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Abstract 

Simulation studies in population genetics play a crucial role in better understanding of different evolution 

scenarios and effects of different genetic models on genetic diversity. Forward-in-time method starts with an 

initial population and follows the entire evolution under various genetic models within multiple generations. 

Artificial neural networks represent a formidable method for genetic simulation and prediction. In this study, 

we wanted to compare and corroborate results obtained with forward-in-time simulation with results attained 

from a specially designed strategy based on artificial neural networking. As input data, alleles of 13 

microsatellite loci from 187 specimens representing autochthonous Adriatic haplotype of Salmo trutta L. 

from the Neretva River were used. The main goal of this study was to compare precision and reliability of 

these two methods. Our results are in concordance with other reports from literature which indicate that both 

of these approaches can be used as a reliable simulation tools. However, it is believed that artificial neural 

networks can represent more powerful simulation tools. 
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1 Introduction 

Unavailability of ancestral information and complexity of real genetic factors led to development of 

computational simulation methods used for testing hypothesis and studying evolutionary genetic parameters 

(Balloux and Goudet, 2002). Computer simulators are in fact programs that were developed for the purpose 

of simulating abstract models of certain systems. In the last decade, these simulation programs became 

available to a wider circle of users thus allowing scientists that are not specialized in software programming 

to analyze evolution and conservation.Genetic simulation methods use two main principles: backward-in-time 
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(coalescent) (Kingman, 1982) and forward-in-time. Backward-in-time method starts from a sample of 

unknown genotype. This method identifies common ancestors of individuals and connects them based on 

stochastic processes which are characterized by evolutionary parameters such as mutation, recombination and 

migration. After a common ancestor is established, process goes forward and assigns genetic information to 

individuals. Forward-in-time method is much simpler and is based on individuals.  Each individual in 

simulated population goes through a life cycle and this method starts with initial population and follows its 

evolution generation by generation. Since it follows each individual, this method is considerably slower; 

however modeling is much more complex which makes it better suitable for predictive questions. Also, one 

of the main differences between these two methods is that forward-in-time method requires defining initial 

parameters (Cyran and Myszor, 2008). 

 Application of Artificial Neural Network (ANN) in population genetics represents one of the most 

interesting areas in regards to simulation and prediction of different type of data. Artificial neural networks 

with multiple layers have many applications and, at the same time, represent general frames for presenting 

non-linear functional mapping. First layer of nodes is marked as an input layer and the last one as an output 

layer. Layers between these two are marked as hidden layers. Number of neurons in input and output layers is 

usually determined by application. Number of neurons in hidden layers, as well as the number of hidden 

layers, depends on a specific task of an ANN, and is usually determined during the training and validation 

process. These hidden layers enable the network to learn complex information. Number of hidden neurons is 

very significant because small number of these neurons prevents regular training and huge number leads to an 

exaggerated learning process. There are three possible ways of learning process: supervised learning which 

provides networks a correct output for every input pattern; unsupervised learning that does not require correct 

answer connected to each input parameter (the network itself explores patterns and correlation between data); 

hybrid (or semi-supervised) represents a combination between the two above mentioned methods. It is also 

important to point out that there are two principles related to neural networks: feed-forward and 

back-propagation. First of these two principles allows information to travel in only one direction, from input 

to output. Back-propagation is used for training the multi-layer feed-forward networks in which case every 

error calculated at the network’s outputs is propagated backwards through layers, from neurons of output 

layer to neurons of input layer. Exactly this method was used in our study. Also one of the most important 

elements in training networks such as this one is regularization, performed in order of avoiding overfitting, 

which finally secures appropriate performance of the network itself (Krogh, 2008). Artificial neural networks 

have many applications in analyzing different biological data. Nurul Amerah and Afnizanfaizal (2017) 

applied neural networks in classification of DNA sequence. Also, Kang et al. (2017) developed a neural 

network that predicts phenotypes from transcriptome data. Finally, Aurelle et al. (1999) created an artificial 

neural network that uses microsatellite data as input to successfully separate contemporary and ancestral 

populations of different forms of brown trout. They used feed-forward network with one hidden layer and 

back-propagation algorithm for training. Results of the learning process itself gave high values of 

well-classified individuals (up to 95%), proving that artificial neural networks can be used in validating 

genetic data (Aurelle et al., 1999). Main goal of this study was to perform validation of forward-in-time 

population using ANN, based on microsatellite data from autochthonous Adriatic Salmo trutta L. from the 

Neretva River. 

 

2 Material and Methods 

Input data used in this research were retrieved from REBIDA (REgional BIodiversity DAtabase) database 

(Kalamujić Stroil et al., 2017). Model organism in this study was Neretvan (Adriatic) autochthonous brown 
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trout (Salmo trutta L.) (187 individuals with Adriatic haplotype from upper and middle flow of the Neretva 

River). EASYPOP software was used for forward-in-time simulation (Balloux, 2001). First step in this 

simulation method is to provide the software with some initial criteria. These criteria were: one population of 

10,000 diploid individuals with equal number of males and females; free exchange of genetic material; 

Stepwise Mutation Model (SMM); mutation rate was set at zero due to a possible questionable validity of 

determining mutation rate in artificial neural network; free recombination and 150 generations. It is important 

to point out that a number of possible allelic states was set for each locus separately on the basis of the 

highest detected number of alleles in the contemporary brown trout population. After the forward-in-time 

method was performed, GenAlEx v6.5 (Peakall and Smouse, 2012) was used to calculate allele frequencies 

which were further used for validation analysis. 

 For creating ANN script, R programming language was used (R Core Team, 2020). This script was 

based on neuralnet package (Fritsch et al., 2019) and the neural network was trained with sag (sag – smallest 

absolute gradient) algorithm which is a modified grprop (globally convergent algorithm). This algorithm is 

based on backpropagation model with a modified learning rate. ANN structure (number of layers and 

neurons) and threshold values were set for each locus individually. This was done because of the fact that for 

loci with higher number of allelic variants, simpler ANN structure and higher threshold value was used and 

for loci with smaller number of allelic variants, more complex ANN structure and lower threshold value was 

used (Table 1).  

 

 
Table 1 ANN structure and threshold value for each locus individually 

Locus Number of layers Number of neurons Threshold values 

SsaD190 1 20 1*10-5 

SsaD71 2 10;10 1*10-5 

SSsp2213 1 20 1*10-7 

OMM1064 1 20 1*10-7 

Ssa85 2 20;10 1*10-7 

Str73 2 20;10 1*10-9 

Ssa410 1 20 1*10-6 

Str60 2 20;10 1*10-7 

Ssa408 2 10;10 1*10-5 

SsoSL438 2 10;10 1*10-8 

SSsp2216 1 20 1*10-5 

Str15 2 10;10 1*10-7 

 

 

 Trained data were allele frequencies of contemporary population and test data were allele frequencies of 

forward-in-time simulation population. For comparison of predicted allele frequencies between 

forward-in-time and ANN we used Chi-squared and Fisher exact test. For the same purpose, in a case where 

results were treated as a ranking data, Wilcoxon signed rank test (paired test) and Kendall-Tau correlation 

coefficient were used. Special aspect of our comparison analysis was calculating the proportion of correctly 

predicted allele frequencies of ANN compared to forward-in-time. In this case, we used equality-proportion 

test with correction (Chi-squared test), with which we determined if there were any statistically significant 

differences in proportions between correctly and incorrectly predicted values. For all of these five analyses, 
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the level of statistical significance was p<0.05 and they were all implemented in our ANN R script. If there 

were a statistically significant higher proportion of adequately predicted allele frequencies, the ANN was 

considered to have confirmed the forward-in-time results. 

 Since the created neural net script gives values larger than one, relative allele frequencies were 

multiplied by 100 in order of obtaining integers. Values were rounded to one for those alleles which 

frequencies were below one after a given approach. Prediction was considered accurate in two cases: 1) if the 

neural network predicted the same frequency as forward-in-time method; 2) if difference of +/-1 was noticed, 

considering the fact of rounding the predictive values by the neural network. Difference of two and more was 

considered inadequate. Therefore, in Fig. 2, values of correct prediction were included within the lines. All 

values outside these lines were predicted incorrectly. 

 

3 Results 

Forward-in-time method was performed using parameters which were described in detail in the Materials and 

Methods section. After given analysis, allele frequencies (Table 2) were obtained using GenAlEx v6.5 

software (Peakall and Smouse, 2012). This was done because of the fact that these frequencies were used for 

validating the accuracy of forward-in-time method with artificial neural network. 

 

 
Table 2 Allele frequencies of forward-in-time simulation population (N- sample size). 

Allele SsaD190 SsaD71 SSsp2213 OMM1064 Ssa85 Str73 Ssa410 Str60 Ssa408 SsoSL438 SSsp2216 Str15

N 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

1 0.056 0.040 0.060 0.014 0.223 0.292 0.022 0.297 0.030 0.227 0.036 0.127

2 0.081 0.071 0.018 0.008 0.220 0.381 0.041 0.382 0.024 0.104 0.043 0.120

3 0.050 0.043 0.041 0.029 0.142 0.327 0.030 0.321 0.047 0.191 0.066 0.172

4 0.103 0.013 0.039 0.031 0.163  0.070  0.033 0.218 0.033 0.127

5 0.044 0.052 0.029 0.032 0.252  0.060  0.019 0.260 0.065 0.151

6 0.049 0.052 0.015 0.014   0.043  0.063  0.054 0.164

7 0.026 0.044 0.076 0.029   0.054  0.060  0.078 0.139

8 0.041 0.039 0.049 0.010   0.048  0.063  0.049  

9 0.081 0.107 0.029 0.012   0.021  0.040  0.035  

10 0.120 0.012 0.083 0.029   0.022  0.079  0.034  

11 0.037 0.034 0.048 0.044   0.043  0.047  0.063  

12 0.084 0.049 0.023 0.037   0.048  0.051  0.040  

13 0.059 0.044 0.041 0.044   0.030  0.021  0.067  

14 0.050 0.053 0.041 0.002   0.050  0.034  0.050  

15 0.031 0.050 0.027 0.024   0.078  0.035  0.030  

16 0.085 0.058 0.021 0.011   0.067  0.047  0.050  

17  0.059 0.059 0.034   0.080  0.040  0.046  

18  0.067 0.037 0.055   0.035  0.055  0.039  

19  0.006 0.051 0.004   0.026  0.078  0.067  

20  0.054 0.025 0.016   0.037  0.017  0.055  

21  0.053 0.041 0.022   0.030  0.023    

22   0.032 0.046   0.066  0.051    

23   0.059 0.022     0.044    
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24   0.058 0.037         

25    0.022         

26    0.011         

27    0.024         

28    0.046         

29    0.042         

30    0.038         

31    0.016         

32    0.019         

33    0.010         

34    0.033         

35    0.018         

36    0.023         

37    0.013         

38    0.005         

39    0.028         

40    0.021         

41    0.027         

 

 

 In order to check the accuracy of the forward-in-time simulation we created an artificial neural network, 

which we thoroughly described in section Material and Methods. The structure of ANN for each locus and 

comparison of the allele frequencies results of forward-in-time method and the predicted values of the ANN 

are given in Figs 1-2 and Table 3. 

 As for locus SsaD190, 16 alleles were detected with ANN. The reliability of prediction by an artificial 

neural network in this case can be clearly concluded because 75% of allele frequencies were adequately 

predicted. In a case of SsaD71 locus, 21 alleles were detected and the reliability of prediction can also be 

concluded because 85.71% of allele frequencies were adequately predicted. As for OMM1064 locus, 41 

alleles were detected. In this case also, the reliability of prediction can be concluded because 85.36% of allele 

frequencies were adequately predicted. Five alleles were detected within the Ssa85 locus. Once again the 

reliability of prediction can be concluded due to the fact that 80% of allele frequencies were adequately 

predicted. The equality – proportions test in all of these cases showed that there were statistically 

significantly more accurate predictions than incorrect ones. Also, for all of these loci, the Pearson Chi 

squared test and the Fisher exact test showed no statistically significant differences in predicted allele 

frequencies between forward-in-time and ANN prediction. The Kendall Tau test in all of these cases showed 

a statistically significant correlation between the two analyzed methods, while the Wilcoxon paired test 

showed no statistically significant difference between the two predictions.  

 Three alleles were detected within Str73 and Str60 loci and five and seven alleles were detected within 

SsoSL438 and Str15 loci, respectively. The reliability of prediction by an artificial neural network in all of 

these cases can be clearly concluded because 100% of allele frequencies were adequately predicted. The 

Pearson Chi squared test and the Fisher exact test showed no statistically significant differences in predicted 

allele frequencies. The Kendall Tau test did not show a statistically significant correlation for Str73 and Str60. 

However, in a case of SsoSL438 and Str15 loci it did. Wilcoxon paired test showed no statistically significant 

difference in all of these loci. 
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 In a case of Ssa410 locus, 22 alleles were detected. The reliability of prediction by an artificial neural 

network in this case can be clearly concluded because 63.63% of allele frequencies were adequately predicted. 

As for Ssa408 locus, 23 alleles were detected. In this case also, the reliability of prediction can be concluded 

because 78.26% of allele frequencies were adequately predicted. Twenty alleles were detected within 

SSsp2216 locus and the reliability of prediction can also be concluded because 80% of allele frequencies 

were adequately predicted. The Pearson Chi squared test and the Fisher exact test for these three loci showed 

no statistically significant differences in predicted allele frequencies. The Kendall Tau test in all of these 

cases showed a statistically significant correlation between the two analyzed methods, while the Wilcoxon 

paired test showed no statistically significant difference between the two predictions. 

 As for locus SSsp2213, 24 alleles were detected. It can be clearly concluded that in this case the absolute 

reliability of prediction by artificial neural networks cannot be claimed because 58.33% of allelic frequencies 

were adequately predicted. The equality – proportions test showed that there were no statistically 

significantly more accurately predicted frequencies than incorrect ones. The Pearson Chi squared test and the 

Fisher exact test showed no statistically significant differences in predicted allele frequencies between 

forward-in-time and ANN prediction, however the Kendall Tau test did not show a statistically significant 

correlation between the two analyzed methods. Wilcoxon paired test showed no statistically significant 

difference between the two predictions. 

 

4 Discussion 

From the above results of allele frequency predictions using neural networks in relation to forward-in-time 

simulations, we can clearly conclude a very strong match of allele frequency values between the two 

simulation methods. For certain loci such as Str73, Str60, Str15, SsoSL438 the predictions were fully 

consistent with forward-in-time simulations. For the SsaD190, SsaD71, OMM1064, Ssa85, Ssa410, Ssa408 

and SSsp2216, the predictions were almost completely correct. Even though OMM1064 has 41 alleles, only 

14.63% of frequencies were not adequately predicted. The worst prediction was for locus SSsp2213 where 

58.33% was true and 41.66% was false, so the adequacy of prediction accuracy in this case is questionable. It 

should be borne in mind that different adjustments of threshold, number of neurons and number of layers 

were used in order to achieve optimal prediction (Table 1). The only common parameter was the number of 

iterations. In the case of optimization for the SSsp2213 locus, the application of various adjustments showed 

no change in prediction. In the case of loci with 100% accuracy, the change of parameters did not change the 

results, and for other loci it was insignificant, so the most favorable parameters were taken. 

 The application of a neural network, where the trained data would be allele frequency values within the 

contemporary population and test data allele frequency values of the forward-in-time population, would 

provide a possible answer to the question of adequacy of forward-in-time simulation. We can safely conclude 

that an artificial neural network is an adequate method in predicting allele frequencies based on training and 

test data. Barbosa et al. (2011) determined the importance of neural network optimization especially in the 

case of inadequate estimation of threshold, number of iterations as well as number of neurons and layers. In 

our case, the neural network aimed to confirm or deny the forward-in-time simulation and thus determine the 

validity of this method in relation to the starting population. 

 The genetic aspect of these simulations is multiple. Kalamujić (2013) and Pojskić and Kalamujić (2015) 

point to the fact of rapid reduction of the Adriatic (autochthonous) haplotype of the Neretva brown trout, due 

to various factors such as: inadequate restocking (restocking with allochthonous Danube and Atlantic 

haplotypes), overfishing, interspecies hybridization (with soft-mouthed trout (Salmo obtusirostris, Heckel) 

and marble trout (Salmo marmoratus, Cuvier)) and anthropogenic factor (building dams that prevent gene 
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flow). Forward-in-time simulation clearly shows that even if the starting parameters of a contemporary 

population with high inbreeding, reduced observed heterozygosity, but with a sufficient number of alleles are 

applied, it can show the "appearance" and structure of a hypothetical population that is devoid of greater 

anthropogenic influence. Given that the artificial neural network has largely confirmed the forward-in-time 

simulation, when it comes to allele frequencies, the conclusions of Kalamujić (2013) about the great 

influence of anthropogenic factors on the reduction of autochthonous Neretva brown trout can be reasonably 

confirmed. The application of artificial neural network is multiple. In a study by Pojskić et al. (2018), an 

algorithm for prediction of missing variants in the Y-STR profile of archaeological human skeletal remains 

was created. According to the authors, the predictability is high on the test data, and the size of the training 

base is very important because the network can better understand the patterns. Their results also indicate the 

fact that the number of neurons and layers is very important in optimizing the prediction itself.  

 In any case, different approaches should be applied in assessing the genetic heterogeneity and 

differentiation of populations, whether they are plant, animal or even human populations. Testing the validity 

of these results using ANN certainly contributes to the strength of the conclusions derived from classical 

population-genomic analyses. However, the use of neural networks alone cannot answer all the questions, and 

therefore the best approach would be the use of classical and modern population-genomic analyses with 

additional analyses using artificial neural networks. 
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Fig. 1 Structure of the ANN network for each locus; A - SsaD190; B - SsaD71; C - SSsp2213; D - OMM1064; E - Ssa85; F -  

Str73; G - Ssa410; H - Str60; I - Ssa408; J - SsoSL438; K - SSsp2216; L - Str15. 
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Fig. 2 Comparison of the results of forward-in-time method and the predicted values of the ANN for each locus (points within 

the marked area - accurate prediction; points outside the marked area - inaccurate prediction); A - SsaD190; B - SsaD71; C - 

SSsp2213; D - OMM1064; E - Ssa85; F - Str73; G - Ssa410; H - Str60; I - Ssa408; J - SsoSL438; K - SSsp2216; L - Str15 
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Table 3 ANN prediction of allele frequencies compared to forward-in-time method (statistical parameters; Wilcoxon signed rank test (paired test) and Kendall-Tau correlation coefficient were 
used for comparing predicted allele frequencies when results were treated as ranking data) 

†Proportion of adequately; inadequately predicted allele frequencies; ‡- not applicable

  SsaD190 SsaD71 SSsp2213 OMM1064 Ssa85 Str73 Ssa410 Str60 Ssa408 SsoSL438 SSsp2216 Str15 

Pearson's 

Chi-squared 

χ2 3.8257 7.5417 7.883 9.6548 0.10234 0 6.3403 0 5.4443 0 2.6709 0.032013 

df 15 20 23 40 4 2 21 2 22 4 19 6 

p-value 0.9983 0.9945 0.9986 1 0.9987 1 0.9991 1 0.9999 1 1 1 

Fisher's Exact p-value 0.9985 0.9956 0.9910 1 0.9994 1 0.9994 1 0.9999 1 1 1 

Kendall Tau 

p-value 0.0009296 0.0007219 0.09429 0.001317 0.03736 0.333 0.01716 0.3333 0.005547 0.01667 0.00593 0.004333 

z-value 3.311 3.3811 1.6732 3.2123 2.0818 3 2.3833 3 2.7735 10 2.7516 2.8529 

Tau -value 0.6937141 0.6373797 0.2971037 0.4406182 0.8888889 1 0.4331685 1 0.4929593 1 0.5279306 0.9486833 

Wilcoxon paired 

test 

p-value 0.523 0.8322 0.8473 0.2588 1 NA‡ 0.9644 NA‡ 0.8969 NA‡ 0.3936 1 

v-value 13 30 72 267 1 0 84 0 55 0 28 1 

Equality 

proportion test 

χ2 6.125 18.667 0.75 38.244 1.6 2.6667 2.2727 2.6667 12.522 6.4 12.1 10.826 

df 1 1 1 1 1 1 1 1 1 1 1 1 

p-value 0.01333 1.557*10-5 0.3865 6.243*10-10 0.2059; 0.1025 0.1317 0.1025 0.0004022 0.01141 0.0005042 0.001341 

%† 75%;25% 85.71%;14.29% 58.33%;41.67% 85.36%;14.64% 80%;20% 100% 63.63%;36.37% 100% 78.26%;21.74% 100% 80%;20% 100% 
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5 Conclusions 

Artificial neural network is a good method in assessing the validity of a forward-in-time simulation. The 

selection of optimizing parameters for ANN is essential for the application of an artificial neural network in 

allele frequency estimates. 
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