passage of an unlimited or infinite 

number of individual organisms of the migrating species.  

Many physical systems such as ecological systems and transportation systems which play important roles 

in our modern society can be regarded, in fact, as capacitated-flow networks whose capacities of arcs are 

independent, limited, and real-valued random variables. These networks are usually modeled by a stochastic 

graph ܩ ؠ ሺܸ ,  ሻ (where V and E are the sets of vertices (nodes) and edges (branches) of G) on which a setܧ

 ܭ ك ܸ is distinguished (Politof and Satyanarayana, 1986). A very important special case arises when the set 

 In the landscape .(ݐ) and a terminal node (ݏ) is an ordered set of just two nodes, namely a source node ܭ

graph, vertices (nodes) represent habitat patches and stepping stones, while edges (branches) represent 

corridors.  

   There are two main parameters that are generally used to quantify the performance of ecological network. 

These are:  

(a) Ecological network reliability which is simply a measure of probabilistic connectivity since it equals the 

probability that certain connections on directed or undirected general or special graphs, with dependent or 

independent components (patches such as habitats and stepping stones or corridors) exist in G among the 

nodes (patches) in K (and from ݏ to ݐ in the particular ݐݏ case which represent in the landscape graph from 

a critical habitat patch to destination habitat patches via stepping stones and imperfect heterogeneous 

corridors).There are two extreme situations, namely (I) the afore-mentioned ݐݏ case when K contains only 
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two nodes (patches), the source s and the destination t, or (II) when ܭ contains all nodes (patches) of the 

graph for which (K =V), typically depicted as the overall reliability case (Rushdi, 1984).  The capacity 

limitations of the various links (corridors) and the overall flow requirements of the network are generally 

ignored. 

(b) Network s-t capacity which equals the maximum flow that can be passed from a source node (critical patch) 

to a terminal node (destination patch) so that no branch capacity is violated, and under the assumption that all 

branches (corridors) are working (Ford and Fulkerson, 2009; 2015; Tanenbaum, 2003; Tucker, 2012; Madry, 

2016; Williamson, 2019; Riis and Gadouleau, 2019). The failure probabilities of the communication links 

(corridors) as well as the nodes (patches) are implicitly ignored. 

Researchers (Aggarwal, 1985; Trstensky and Bowron, 1984; Rushdi, 1988; Ramírez and Gebre, 2007; Yeh, 

2002; Patra and Misra, 1996; Fusheng, 2009; El and Yeh, 2016; Kabadurmus and Smith, 2017; Cancela et al., 

2019; Rushdi and Alsalami, 2020a, 2020b) have suggested methods to define a composite performance index 

for a network that integrates the important measures of connectivity and capacity. Moreover, there are some 

papers that attempted to utilize the concept of flow networks in ecology (Phillips et al., 2008; Zhang and Wu, 

2013; Haruna, 2013; Taylor et al., 2016). The main thrust of all these methods is the observation that, while 

the connectivity between the source and the sink nodes is a necessary condition for successful operation of a 

communication network, it is not a sufficient condition. The success of the s-t connection should also ensure 

the availability of the required s-t capacity. Success in the ecological sense does not necessarily mean the 

single source-to-terminal successes, but it generally means the ORing of several source-to-terminal successes 

(Rushdi and Hassan, 2015, 2016a, 2016b, 2020). It is quite similar to broadcasting success, which is the 

ANDing of such source-to-terminal successes (Rushdi and Hassan, 2016a). 

To set some foundation for future interaction between the generalized reliability concepts of flow networks 

and ecological networks, this paper presents a tutorial exposition of the various methods for analyzing 

capacitated networks as applied to ecology. 

The first method is a map procedure that results in simple symbolic expressions for the performance 

indexes. However, this technique can only be applied manually to small or moderate networks (Rushdi and 

Ghaleb, 2015; Rushdi and Badawi, 2017a, 2017b; Rushdi and Ba-Rukab, 2017a; Rushdi, 1988, 2018a; Rushdi 

and Rushdi, 2018; Rushdi and Alsalami, 2020a, 2020b). 

A second method generalizes the “Max-Flow Min-Cut Theorem” (Ford and Fulkerson, 2009, 2015; 

Tanenbaum, 2003; Tucker, 2012; Madry, 2016; Zhang, 2018a, 2018b; Williamson, 2019; Riis and Gadouleau, 

2019; Rushdi and Alsalami, 2020b) for network states X other than the ideal state (X = 1). This technique is 

very fast when the network minimal cutsets (Rushdi, 1983a; Zhang, 2016), and possibly its minimal paths 

(Rushdi, 1983a) are known. 

We have a fresh look at a problem that was earlier considered by Rushdi and Hassan (2016a) concerning 

species survivability(called survival reliability therein) which is the probability of successful migration of a 

specific species from a critical habitat patch to one or more destination habitat patches via imperfect 

heterogeneous corridors. We add an element of capacity to the aforementioned problem. Our exposition is not 

only a review of existing reliability techniques in an ecology setting, but it also introduces and evaluates a new 

reliability measure of capacitated or flow network when the ecological network has several destination habitat 

patches that share some edges (corridors) in common.  

The paper will be of a significant impact if it succeeds in triggering some ecologists to reformulate some of 

their flow network problems in a network-reliability context, and then to challenge reliability experts to apply 

their advanced tools to these problems. Beneficial mutual interaction would arise between ecology and reliability 
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fields, and an interdisciplinary sub-field might emerge. This paper might be thought of as equal of a series of 

works along the same paradigm (Rushdi and Hassan, 2015, 2016a, 2016b, 2020). 

The organization of the rest of this paper is as follows. Section 2 presents the underlying assumptions for 

our model, the notation used as well as some useful nomenclature in the ecology and reliability domains. 

Section 3 reviews the concept of the algebraic decomposition formula which serves as the most fundamental 

theorem for a pseudo-switching function that is used to obtain the general capacity function and its mean for 

the ecological network. Section 4 shows how the Karnaugh map is conveniently used to represent a 

pseudo-switching function for the ecological network. Section 5 presents one of the crucial and old techniques 

in capacitated or flow networks which is the “Max-Flow Min-Cut Theorem”. We identify the required minimal 

cut-sets and minimal paths in the ecological flow networks. Moreover, we verify equivalence of the results 

between the two afore-mentioned methods. Section 6 concludes the paper. 

 

2 Assumptions, Notation, and Nomenclature 

2.1 Assumptions 

1. The ecological network considered is modeled as a linear graph consisting of (a) links(corridors) of 

imperfect reliabilities and limited capacities and (b) nodes (destination habitat patches and stepping 

stones) which are perfectly reliable (not susceptible to failure) and have unconstrained capacities. 

2. The analysis concerns one particular species, henceforth called the pertinent or concerned species. The 

analysis does not take into account any characteristic of the species. This limitation of the current 

paper as species-specific is a general one in most (essentially all) ecological studies. 

3. The pertinent species is in danger of local extinction in a certain habitat patch called the critical 

habitat patch. It escapes such extinction by migrating to a new habitat patch (one out of a few 

destination habitat patches) through imperfect heterogeneous corridors and perfect stepping stones.  

4. Each of the corridors in the ecological network is in one of two states, either good (permeable) or 

failed (deleted or destroyed). Corridor successes are statistically independent. This assumption does 

not extend to ‘equivalent' corridor to be introduced in the network, which can be of multistate 

natures and statistically dependent. 

5. The migration system is also in one of two states, either successful or unsuccessful.  

6. Certain values are assigned to each corridor ሺ݅ , ݆ሻ for its reliability ݌௜௝ and capacity ܿ௜௝, where 

0 ൑ ௜௝݌  ൑ 1 , ܿ௜௝ ൒ 0. The corridor capacity sets an upper bound on the flow of the pertinent 

species through the corridor in either direction. 

2.2 Notation 

݊ Number of ecological corridors in the logic diagram of the network, ݊ ൒ 0. 

௜ܺ Success of corridor ݅ = indicator that the concerned species successfully migrates through corridor ݅ = a 

switching random variable that takes only one of the two discrete values 0 and 1; ( ௜ܺ ൌ 1 if corridor ݅ 

is permeable, while ௜ܺ ൌ 0 if corridor ݅ is failed).  

ܺ௜ Failure or deletion of corridor ݅ = indicator variable for unsuccessful migration of the pertinent species 

through ݅ , where ܺ௜ ൌ 0 if corridor ݅ is good, while ܺ௜ ൌ 1 if corridor ݅ is deleted/destroyed. 

The success ௜ܺ and the failure ܺ௜are complementary variables.   

,ࢄ ,࢖ ࢄ  :N-dimensional vectors of corridor ݅ successes, reliabilities and capacities ࢉ ൌ ሺ ଵܺܺଶ …ܺ௡ሻ்; ࢖  ൌ

ሺ݌ଵ݌ଶ ; ௡ሻ்݌…  ࢉ  ؠ ሺܿଵܿଶ … ܿ௡ሻ். 
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ܵሺࢄሻ Indicator variable for the successful operation of the system (successful migration of the pertinent 

species), called system success. Successful operation can be equivalent to mere connectivity, or to the 

satisfaction of a certain flow requirement (Aggarwal, 1985; Rushdi, 1983a; Lee, 1980). 

…ሾܧ ሿ Expectation of the random variable [. . .]. 

,௜݌ ௜݌ : ௜ Reliability   and   unreliability   of   corridor݅ݍ ؠ Prሼ ௜ܺ ൌ 1 ሽ , ௜ݍ ؠ Pr൛ܺ௜ ൌ 1ൟ ൌ 1 െ
 .௜ . Both pi and qi are real values in the closed real interval [0.0,1.0]݌

ܴ,ܷ Network reliability and unreliability; 

ܴ ൌ PrሼSሺ܆ሻ ൌ 1ሽ ൌ , ሻሽ܆ሼSሺܧ ܷ ൌ Pr൛ܵ  ൌ 1ൟ ൌ 1.0 െ  ܴ, 0.0 ൑ ܴ , ܷ ൑ 1.0 . 

ܿ௜ Flow capacity of corridor݅ ; ܿ௜ ൒ 0 . 

݇  ,௞ State k of the ecological network, denoted by a particular value of the n-dimensional vector Xࢄ ൌ

 0,1,2, … , 2௡ െ 1 . 

,ሻ Capacity function of ሺ݅ࢄ௜௝ሺܥ ݆ሻ which is the maximum flow interconnection from ݅ to ݆ in state ࢄ that 

does not violate branch capacities, ܥ௜௝ሺࢄሻ ൒ 0. For an original ሺ݅, ݆ሻ ׷    ௜௝ܥ ൌ ܿ௜௝ ௜ܺ௝. Since ࢄ is a 

switching random vector, ܥ௜௝ሺࢄሻ is a discrete random variable of a probability mass function (pmf) of 

no more than 2௡ distinct values.     

௜௝ܥ
்  Terminal- pair capacity function from node ݅ to node ݆ ; ௜௝ܥ  

் ൒ 0 . 

,௜௝௠௔௫ Maximum capacity function of theሺ݅ܥ ݆ሻ corridor; in the ideal case when all corridors are functioning, 

௜௝௠௔௫ܥ ൌ  .௜௝ሺ1ሻܥ

,ݏ   Source, terminal node ݐ

,1௟ሻ|ࢄ௜௝ሺܥ 0௟ሻ|ࢄ௜௝ሺܥ The function ܥ௜௝ሺࢄሻ when ௟ܺ is set to 1 or 0. Meanings of 

,1௟|ࢄ௜௝ሺܥ                        1௠ሻ, … etc., follows similarity. 

௜ܲA Random switching variable expressing the success of minimal path ݅ (the critical habitat patch is 

connected to a destination one). This is a prime implicant of the success ܵ. It is a conjunction of the 

successes of elements belonging to the path (tie-set). 

 ௝A Random switching variable expressing the failure of cut- set ݆ (the critical habitat patch is disconnectedܥ

from all destination habitat patches). This is a prime implicant of the failure ܵҧ. It is a conjunction of 

failures of elements belonging to the cut-set. 

2.3 Ecology nomenclature  

Habitat patch: a place where the local population of the pertinent species may reproduce and survive for a 

long term.  

Stepping stone: a relatively small place that helps the migration of the local population of the pertinent species, 

but is not suitable for its long-term survival.  

Ecological corridor: a physical area which connects patches (habitat patches and stepping stones) and makes 

migration possible for a given species between habitat patches. However, a corridor is not expected to support 

long-term survival for the species.  

2.4 Reliability nomenclature  

A Boolean (Switching) function ܵሺࢄሻ: A mapping ሼ0, 1ሽ௡ ՜ ሼ0, 1ሽ, i.e., ܵሺࢄሻ is any one particular 

assignment of the two functional values (0 or 1) for all possible 2௡ values of ࢄ (Crama and Hammer, 2011; 

Mano, 2017; Nabulsi et al., 2017). 

5



Network Biology, 2021, 11(1): 1-28 

 
IAEES                                                                                     www.iaees.org  

Pseudo-Boolean (Switching) function  ܥሺࢄሻ:  A mapping ሼ0, 1ሽ௡  ՜ ܴ where ܴ is the field of real 

numbers, i.e. ܥሺࢄሻ is an assignment of a real number for each of the possible 2௡ values of ࢄ (Rushdi, 

1987b, 1987c, 1988, 1989, 1990; Hammer and Rudeanu, 2012; Anthony et al., 2016; Roy, 2020). 

Multiaffine function of n variables ࡾሺ࢖૚, ૛࢖ … ,  ሻ: An algebraic function which is a first-degree࢔࢖

polynomial in each of its variables, i.e. if fixed values are given to any ሺ݊ െ 1ሻvariables, the function 

reduces to a first-degree polynomial in the remaining variable. Examples of multi-affine functions involve:  

1. Definite algebraic functions such as  

(a) System reliability/unreliability as a function of component reliability/unreliability (Rushdi, 1983b; 

Rushdi, 1985). 

(b) System availability/unavailability (Rushdi, 1985; Modarres, 2006; Bamasak and Rushdi, 2015).  

2. Pseudo-Boolean (switching) functions (Hammer and Rudeanu, 2012; Rushdi, 1987b, 1987c, 1988, 

1989, 1990) such as source-to-terminal capacity or the squared capacity as a function of link successes. 

Path (tie-set): an implicant of system success; a set of components (corridors) whose functioning ensures that 

the system functions, i.e., secures the required flow from the required habitat patch to some of the destination 

habitat patches. 

Minimal path: a prime implicant of system success; a path for which all components must function for the 

system to function (Ebeling, 1997). By contrast to the mere connectivity situation, this minimal path cannot be 

visually drawn on the network graph as it does not correspond to the graph-theoretic concept of a “path” (Rushdi 

and Al-Khateeb, 1983). The disjoint paths can be found either by algebraic analysis or visually through k-map. 

Cut (cut-set): an implicant of system failure; a set of components (corridors) whose failure ensures that the 

system fails, i.e., falls short of securing the required flow from the required habitat patch to some of the 

destination habitat patches.  

Minimal cut: a prime implicant of system failure; a cut-set for which all components must fail for the system to 

fail (Ebeling, 1997). By contrast to the mere connectivity situation, this minimal cut-set cannot be visually drawn 

on the network graph as it does not correspond to the graph-theoretic concept of a “cut-set” (Rushdi and 

Al-Khateeb, 1983).  

2.5 Reliability-Ready Expression (RRE) 

An expression in the Boolean (Switching) domain, in which logically multiplied (ANDed) entities are 

statistically independent and logically added (ORed) and entities are disjoint. Such an expression can be 

directly transformed, on a one-to-one basis, to the algebraic or probability domain by replacing switching 

(Boolean) indicators by their statistical expectations, and also replacing logical multiplication and addition 

(ANDing and ORing) by their arithmetic counterparts (Rushdi, 1987c; Rushdi and Ba-Rukab, 2005a, 2005b; 

Rushdi and Hassan, 2016a; Rushdi and Rushdi, 2017). 
 

3 Capacity and Its Mean 

The source-to-terminal capacity as a function of corridor successes ܥ௜௝ሺࢄሻ is a real-valued function of 

binary arguments, and hence it is a pseudo-switching function that obeys the algebraic decomposition 

formula: 

 

ሻࢄ௜௝ሺܥ  ൌ ܺ௟ܥ௜௝ሺࢄ| ௟ܱሻ ൅ ௟ܺܥ௜௝ሺ1|ࢄ௟ሻ 
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         ൌ ሺ1 െ ௟ܺሻܥ௜௝ሺܺ|0௟ሻ ൅ ௟ܺܥ௜௝ሺܺ|1௟ሻ 

          ൌ |௜௝ሺܺܥ ௟ܱሻ ൅ ௜௝ሺܺ|1௟ሻܥൣ െ |௜௝ሺܺܥ ௟ܱሻ൧ ௟ܺ  , ݈ ൌ 1,2, … , ݊   

 

Equation (1) can be easily proved by perfect induction over all possible values of ࢄ, namely, ሼܺ|0௟ሽ 

andሼܺ|1௟ሽ.  It means that ܥ௜௝ሺࢄሻ is a multiaffine function. Hence ܥ௜௝ሺࢄሻ can always be written in a 

sum-of-products (s-o-p) form, where the conventional arithmetic meanings for ‘sum’ and ‘product’ (rather 

than the logical ones) are implicitly understood. Furthermore, ܥ௜௝ሺࢄሻis completely specified by the 2௡ 

coefficients ܥ௜௝ሺࢄ௞ሻ  corresponding to the 2௡  values ࢄ௞ , that its argumentࢄ  takes. Consequently, 

 ሻcan be conveniently expressed in the form of a truth table or a Karnaugh map of real entries (Rushdiࢄ௜௝ሺܥ

and Rushdi, 2018).If the random function ܥ௜௝ሺࢄሻ is written in s-o-p form, then its mean value: ܧ൛ܥ௜௝ሺࢄሻൟ ൌ

௟ݍ ௟and݌ ሻ , can be derived from it directly by replacing the arguments ௟ܺ, and ܺ௟ by their means࢖௜௝ൟሺܥ൛ܧ , 

respectively, viz, 

 

 

 

Equation (2) results immediately from the fact that the mean of a sum is the sum of means, and the assumption 

that the ௟ܺ
ᇱݏ are statistically independent. Not only the capacity ܥ௜௝ሺࢄሻ but also the capacity squared 

௜௝ܥ
ଶሺࢄሻ is a pseudo-switching function. Therefore, ܥ௜௝

ଶሺࢄሻ can also be put in s-o-p form, so that it becomes 

readily convertible into its mean: 

 

 

 

Equations (2) and (3) show that computing the mean ܧ൛ܥ௜௝ൟ and the variance of the capacity 

௜௝ൟܥ൛ܴܣܸ ൌ ௜௝ܥ൛ܧ
ଶ ൟ െ ൫ܧ൛ܥ௜௝ൟ൯

ଶ
 

can be achieved by ensuring that both the capacity itself and its square are expressed in s-o-p form. 

 

4 A Map Procedure 

The pseudo-switching function ܥ௦௧ሺࢄሻ can be specified by a modified Karnaugh map (Rushdi and Ghaleb, 

2015; Rushdi and Badawi, 2017a, 2017b; Rushdi and Ba-Rukab, 2017a; Rushdi, 1988, 2018a; Rushdi and 

Rushdi, 2018; Rushdi and Alsalami, 2020a, 2020b) which is a very powerful manual tool that provides 

pictorial insight about the various functional properties and procedures. The map variables are the elements of 

 ௞ሻ which represent the s-t or corridor capacity from aࢄ௦௧ሺܥ and the map entries are the real numbers ࢄ

(1)

  ሻ(s-o-p)ࢄ௜௝ሺܥ  ሻ(s-o-p)࢖௜௝ൟሺܥ൛ܧ

൛ ௟ܺ , ܺ௟ൟ ՞ ሼ݌௟,  ௟ሽݍ ሺ2ሻ

௜௝ܥ
ଶ ሺࢄሻ(s-o-p)  

൛ ௟ܺ , ܺ௟ൟ ՞ ሼ݌௟,  ௟ሽݍ
௜௝ܥ൛ܧ

ଶ ൟሺ࢖ሻ(s-o-p) ሺ3ሻ
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ሻࢄ௦௧ሺܥ ൌ ܺଵܺ଺ ቂܺଶܺ଻ൣ4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ ൅ ܺଶܺ଻ൣ 8 ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧  

൅ ܺଶܺ଻ൣ8 ൅ ܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ቃ

൅ ܺଵܺ଺ ൤ܺଶܺ଻ ቂ4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫଼ܺ ൅ ଼ܺܺଽ൯ቁቃ

൅ ܺଶܺ଻ ቂ 8 ൅ 4ܺଷ ൅ 5ܺସ ቀ଼ܺ ൅ ଼ܺ൫ܺଽ ൅ ܺହܺଽ൯ቁቃ

൅ ܺଶܺ଻ൣ 3 ൅ 4൫ܺଷ ൅ ܺସܺହ଼ܺܺଽ൯ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧  

൅ ܺଶܺ଻ൣ 11 ൅ 4൫ܺଷ ൅ ܺସܺହ଼ܺܺଽ൯ ൅ 5 ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧൨

൅  ଵܺܺ଺ ቂܺଶܺ଻ൣ2ܺସܺହ଼ܺܺଽ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ8 ൅ 2ܺସܺହ଼ܺܺଽ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ2 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ10 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ቃ

൅  ଵܺܺ଺ ൤ܺଶܺ଻ ቂ4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫଼ܺ ൅ ଼ܺܺଽ൯ቁቃ

൅ ܺଶܺ଻ ቂ8 ൅ 4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫ܺଽ ൅ ଼ܺܺଽ൯ቁቃ

൅ ܺଶܺ଻ ቂ 3 ൅ 4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫଼ܺ ൅ ଼ܺܺଽ൯ቁቃ  

൅ ܺଶܺ଻ ቂ11 ൅ 4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫ܺଽ ൅ ଼ܺܺଽ൯ቁቃ൨ 

 

ሻࢄ௦௧ሺܥ ൌ 11 ܺଶܺ଺ܺ଻ ൅ 10  ଵܺܺଶܺ଺ܺ଻ ൅ 8൫ܺଶܺ଻ ൅ ܺଵܺଶܺ଺ܺ଻൯

൅ 5ܺସ ൬ܺହ ൅ ܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰ ൅ 4൫ܺଷ ൅ ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ 3ܺଶ ቀܺ଺ܺ଻ ൅ ܺଵܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ቁ ൅ 2 ଵܺܺ଺൫ܺଶܺ଻ ൅ ܺଶܺସܺହ଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ቀ ଵ଼ܺܺ ൅ ܺହ଼ܺ൫ ଵܺ ൅ ܺଵܺସ൯ቁ 

ሺ4ሻ
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ሻ࢖௦௧ሽሺܥሼܧ ൌ ଻݌଺݌ଶ݌ 11 ൅ ଻݌଺ݍଶ݌ଵ݌ 10 ൅ 8ሺݍଶ݌଻ ൅ ଻ሻ݌଺ݍଶ݌ଵݍ ൅ ସ݌5 ቀ݌ହ ൅ ଼݌ହ൫ݍ ൅ ଵ݌ଽሺ݌଼ݍ଺݌ ൅

ଶሻ൯ቁݍଵݍ ൅ 4ሺ݌ଷ ൅ ଽሻ݌଼ݍ଺݌ହݍସ݌ଶ݌ଵݍ ൅ ଻ݍ଺݌ଶ൫݌3 ൅ ଼݌ଽሺ݌଺ݍଵݍ ൅ ሻ൯଼ݍହ݌ସݍ ൅

଻ݍଶ݌଺ሺݍଵ݌2 ൅ ଽሻ݌଼ݍହݍସ݌ଶݍ ൅ ଼݌ଵ݌ଽ൫݌଺ݍଶ݌ ൅ ଵ݌ሺ଼ݍହ݌ ൅  ସሻ൯݌ଵݍ

The pseudo-switching function ܥ௦௧ሺࢄሻ can be converted into the switching function of success ܵ௦௧ሺࢄሻ by 

suppressing all non-unity numerals and replacing the arithmetic operators ሼ൅,•ሽ by their logic counterparts, 

viz, 

 

ܵ௦௧ሺࢄሻ ൌ  ܺଶܺ଺ܺ଻ڀ ଵܺܺଶܺ଺ܺ଻ܺڀଶܺ଻ܺڀଵܺଶܺ଺ܺ଻ܺڀସ ൬ܺହܺڀହ ቀ଼ܺܺڀ଺଼ܺܺଽ൫ ଵܺܺڀଵܺଶ൯ቁ൰ܺڀଷ 

ଶܺڀଵܺଶܺସܺହܺ଺଼ܺܺଽܺڀ ቀܺ଺ܺ଻ܺڀଵܺ଺ܺଽ൫଼ܺܺڀସܺହ଼ܺ൯ቁڀ ଵܺܺ଺൫ܺଶܺ଻ܺڀଶܺସܺହ଼ܺܺଽ൯ 

ଶܺ଺ܺଽܺڀ ቀ ଵ଼ܺܺܺڀହ଼ܺ൫ ଵܺܺڀଵܺସ൯ቁ 

 

The final sum-of-product equation for the capacity squared ܥ௦௧
ଶ ሺࢄሻ can be successfully obtained either by 

squaring expression (4) or by using the map technique in which all the map cell entries are squared for those 

of the Karnaugh map in Fig. 3. The equation for the pseudo-switching function ܥ௦௧
ଶ ሺࢄሻ and its mean are 

 

௦௧ܥ
ଶ ሺࢄሻ ൌ 121 ܺଶܺ଺ܺ଻ ൅ 100  ଵܺܺଶܺ଺ܺ଻ ൅ 64൫ܺଶܺ଻ ൅ ܺଵܺଶܺ଺ܺ଻൯

൅ 25ܺସ ൬ܺହ ൅ ܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰ ൅ 16൫ܺଷ ൅ ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ 9ܺଶ ቀܺ଺ܺ଻ ൅ ܺଵܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ቁ ൅ 4 ଵܺܺ଺൫ܺଶܺ଻ ൅ ܺଶܺସܺହ଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ቀ ଵ଼ܺܺ ൅ ܺହ଼ܺ൫ ଵܺ ൅ ܺଵܺସ൯ቁ 

 

ሼܥ௦௧
ଶ ሽሺ࢖ሻ ൌ ଻݌଺݌ଶ݌ 121 ൅ ଻݌଺ݍଶ݌ଵ݌ 100 ൅ 64ሺݍଶ݌଻ ൅ ଻ሻ݌଺ݍଶ݌ଵݍ ൅ ସ݌25 ቀ݌ହ ൅ ଼݌ହ൫ݍ ൅ ଵ݌ଽሺ݌଼ݍ଺݌ ൅

ଶሻ൯ቁݍଵݍ ൅ 16ሺ݌ଷ ൅ ଽሻ݌଼ݍ଺݌ହݍସ݌ଶ݌ଵݍ ൅ ଻ݍ଺݌ଶ൫݌9 ൅ ଼݌ଽሺ݌଺ݍଵݍ ൅ ሻ൯଼ݍହ݌ସݍ ൅ ଻ݍଶ݌଺ሺݍଵ݌4 ൅

ଽሻ݌଼ݍହݍସ݌ଶݍ ൅ ଼݌ଵ݌ଽ൫݌଺ݍଶ݌ ൅ ଵ݌ሺ଼ݍହ݌ ൅  ସሻ൯݌ଵݍ

 

 

 

ሺ5ሻ

ሺ6ሻ

ሺ7ሻ

ሺ8ሻ
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5 A Generalized Cutset Procedure 

One of the important problems in flow or capacitated networks is the problem of maximum flow, which is 

simply the problem of finding the maximum number of total flow units from the source node (the critical 

habitat patch) to the terminal nodes (the destination habitat patches) taken collectively, so that no branch 

(corridor) capacity is violated. Two implicit assumptions in that problem is that (a) flow terminates at one, and 

only one, of the destination nodes, and (b) all network branches (corridors) are good, i.e., the network state is 

 ࢄ ൌ  1 and the maximum flow is actually equal to ܥ௦௧ሺ૚ሻ. An elegant approach for solving the maximum 

flow problem is the maximum flow algorithm of Ford and Fulkerson (Rushdi, 1988; Ford and Fulkerson, 2009; 

2015; Tanenbaum, 2003; Tucker, 2012; Madry, 2016; Zhang, 2018a, 2018b; Williamson, 2019; Riis and 

Gadouleau, 2019; Rushdi and Alsalami, 2020a, 2020b). A corollary of this approach is the “Max-Flow 

Min-Cut Theorem”, which can be generalized for all network states as follows 

 

ሻࢄ௦௧ሺܥ ൌ minቐ෍ ܿ௟ ௟ܺ

௟אெ೔

ቑ , 

 

where ܯ௜ is the set of branches (corridors) constituting the minimal s-t cutset number݅ for the network 

(Rushdi, 1983a). Equation (9) includes certain series and parallel reduction rules as special cases (Rushdi, 

1988). 

To facilitate the computation of ܥ௦௧ሺࢄሻ via (9), it is noted that ܥ௦௧ሺࢄሻ= 0 if state X is an s-t cutset (i.e., if 

there is no s-t connection) and ܥ௦௧ሺࢄሻ ് 0 if state X is an s-t path (i.e., if there is some s-t connection). 

Therefore, if ሼ ௝ܲሽ is a (preferably minimal) set of exhaustive and disjoint s-t paths (Rushdi, 1988), i.e., if 

 

ܵ௦௧ ൌ  ሧ ௝ܲ ,
௡೛

௝ୀଵ
 

 

௝ܲሥ ௞ܲ ൌ 0 , ݆ ݈݈ܽ ݎ݋݂ ് ݇ ,  

 

where ܵ௦௧is the indicator variable for successful operation of the flow network which can be equivalent to 

connectivity (Lee, 1980; Rushdi, 1983a, 1983b; Rushdi, 1985; Hammer and Rudeanu, 2012), then ܥ௦௧ሺࢄሻ is: 

 

ሻࢄ௦௧ሺܥ ൌ  ෍ ௝ܲܥ௦௧ሺࢄ| ௝ܲ ൌ 1ሻ.

௡೛

௃ୀଵ

 

 

 ሺ9ሻ

ሺ10ሻ

ሺ11ሻ

ሺ12ሻ
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Equation (12) can be proved by the repeated application of the decomposition rule (1) (Rushdi, 1988). The 

subfunction ܥ௦௧ሺࢄ| ௝ܲ ൌ 1ሻ in (12) are to be obtained by substituting ሼࢄ |  ௝ܲ ൌ 1 ሽ for X in (9). 

Example 2 

The problem of Examples1 is now revisited by applying the “Max-Flow Min-Cut Theorem”. The ecological 

capacitated network of Fig. 1 has 4 minimal cut-sets (Rushdi and Hassan, 2016a), whose capacities are given 

by 

 

ଵܥ ൌ ሼ2 ଵܺ ൅ 4ܺଷ ൅ 6ܺହ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 9଼ܺሽ 

ଶܥ ൌ ሼ3ܺଶ ൅ 4ܺଷ ൅ 5ܺସ ൅ 8ܺ଻ሽ 

ଷܥ ൌ ሼ3ܺଶ ൅ 4ܺଷ ൅ 6ܺହ ൅ 8ܺ଻ ൅ 9଼ܺ ൅ 10ܺଽሽ 

ସܥ ൌ ሼ2 ଵܺ ൅ 4ܺଷ ൅ 5ܺସ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 10ܺଽሽ 

Thus, expression (9) takes the form:  

ሻࢄ௦௧ሺܥ ൌ ݉݅݊ሺܿଵ ଵܺ ൅ ܿଷܺଷ ൅ ܿହܺହ ൅ ܿ଺ܺ଺ ൅ ܿ଻ܺ଻ ൅ ଼଼ܿܺ , ܿଶܺଶ ൅ ܿଷܺଷ ൅ ܿସܺସ ൅ ܿ଻ܺ଻ , ܿଶܺଶ ൅ ܿଷܺଷ
൅ ܿହܺହ ൅ ܿ଻ܺ଻ ൅ ଼଼ܿܺ ൅ ܿଽܺଽ , ܿଵ ଵܺ ൅ ܿଷܺଷ ൅ ܿସܺସ ൅ ܿ଺ܺ଺ ൅ ܿ଻ܺ଻ ൅ ܿଽܺଽሻ 

 

ሻࢄ௦௧ሺܥ ൌ ݉݅݊ሺ2 ଵܺ ൅ 4ܺଷ ൅ 6ܺହ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 9଼ܺ , 3ܺଶ ൅ 4ܺଷ ൅ 5ܺସ ൅ 8ܺ଻ , 3ܺଶ ൅ 4ܺଷ ൅ 6ܺହ
൅ 8ܺ଻ ൅ 9଼ܺ ൅ 10ܺଽ , 2 ଵܺ ൅ 4ܺଷ ൅ 5ܺସ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 10ܺଽሻ 

 

which can be successively simplified by decomposition about various expansion variables in accordance 

with (1). By decomposing the capacity function ܥ௦௧ሺࢄሻ with respect to the indicator variables ሺ ଵܺ, ܺ଺ሻ 
that represent two elements (corridors) in the ecological network of Fig. 1, the following special case of (1) 

is obtained: 

 

ሻࢄ௦௧ሺܥ ൌ ܺଵܺ଺ܥ௦௧ሺ0|ࢄଵ, 0଺ሻ ൅ ܺଵܺ଺ܥ௦௧ሺ0|ࢄଵ, 1଺ሻ ൅  ଵܺܺ଺ܥ௦௧ሺ1|ࢄଵ, 0଺ሻ  ൅  ଵܺܺ଺ܥ௦௧ሺ1|ࢄଵ, 1଺ሻ 

 

Therefore, the sub-functions in (14) are obtained via (13) as:  

,0ଵ|ࢄ௦௧ሺܥ 0଺ሻ ൌ ݉݅݊ሺ4ܺଷ ൅ 6ܺହ ൅ 8ܺ଻ ൅ 9଼ܺ , 3ܺଶ ൅ 4ܺଷ ൅ 5ܺସ ൅ 8ܺ଻ , 3ܺଶ ൅ 4ܺଷ ൅ 6ܺହ ൅ 8ܺ଻
൅ 9଼ܺ ൅ 10ܺଽ , 4ܺଷ ൅ 5ܺସ ൅ 8ܺ଻ ൅ 10ܺଽሻ 

 

ሺ13ሻ

ሺ14ሻ

ሺ15ሻ
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The sub-function in expression (15) can be decomposed further with respect to the indicator variables  

ሺܺଶ, ܺ଻ሻ that represent two elements (corridors) in the ecological sub-network ܥ௦௧ሺ0|ࢄଵ, 0଺ሻ. The following 

special case of (1) is obtained: 

 

,0ଵ|ࢄ௦௧ሺܥ 0଺ሻ ൌ  ܺଶܺ଻ܥ௦௧ሺ0|ࢄଶ, 0଻ሻ ൅ ܺଶܺ଻ܥ௦௧ሺ0|ࢄଶ, 1଻ሻ ൅ ܺଶܺ଻ܥ௦௧ሺ1|ࢄଶ, 0଻ሻ  ൅ ܺଶܺ଻ܥ௦௧ሺ1|ࢄଶ, 1଻ሻ 

                                                                                                                                                              ሺ16ሻ 

The new or lower sub-functions in (16) are obtained via the sub-function in (15). The first of them is 

 

,0ଵ|ࢄ௦௧ሺܥ 0ଶ, 0଺, 0଻ሻ

ൌ ݉݅݊ሺ4ܺଷ ൅ 6ܺହ ൅ 9଼ܺ , 4ܺଷ ൅ 5ܺସ , 4ܺଷ ൅ 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ , 4ܺଷ ൅ 5ܺସ ൅ 10ܺଽሻ 

 

ൌ ܺଷ minሺ4 ൅ 6ܺହ ൅ 9଼ܺ , 4 ൅ 5ܺସ, 4 ൅ 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ, 4 ൅ 5ܺସ ൅ 10ܺଽሻ

൅ ܺଷminሺ 6ܺହ ൅ 9଼ܺ ,   5ܺସ , 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ, 5ܺସ ൅ 10ܺଽሻ 

ൌ ܺଷൣܺସ ݉݅݊ ሺ 4 ൅ 6ܺହ ൅ 9଼ܺ, 9, 4 ൅ 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ, 9 ൅ 10ܺଽሻ

൅ ܺସ ݉݅݊ ሺ 4 ൅ 6ܺହ ൅ 9଼ܺ, 4, 4 ൅ 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ, 4 ൅ 10ܺଽሻ൧

൅ ܺଷሾܺସ ݉݅݊ ሺ6ܺହ ൅ 9଼ܺ, 5, 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ, 5 ൅ 10ܺଽሻሿ

ൌ ܺଷ ቂܺସൣܺହ minሺ10 ൅ 9଼ܺ, 9, 10 ൅ 9଼ܺ ൅ 10ܺଽ, 9 ൅ 10ܺଽሻ

൅ ܺହ minሺ4 ൅ 9଼ܺ, 9, 4 ൅ 9଼ܺ ൅ 10ܺଽ, 9 ൅ 10ܺଽሻ൧

൅ ܺସൣܺହ minሺ10 ൅ 9଼ܺ, 4,10 ൅ 9଼ܺ ൅ 10ܺଽ, 4 ൅ 10ܺଽሻ

൅ ܺହ minሺ4 ൅ 9଼ܺ, 4, 4 ൅ 9଼ܺ ൅ 10ܺଽ, 4 ൅ 10ܺଽሻ൧ቃ

൅ ܺଷ ቂܺସൣ ܺହ minሺ6 ൅ 9଼ܺ, 5, 6 ൅ 9଼ܺ ൅ 10ܺଽ, 5 ൅ 10ܺଽሻ

൅ ܺହ minሺ9଼ܺ, 5,9଼ܺ ൅ 10ܺଽ, 5 ൅ 10ܺଽሻ൧ቃ 

ൌ ܺଷ ൤ܺସ ቂܺହൣ଼ܺሺ9ሻ ൅ X଼ሺ9ሻ൧ ൅ ܺହൣ଼ܺሺ9ሻ ൅ ଼ܺሺ4ሻ൧ቃ

൅ ܺସ ቂܺହൣ଼ܺሺ4ሻ ൅ ଼ܺሺ4ሻ൧ ൅ ܺହൣ଼ܺሺ4ሻ ൅ ଼ܺሺ4ሻ൧ቃ൨

൅ ܺଷ ൤ܺସ ቂܺହൣ଼ܺሺ5ሻ ൅ ଼ܺሺ5ሻ൧ ൅ ܺହሾ଼ܺሺ5ሻሿቃ൨ 

ൌ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯                                                        ሺ16ܽሻ 
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The other lower sub-functions in (16) are obtained similarly as 

 

,0ଵ|ࢄ௦௧ሺܥ 0ଶ, 0଺, 1଻ሻ ൌ 8 ൅ 4ܺଷ ൅ 5ܺସሺܺହ ൅ ܺହ଼ܺሻ                                   (16b) 

,0ଵ|ࢄ௦௧ሺܥ 1ଶ, 0଺, 0଻ሻ ൌ ܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସሺܺହ ൅ ܺହ଼ܺሻ       (16c) 

,0ଵ|ࢄ௦௧ሺܥ 1ଶ, 0଺, 1଻ሻ ൌ 8 ൅ ܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସሺܺହ ൅ ܺହ଼ܺሻ    (16d) 

These lower sub-functions can be used to fill in the map entries in Fig. 3 and Fig. 4. They can also be 

substituted into (16) to yield the following expression 

,0ଵ|ࢄ௦௧ሺܥ 0଺ሻ ൌ  ܺଶܺ଻ൣ4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ ൅ ܺଶܺ଻ൣ 8 ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧  

൅ ܺଶܺ଻ൣ8 ൅ ܺସܺହ଼ܺܺଽ ൅ 3ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ 

ൌ 8ܺ଻ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 3ܺଶܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ ܺଶܺସܺହ଼ܺܺଽ                  (17a) 

 

,0ଵ|ࢄ௦௧ሺܥ 1଺ሻ ൌ  ܺଶܺ଻ ቂ4ܺଷ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫଼ܺ ൅ ଼ܺܺଽ൯ቁቃ

൅ ܺଶܺ଻ ቂ 8 ൅ 4ܺଷ ൅ 5ܺସ ቀ଼ܺ ൅ ଼ܺ൫ܺଽ ൅ ܺହܺଽ൯ቁቃ

൅ ܺଶܺ଻ൣ 3 ൅ 4൫ܺଷ ൅ ܺସܺହ଼ܺܺଽ൯ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧  

൅ ܺଶܺ଻ൣ 11 ൅ 4൫ܺଷ ൅ ܺସܺହ଼ܺܺଽ൯ ൅ 5 ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ 

ൌ 11 ܺଶܺ଻ ൅ 8ܺଶܺ଻ ൅ 5ܺସ ቀܺହ ൅ ܺହ൫଼ܺ ൅ ଼ܺܺଽܺଶ൯ቁ ൅ 4൫ܺଷ ൅ ܺଶܺସܺହ଼ܺܺଽ൯ ൅ 3ܺଶܺ଻     (17b) 

,1ଵ|ࢄ௦௧ሺܥ 0଺ሻ ൌ  ܺଶܺ଻ൣ2ܺସܺହ଼ܺܺଽ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ8 ൅ 2ܺସܺହ଼ܺܺଽ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ2 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧

൅ ܺଶܺ଻ൣ10 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯ ൅ 4ܺଷ ൅ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯൧ 
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A set of exhaustive and disjoint s-t paths for the ecological network is:  

ଵܲ ൌ ܺଷ, ଶܲ ൌ ܺଷX଻,  ଷܲ ൌ ܺଶܺଷܺ଺ܺ଻,  ସܲ ൌ ଵܺܺଶܺଷܺ଺ܺ଻,  ହܲ ൌ ܺଶܺଷܺସܺହܺ଻, 

଺ܲ ൌ ܺଶܺଷܺସܺହܺ଻଼ܺ,  ଻ܲ ൌ ܺଵܺଶܺଷܺ଺ܺ଻଼ܺܺଽ,  ଼ܲ ൌ ܺଵܺଶܺଷܺସܺ଺ܺ଻଼ܺܺଽ, 

ଽܲ ൌ ܺଵܺଶܺଷܺହܺ଺ܺ଻଼ܺܺଽ,  ଵܲ଴ ൌ ܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ,  ଵܲଵ ൌ ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ, ଵܲଶ ൌ

ܺଵܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ 

 

Therefore, the sub-functions in (12) are obtained via (13) as 

 

|ࢄ௦௧ሺܥ ଵܲ ൌ 1ሻ ൌ 1ଷሻ|ࢄ௦௧ሺܥ  ൌ

 ݉݅݊ሺ2 ଵܺ ൅ 4 ൅ 6ܺହ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 9଼ܺ , 3ܺଶ ൅ 4 ൅ 5ܺସ ൅ 8ܺ଻ , 3ܺଶ ൅ 4 ൅ 6ܺହ ൅ 8ܺ଻ ൅ 9଼ܺ ൅

10ܺଽ , 2 ଵܺ ൅ 4 ൅ 5ܺସ ൅ 7ܺ଺ ൅ 8ܺ଻ ൅ 10ܺଽሻ ൌ 11 ܺଶܺ଺ܺ଻ ൅ 10  ଵܺܺଶܺ଺ܺ଻ ൅ 8ܺ଻൫ܺଶ ൅ ܺଵܺଶܺ଺൯ ൅

5ܺସ ൬ܺହ ൅ ܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅  ܺଵܺଶ൯ቁ൰ ൅ 4 ൫1 ൅ ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯ ൅

3ܺଶ ቀܺ଺ܺ଻ ൅ ܺଵܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ቁ ൅ 2 ଵܺܺ଺൫ܺଶܺ଻ ൅ ܺଶܺସܺହ଼ܺܺଽ൯ ൅ ܺଶܺ଺ܺଽ ቀ ଵ଼ܺܺ ൅

ܺହ଼ܺ൫ ଵܺ ൅ ܺଵܺସ൯ቁ                                                                                   

(18a) 

|ࢄ௦௧ሺܥ ଶܲ ൌ 1ሻ ൌ ,0ଷ|ࢄ௦௧ሺܥ  1଻ሻ

ൌ ݉݅݊ሺ2 ଵܺ ൅ 6ܺହ ൅ 7ܺ଺ ൅ 8 ൅ 9଼ܺ , 3ܺଶ ൅ 5ܺସ ൅ 8 , 3ܺଶ ൅ 6ܺହ ൅ 8 ൅ 9଼ܺ
൅ 10ܺଽ , 2 ଵܺ ൅ 5ܺସ ൅ 7ܺ଺ ൅ 8 ൅ 10ܺଽሻ 

ൌ 11ሺܺଶܺ଺ሻ ൅ 10൫ ଵܺܺଶܺ଺൯ ൅ 8൫ܺଶ ൅ ܺଵܺଶܺ଺൯ ൅ 5 ൬ܺସ ൅ ܺସܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰

൅  4൫ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯ ൅  3ܺଵܺଶܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 2൫ ଵܺܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ൬ ଵܺ ቀ଼ܺ ൅ ܺହ଼ܺ൫1 ൅ ܺଵܺସ൯ቁ൰ 

 (18b) 

|ࢄ௦௧ሺܥ ଷܲ ൌ 1ሻ ൌ ,1ଶ|ࢄ௦௧ሺܥ  0ଷ, 1଺, 0଻ሻ

ൌ ݉݅݊ሺ2 ଵܺ ൅ 6ܺହ ൅ 7 ൅ 9଼ܺ , 3 ൅ 5ܺସ , 3 ൅ 6ܺହ ൅ 9଼ܺ ൅ 10ܺଽ , 2 ଵܺ ൅ 5ܺସ ൅ 7

൅ 10ܺଽሻ 

ൌ 5ቀܺସܺହ ൅ ܺସܺହ൫଼ܺ ൅ ଵ଼ܺܺܺଽ൯ቁ ൅ 4൫ܺଵܺସܺହ଼ܺܺଽ൯ ൅ 3 

 (18c) 
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|ࢄ௦௧ሺܥ ସܲ ൌ 1ሻ ൌ ,1ଵ|ࢄ௦௧ሺܥ  1ଶ, 0ଷ, 0଺, 0଻ሻ ൌ ݉݅݊ሺ2 ൅ 6ܺହ ൅ 9଼ܺ , 3 ൅ 5ܺସ , 3 ൅ 6ܺହ ൅ 9଼ܺ ൅

10ܺଽ , 2 ൅ 5ܺସ ൅ 10ܺଽሻ ൌ 5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯ ൅ 2 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯                                          

(18d) 

|ࢄ௦௧ሺܥ ହܲ ൌ 1ሻ ൌ ,0ଶ|ࢄ௦௧ሺܥ  0ଷ, 1ସ, 1ହ, 0଻ሻ

ൌ ݉݅݊ሺ2 ଵܺ ൅ 6 ൅ 7ܺ଺ ൅ 9଼ܺ , 5 , 6 ൅ 9଼ܺ ൅ 10ܺଽ , 2 ଵܺ ൅ 5 ൅ 7ܺ଺ ൅ 10ܺଽሻ ൌ 5 

(18e) 

|ࢄ௦௧ሺܥ ଺ܲ ൌ 1ሻ ൌ ,0ଶ|ࢄ௦௧ሺܥ  0ଷ, 1ସ, 0ହ, 0଻, 1଼ሻ ൌ ݉݅݊ሺ2 ଵܺ ൅ 7ܺ଺ ൅ 9 , 5 , 9 ൅ 10ܺଽ , 2 ଵܺ ൅ 5 ൅ 7ܺ଺ ൅

10ܺଽሻ ൌ 5                                                                                  

(18f) 

|ࢄ௦௧ሺܥ ଻ܲ ൌ 1ሻ ൌ ,0ଵ|ࢄ௦௧ሺܥ  1ଶ, 0ଷ, 0଺, 0଻, 1଼, 1ଽሻ ൌ ݉݅݊ሺ6ܺହ ൅ 9 , 3 ൅ 5ܺସ , 3 ൅ 6ܺହ ൅ 9 ൅ 10 , 5ܺସ ൅

10ሻ ൌ 5ܺସ ൅ 3                                                                                  

(18g) 

଼ܲ|ࢄ௦௧ሺܥ ൌ 1ሻ ൌ ,0ଵ|ࢄ௦௧ሺܥ  1ଶ, 0ଷ, 1ସ, 0଺, 0଻, 1଼, 0ଽሻ ൌ ݉݅݊ሺ6ܺହ ൅ 9 , 3 ൅ 5 , 3 ൅ 6ܺହ ൅ 9 , 5ሻ ൌ 5 

                                                                                  (18h) 

|ࢄ௦௧ሺܥ ଽܲ ൌ 1ሻ ൌ ,0ଵ|ࢄ௦௧ሺܥ  1ଶ, 0ଷ, 1ହ, 0଺, 0଻, 0଼, 1ଽሻ ൌ 3ሺ1 ൅ ܺସሻ 

 (18i) 

|ࢄ௦௧ሺܥ ଵܲ଴ ൌ 1ሻ ൌ ,0ଶ|ࢄ௦௧ሺܥ  0ଷ, 1ସ, 0ହ, 1଺, 0଻, 0଼, 1ଽሻ ൌ 5 

(18j) 

 

|ࢄ௦௧ሺܥ ଵܲଵ ൌ 1ሻ ൌ ,1ଵ|ࢄ௦௧ሺܥ  0ଶ, 0ଷ, 1ସ, 0ହ, 0଺, 0଻, 0଼, 1ଽሻ ൌ 2 

 (18k) 

|ࢄ௦௧ሺܥ ଵܲଶ ൌ 1ሻ ൌ ,0ଵ|ࢄ௦௧ሺܥ  1ଶ, 0ଷ, 1ସ, 1ହ, 0଺, 0଻, 0଼, 0ଽሻ ൌ 5 

(18l) 

These sub-functions, can together with the condition ܥ௦௧ሺࢄ|ܵ௦௧ ൌ 0ሻ ൌ 0,  be used to fill in the map 

entries in Fig. 3 and Fig. 4. Moreover, they can be substituted into (12) to get the expression: 
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ሻࢄ௦௧ሺܥ

ൌ  ܺଷ ቂ11 ܺଶܺ଺ܺ଻ ൅ 10  ଵܺܺଶܺ଺ܺ଻ ൅ 8ܺ଻൫ܺଶ ൅ ܺଵܺଶܺ଺൯

൅ 5ܺସ ൬ܺହ ൅ ܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰

൅ 4 ൫1 ൅ ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ 3ܺଶ ቀܺ଺ܺ଻ ൅ ܺଵܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ቁ

൅ 2 ଵܺܺ଺൫ܺଶܺ଻ ൅ ܺଶܺସܺହ଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ቀ ଵ଼ܺܺ ൅ ܺହ଼ܺ൫ ଵܺ ൅ ܺଵܺସ൯ቁቃ

൅ ܺଷX଻ ቂ11ሺܺଶܺ଺ሻ ൅ 10൫ ଵܺܺଶܺ଺൯ ൅ 8൫ܺଶ ൅ ܺଵܺଶܺ଺൯

൅ 5 ൬ܺସ ൅ ܺସܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰

൅  4൫ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯ ൅  3ܺଵܺଶܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯

൅ 2൫ ଵܺܺଶܺସܺହܺ଺଼ܺܺଽ൯ ൅ ܺଶܺ଺ܺଽ ൬ ଵܺ ቀ଼ܺ ൅ ܺହ଼ܺ൫1 ൅ ܺଵܺସ൯ቁ൰ቃ

൅ ܺଶܺଷܺ଺ܺ଻ ቂ5 ቀܺସܺହ ൅ ܺସܺହ൫଼ܺ ൅ ଵ଼ܺܺܺଽ൯ቁ ൅ 4൫ܺଵܺସܺହ଼ܺܺଽ൯

൅ 3ቃ ൅ ଵܺܺଶܺଷܺ଺ܺ଻ൣ5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯ ൅ 2 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯൧

൅ 5ܺଶܺଷܺସܺହܺ଻ ൅ 5ܺଶܺଷܺସܺହܺ଻଼ܺ ൅ ܺଵܺଶܺଷܺ଺ܺ଻଼ܺܺଽሾ5ܺସ ൅ 3ሿ

൅ 5ܺଵܺଶܺଷܺସܺ଺ܺ଻଼ܺܺଽ ൅ ܺଵܺଶܺଷܺହܺ଺ܺ଻଼ܺܺଽሾ3ሺ1 ൅ ܺସሻሿ

൅ 5ܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ ൅ 2 ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ
൅ 5ܺଵܺଶܺଷܺସܺହܺ଺ܺ଻଼ܺܺଽ 

(19) 

 

Expression (19) has been shown to be equivalent to expression (4) obtained by the minimal s-t cutset 

procedure. In fact, each of the two expressions is equivalent to the canonical representation of the Karnaugh 

map in Fig. 3. 

Beside our manual calculations in our example, we used MATLAB to implement the max-flow min-cut 

algorithm that is applicable through the identification of minimal cut-sets and minimal paths in our 

hypothetical ecological network and consequently using the results to fill in the k-map entries in an automated 

way. 

The second method to find the disjoint paths is by using the switching-algebraic analysis (Rushdi and 

Rushdi, 2017). The basic idea in disjointing in algebraic analysis is that if none of the two terms ܣ and ܤ in 

the sum (ܣ ש  by ܣ can be disjointed with ܤ subsumes the other and the two terms are not disjoint, then (ܤ

the relation 
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ሺܣ ש ሻܤ ൌ ܣ ש ଶݕଵݕሺܤ ௘തതതതതതതതതതതതሻݕ… ൌ ܣ ש ଵതതതݕሺܤ ש ଶതതതݕଵݕ ש ש … ଶݕଵݕ ,௘ሻݕ௘ିଵݕ…           

(20) 

where ሼݕଵ , , ଶݕ . . . ,  .ܤ and do not appear in the term ܣ ௘ ሽ is the set of literals that appear in the termݕ

Note that ܤ is replaced by ݁ ሺ൒ 1ሻ terms that are disjoint with one another besides being disjoint with ܣ 

(Rushdi and Ba-Rukab, 2005a, 2005b; Rushdi and Hassan, 2016a; Rushdi and Rushdi, 2017). 

Applying disjointness, we can re-express the minimal paths (Rushdi and Hassan, 2016a) for the network in 

Fig. 1 in the PRE-form (as can be seen the steps in an appendix). 

A set of exhaustive and minimal s-t paths for the ecological networkis (Rushdi and Hassan, 2016a):  

 

ሼ ଵܲ ൌ ܺଷ , ଶܲ ൌ ܺ଻ , ଷܲ ൌ ܺଶܺ଺ , ସܲ ൌ ଵܺܺଶ,   ହܲ ൌ  ܺସܺହ , ଺ܲ ൌ ܺସ଼ܺ , ଻ܲ ൌ ܺଶܺହܺଽ , 

଼ܲ ൌ ܺଶ଼ܺܺଽ , ଽܲ ൌ ܺସܺ଺ܺଽ , ଵܲ଴ ൌ ଵܺܺସܺଽሽ. 

 

This set might be replaced by another exhaustive and disjoint (and hence, non-minimal) set of paths, whose 

disjunction constitutes the probability-ready-expression reproduced from Equation (46) in Rushdi and 

Hassan (2016a), namely 

ܵ௉ோா ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ  

ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺܺ଺ 

 (21) 

 

So, each term in the expression (21) represents disjoint path for the ecological network in Fig. 1. Therefore, the 

sub-functions in (12) are obtained via (13) and hence these sub-functions, can together with the condition 

௦௧ܵ|ࢄ௦௧ሺܥ ൌ 0ሻ ൌ 0,  be used to fill in the map entries in Fig. 3 and Fig. 4. Moreover, they can be 

substituted into (12) to get the expression: 
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ሻࢄ௦௧ሺܥ ൌ ܺଷ ቂ11 ܺଶܺ଺ܺ଻ ൅ 10  ଵܺܺଶܺ଺ܺ଻ ൅ 8ܺ଻൫ܺଶ ൅ ܺଵܺଶܺ଺൯

൅ 5ܺସ ൬ܺହ ൅ ܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰ ൅ 4 ൫1 ൅ ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ 3ܺଶ ቀܺ଺ܺ଻ ൅ ܺଵܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ቁ ൅ 2 ଵܺܺ଺൫ܺଶܺ଻ ൅ ܺଶܺସܺହ଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ቀ ଵ଼ܺܺ ൅ ܺହ଼ܺ൫ ଵܺ ൅ ܺଵܺସ൯ቁቃ

൅ ܺ଻ܺଷ ቂ11ሺܺଶܺ଺ሻ ൅ 10൫ ଵܺܺଶܺ଺൯ ൅ 8൫ܺଶ ൅ ܺଵܺଶܺ଺൯

൅ 5 ൬ܺସ ൅ ܺସܺହ ቀ଼ܺ ൅ ܺ଺଼ܺܺଽ൫ ଵܺ ൅ ܺଵܺଶ൯ቁ൰ ൅  4൫ܺଵܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅  3ܺଵܺଶܺ଺ܺଽ൫଼ܺ ൅ ܺସܺହ଼ܺ൯ ൅ 2൫ ଵܺܺଶܺସܺହܺ଺଼ܺܺଽ൯

൅ ܺଶܺ଺ܺଽ ൬ ଵܺ ቀ଼ܺ ൅ ܺହ଼ܺ൫1 ൅ ܺଵܺସ൯ቁ൰ቃ

൅ ܺଶܺ଺ܺଷܺ଻ ቂ5 ቀܺସܺହ ൅ ܺସܺହ൫଼ܺ ൅ ଵ଼ܺܺܺଽ൯ቁ ൅ 4൫ܺଵܺସܺହ଼ܺܺଽ൯ ൅ 3ቃ

൅ ଵܺܺଶܺଷܺ଻ܺ଺ൣ5ܺସ൫ܺହ ൅ ܺହ଼ܺ൯ ൅ 2 ൅ ܺଽ൫଼ܺ ൅ ܺହ଼ܺ൯൧ ൅  5ܺସܺହܺଷܺ଻ܺଶ

൅ ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵൣ5 ൅ 3଼ܺܺଽ ൅ ଼ܺܺଽ൧ ൅ 5ܺସ଼ܺܺଷܺ଻ܺଶܺହ

൅ ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହሾ5 ൅ 3ܺଽሿ ൅ 3ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
൅ 3ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ൅ 5ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ൅ 2 ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺܺ଺ 

(22) 

 

Expression (22) can be shown to be an equivalent to expression (4) obtained by the minimal s-t cutset 

procedure and expression (19) obtained visually through Karnaugh map directly.  

 

6 Conclusions 

This paper presents a tutorial exposition of various methods for analyzing a capacitated or flow network with 

an ecological perspective, i.e., the problem of evaluating the survivability of a specific species, the probability 

of its avoiding local extinction by migration between habitat patches via imperfect heterogeneous corridors 

when there are definitely several destination habitat patches with the paths to them from the critical habitat 

patch sharing some edges (corridors) in common. 

These methods include Karnaugh maps, which are crucial in providing not only the visual insight 

necessary to write better future software but also adequate means of verifying such software and a 

generalization of the max-flow min-cut theorem, which is assisted by the identification of minimal cut-sets and 

minimal paths in the ecological flow networks. 
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APPENDIX 

The minimum paths for the network are:  

ଵܲ ൌ ܺଷ , ଶܲ ൌ ܺ଻ , ଷܲ ൌ ܺଶܺ଺ , ସܲ ൌ ଵܺܺଶ,   ହܲ ൌ  ܺସܺହ , ଺ܲ ൌ ܺସ଼ܺ , ଻ܲ ൌ ܺଶܺହܺଽ , 

଼ܲ ൌ ܺଶ଼ܺܺଽ , ଽܲ ൌ ܺସܺ଺ܺଽ , ଵܲ଴ ൌ ଵܺܺସܺଽ 

ܵ ൌ  ܺଷ ש ܺ଻ ש ܺଶܺ଺ ש ଵܺܺଶ ש ܺସܺହ ש ܺସ଼ܺ ש ܺଶܺହܺଽ ש ܺଶ଼ܺܺଽ ש ܺସܺ଺ܺଽ ש ଵܺܺସܺଽ 

ܵ௉ோாሺଵሻ ൌ  ܺଷ ש ܺ଻ ש ܺଶܺ଺ ש ଵܺܺଶ ש ܺସܺହ ש ܺସ଼ܺ ש ܺଶܺହܺଽ ש ܺଶ଼ܺܺଽ ש ܺସܺ଺ܺଽ ש ଵܺܺସܺଽ 

ܵ௉ோாሺଶሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷ ש ଵܺܺଶܺଷ ש ܺସܺହܺଷ ש ܺସ଼ܺܺଷ ש ܺଶܺହܺଽܺଷ ש ܺଶ଼ܺܺଽܺଷ ש ܺସܺ଺ܺଽܺଷ

ש ଵܺܺସܺଽܺଷ 

ܵ௉ோாሺଷሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ ש ܺସܺହܺଷܺ଻ ש ܺସ଼ܺܺଷܺ଻ ש ܺଶܺହܺଽܺଷܺ଻

ש ܺଶ଼ܺܺଽܺଷܺ଻ ש ܺସܺ଺ܺଽܺଷܺ଻ ש ଵܺܺସܺଽܺଷܺ଻ 

ܵ௉ோாሺସሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ሺܺଶ ש ܺଶܺ଺ሻ ש ܺସܺହܺଷܺ଻ሺܺଶ ש ܺଶܺ଺ሻ ש ܺସ଼ܺܺଷܺ଻ሺܺଶ

ש ܺଶܺ଺ሻ ש ܺଶܺହܺଽܺଷܺ଻ሺܺଶ ש ܺଶܺ଺ሻ ש ܺଶ଼ܺܺଽܺଷܺ଻ሺܺଶ ש ܺଶܺ଺ሻ ש ܺସܺ଺ܺଽܺଷܺ଻ሺܺଶ
ש ܺଶܺ଺ሻ ש ଵܺܺସܺଽܺଷܺ଻ሺܺଶ ש ܺଶܺ଺ሻ 

Simplify and absorption of all possible terms in their subsumed term: 

 

ܵ௉ோாሺସሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ ש ܺସ଼ܺܺଷܺ଻ܺଶ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶ
ש ଵܺܺସܺଽܺଷܺ଻ܺଶ 

ܵ௉ோாሺହሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶሺܺଵ ש ଵܺܺଶሻ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ሺܺଵ

ש ଵܺܺଶሻ ש ܺସ଼ܺܺଷܺ଻ܺଶሺܺଵ ש ଵܺܺଶሻ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ሺܺଵ ש ଵܺܺଶሻ

ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ሺܺଵ ש ଵܺܺଶሻ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ሺܺଵ ש ଵܺܺଶሻ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶሺܺଵ
ש ଵܺܺଶሻ ש ଵܺܺସܺଽܺଷܺ଻ܺଶሺܺଵ ש ଵܺܺଶሻ 

Simplify and absorption of all possible terms in their subsumed term: 

ܵ௉ோாሺହሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶܺଵ ש ܺସܺହܺଷܺ଻ܺଶ ଵܺ

ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ ש ܺସ଼ܺܺଷܺ଻ܺଶܺଵ ש ܺସ଼ܺܺଷܺ଻ܺଶ ଵܺ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵ
ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵ
ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺଵ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶ ଵܺ ש   ଵܺܺସܺଽܺଷܺ଻ܺଶ 
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ܵ௉ோாሺହሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ ש ܺସ଼ܺܺଷܺ଻ܺଶ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵ
ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶ ש   ଵܺܺସܺଽܺଷܺ଻ܺଶ 

ܵ௉ோாሺ଺ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶሺܺସ ש ܺସܺହሻ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵሺܺସ ש ܺସܺହሻ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵሺܺସ
ש ܺସܺହሻ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵሺܺସ ש ܺସܺହሻ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶሺܺସ
ש ܺସܺହሻ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶሺܺସ ש ܺସܺହሻ 

Simplify and subsumes all required terms: 

ܵ௉ோாሺ଺ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ
ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ 

ܵ௉ோாሺ଻ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସሺܺସ ש ܺସ଼ܺሻ

ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସሺܺସ ש ܺସ଼ܺሻ ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହሺܺସ ש ܺସ଼ܺሻ

ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହሺܺସ ש ܺସ଼ܺሻ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହሺܺସ ש ܺସ଼ܺሻ 

Simplify and subsumes all required terms: 

ܵ௉ோாሺ଻ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺ 

ܵ௉ோாሺ଼ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସሺܺଶ ש ܺଶܺହ ש ܺଶܺହܺଽሻ

ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺሺܺଶ ש ܺଶܺହ ש ܺଶܺହܺଽሻ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺሺܺଶ ש ܺଶܺହ
ש ܺଶܺହܺଽሻ 

Simplify and subsumes all required terms: 

ܵ௉ோாሺ଼ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺ 
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ܵ௉ோாሺଽሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺሺܺଶ ש ܺଶ଼ܺ
ש ܺଶ଼ܺܺଽሻ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺሺܺଶ ש ܺଶ଼ܺ ש ܺଶ଼ܺܺଽሻ 

Simplify and subsumes all required terms: 

ܵ௉ோாሺଽሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺ 

ܵ௉ோாሺଽሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש    ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺሺܺସ  ש ܺସܺ଺
ש ܺସܺ଺ܺଽሻ 

Simplify and subsumes all required terms: 

ܵ௉ோாሺଽሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ
ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺܺ଺ 

ܵ௉ோாሺ்ሻ ൌ  ܺଷ ש ܺ଻ܺଷ ש ܺଶܺ଺ܺଷܺ଻ ש ଵܺܺଶܺଷܺ଻ܺ଺ ש ܺସܺହܺଷܺ଻ܺଶ ש ܺସܺହܺଷܺ଻ܺଶܺ଺ܺଵ

ש ܺସ଼ܺܺଷܺ଻ܺଶܺହ ש ܺସ଼ܺܺଷܺ଻ܺଶܺ଺ܺଵܺହ ש ܺଶܺହܺଽܺଷܺ଻ܺ଺ܺଵܺସ  

ש ܺଶ଼ܺܺଽܺଷܺ଻ܺ଺ܺଵܺସܺହ ש ܺସܺ଺ܺଽܺଷܺ଻ܺଶܺହ଼ܺ ש ଵܺܺସܺଽܺଷܺ଻ܺଶܺହ଼ܺܺ଺ 
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