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Abstract 

This paper introduces a novel method for analyzing capacitated networks through the utilization of the concept 

of a “probability-ready expression” for a Boolean-based coherent pseudo-Boolean function. Our main concern 

is to assess the performance indexes of biology and ecology networks having fixed channel capacities. The 

technique introduced is based on constructing an exhaustive description (specifically, a value-entered 

Karnaugh map) for the pseudo-Boolean capacity function of the network via a generalization of the max-flow 

min-cut theorem. Then the function is expressed in a disjunctive-normal form (DNF) by obtaining the so-

called ‘contributions’ of each entered value via standard Karnaugh maps. The technique heavily relies on the 

fact that the pertinent function is a coherent one, and it is self-checking since it must produce a DNF of solely 

uncomplemented Boolean literals. The notorious Inclusion-Exclusion (IE) Principle is ruled out as a practical 

means for converting the DNF of the capacity function into its probabilistic expectation (its expected value). 

Instead, a method is proposed for converting the DNF of the capacity function to a ‘probability-ready 

expression’ (PRE), which can be easily transformed, on a one-to-one basis into a probability function. Two 

tutorial examples demonstrate the afore-mentioned method and illustrate its computational advantages over the 

exhaustive state enumeration method and the IE method.  
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1 Introduction 

Biology or ecology networks might be appropriately modeled as capacitated-flow networks having 

independent edge capacities, that are limited real-valued random variables. Usually, the modelling of a 
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network of this type is attained by the use of a stochastic graph G = (V, E) with V and E being sets of nodes 

(vertices) and branches (edges) of G, where one can distinguish a particular set K ك ܸ. The two extreme 

situations for K are those of (a) the source-to-terminal ሺݐݏሻ case when K contains only two nodes, the source s 

and the destination t (to be considered herein), or (b) when K contains all nodes of the graph for which (K=V), 

typically depicted as the overall reliability case. Alternatively, attention sometimes diverted from probabilistic 

connectivity to deterministic capacity in flow networks, wherein networkݐݏ capacity is computed as the 

maximum flow that is transmittable to the terminal node from the source node with no violation of branch 

capacity and under the assumption that all branches are functioning well. Under such a scheme of deterministic 

modeling, there is obviously deliberate implicit ignoring of the failure probabilities of both links and nodes. 

This paper is dealing with a composite performance index related to any network, that integrates the two afore-

mentioned connectivity and capacity aspects (Rushdi, 1987b, 1988, 1990; Rushdi and Alsalami, 2020a, 2020b; 

2021a, 2021b, 2021c; Alsalami and Rushdi, 2020). 

The topic of a capacitated or flow network is of a paramount concern in biology and ecology sciences 

(Ulanowicz, 2004; Surana et al., 2005; Pascual et al., 2006; Fath et al., 2007; Hagen et al., 2012; Baguette et al., 

2013; Bernabò et al., 2014; Rushdi and Hassan, 2015, 2016, 2020; VanderWaal and Ezenwa, 2016; Zhang, 

2018). A classical problem of ecology and biology networks (Rushdi and Alsalami, 2021a; Rushdi and Hassan, 

2015, 2016, 2020), is that of survivability (of a species), defined as the probability of successful migration of a 

certain organism escaping from critical source habitat patches and seeking refuge in specific destination habitat 

patches via heterogeneous deletable ecological corridors, possibly with uninhabitable stepping stones along the 

way. This problem might be reformulated in celebrated ecology and biology contexts other than that of 

migration, including those of: (a) dynamics of metapopulations, colonization, or invasion, (b) gene flow, (c) 

spread of infectious diseases, epidemics, or pandemics, and (d) energy transfer within food webs (Rushdi and 

Hassan, 2020). Connectivity solutions for this problem are already available, but a more powerful capacitated 

model for it is being sought. 

This paper introduces a novel method for analyzing capacitated networks that serve as convenient models 

for ecology and biology networks. The paper utilizes the modern concept of a “probability-ready expression” 

(PRE) for a Boolean-based coherent pseudo-Boolean function that represents the network capacity function. 

The technique introduced herein is based on constructing an exhaustive description (specifically, a value-

entered Karnaugh map or a multi-valued Karnaugh map) for the pseudo-Boolean capacity function of the 

network via a generalization of the max-flow min-cut theorem. Then the function is expressed in a disjunctive-

normal form (DNF) by obtaining the so-called ‘contributions’ of each entered value via standard Karnaugh 

maps. The technique heavily relies on the fact that the pertinent function is a coherent one (enjoying properties 

of causality, monotonicity and relevancy). Hence, the technique is self-checking since it must produce a DNF 

of solely uncomplemented Boolean literals. The notorious Inclusion-Exclusion (IE) Principle is ruled out as a 

practical means for converting the DNF of the capacity function into its probabilistic expectation (its expected 

value). Instead, a method is proposed for converting the DNF of the capacity function to a ‘probability-ready 

expression’ (PRE), which can be easily transformed, on a one-to-one basis into a probability function. Two 

tutorial examples demonstrate the afore-mentioned PRE method and illustrate its computational advantages 

over the exhaustive state enumeration method and the IE method. 

The remainder of this paper is structured as follows. Section 2 presents the underlying assumptions for our 

model as well as the notation used. Section 3 reviews the arithmetic and Boolean representations for a pseudo-

Boolean (pseudo-switching) function that models the general capacity function for the network. Section 4 

introduces the Inclusion-Exclusion (IE) Principle as an initially potential means for converting the DNF of the 

capacity function into its probabilistic expectation (its expected value). Section 4 shows that this principle is 

98



Network Biology, 2021, 11(2): 97-124 

 

 
IAEES                                                                                                                                                                          www.iaees.org 
 

not only computationally intensive, but also highly error-prone, and hence dismisses it as a suitable candidate 

method. Section 5 introduces a method for converting the DNF of the capacity function to a ‘probability-ready 

expression’ (PRE), which can be easily transformed, on a one-to-one basis into a probability function. In 

Sections 6 and 7, two tutorial examples are presented to demonstrate the PRE-method. Section 8 concludes the 

paper. 

 

2 Assumptions and Notation 

2.1 Assumptions 

(1) The physical network considered is modeled as a linear graph consisting of (a) transmission links of 

imperfect reliabilities and limited capacities and (b) nodes which are perfectly reliable and have 

unconstrained capacities.  

(2) Each link in the network has two states, a successful state and an unsuccessful one. Link successes are 

statistically independent. 

(3) Certain values are assigned to each link ሺ݅ , ݆ሻ for its reliability ݌௜௝ and capacity ܿ௜௝, where  0 ൑ ௜௝݌  ൑

1 , ܿ௜௝ ൒ 0. The link capacity sets an upper bound on link flow in either direction. 

(4) Every link in the network is directed. A bidirectional link is replaced by two directed links in 

antiparallel whose failures are completely dependent. These two links have equivalent reliabilities. 

However, they perhaps have different capacities. 

2.2 Notation 

݊ Number of branches (edges or links) in the logic diagram of the network.  

௜ܺ , ܺ௜  Indicator variables for successful and unsuccessful operation of branch ݅ . These are binary random 

variables that take only one of the two discrete real values 0 and 1; ௜ܺ ൌ 1  and ܺ௜ ൌ 0  if branch  ݅  is 

functioning, and ௜ܺ ൌ 0  and  ܺ௜ ൌ 1   if branch ݅  is failed. For a bidirectional branch ݆݅,  the anti-parallel 
successes are the same ௜ܺ௝ ൌ ௝ܺ௜ . 

ܵ , ܵ Indicator variables for successful and unsuccessful operation of the system; called system success and 

system failure, respectively. Successful operation can be equivalent to mere connectivity, or to the satisfaction 

of a certain flow requirement.  

,௜݌ ௜݌ :௜ Reliability and unreliability of branch݅ݍ ؠ Prሼ ௜ܺ ൌ 1 ሽ , ௜ݍ ؠ Pr൛ܺ௜ ൌ 1ൟ ൌ 1 െ  ௜ areݍ௜ܽ݊݀݌ ௜ . Both݌

real values in the closed real interval [0.0,1.0]. 

ܴ,ܷ Network reliability and unreliability; ܴ ൌ PrሼS ൌ 1ሽ ൌ , ሼܵሽܧ ܷ ൌ Pr൛ܵ  ൌ 1ൟ ൌ 1.0 െ ܴ, 0.0 ൑ ܴ ,
ܷ ൑ 1.0 . 

ܿ௜ Flow capacity of branch݅; ܿ௜ ൒ 0 . 

,ࢄ ,࢖   :n-dimensional vectors of branch successes, reliabilities and capacities ࢉ

ࢄ ൌ ሺ ଵܺܺଶ …ܺ௡ሻ்; ࢖ ൌ ሺ݌ଵ݌ଶ ; ௡ሻ்݌…  ࢉ ؠ ሺܿଵܿଶ … ܿ௡ሻ். 

ܶ A superscript that implies the transpose of a matrix or a vector. 

  ௞ State k of the network, denoted by a particular value of the n-dimensional vector of link successes X, whereࢄ

݇ ൌ  0,1,2,… , 2௡ െ 1 . 
,ሻ Capacity function of the branchሺ݅ࢄ௜௝ሺܥ ݆ሻ which is the maximum flow interconnection from node݅ to node݆ 

in state ࢄ that does not violate branch capacities, ܥ௜௝ሺࢄሻ ൒ 0. For an edgeሺ݅, ݆ሻ ׷   ௜௝ܥ ൌ ܿ௜௝ ௜ܺ௝ . Since ࢄ is a 

switching random vector, ܥ௜௝ሺࢄሻ is a discrete random variable of a probability mass function (pmf) of no more 

than 2௡ distinct values.     

ሺ݅ , ݆ሻ  A directed branch or edge from node ݅ to node ݆ .  If two or more such branches exist, they are 

distinguished by superscripts. 

,ݏ  Source node and terminal node ݐ
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,1௟ሻ|ࢄ௜௝ሺܥ ሻwhen the branch successࢄ௜௝ሺܥ 0௟ሻ The function|ࢄ௜௝ሺܥ ௟ܺis set to 1 or 0, respectively. Meanings of 

,1௟|ࢄ௜௝ሺܥ 1௠ሻ, etc. follow similarity. 

 

3 Boolean-Based Coherent Pseudo-Boolean Functions  

A Boolean (Switching) function ܵሺࢄሻ is a mapping ሼ0, 1ሽ௡ ՜ ሼ0, 1ሽ, i.e., ܵሺࢄሻ is any one particular assignment 

of the two functional values (0 or 1) for all possible 2௡ values of ࢄ.  By contrast, a pseudo- Boolean (pseudo-

switching) function ሻࢄሺܥ   is a mapping ሼ0, 1ሽ௡  ՜ ܴ  where ܴ  is the field of real numbers, i.e. ܥሺࢄሻ  is an 

assignment of a real number for each of the possible 2௡ values of ࢄ. Pseudo-Boolean functions play important 

roles for binary capacitated networks and other applications (Hammer et al., 1963; Rushdi, 1988; Foldes and 

Hammer, 2000a, 2000b; Rushdi and Ghaleb, 2016; Alsalami and Rushdi, 2020, 2021; Rushdi and Alsalami, 

2020a, 2021a, 2021c). This section briefly characterizes coherent pseudo-Boolean functions and hints on their 

role in the analysis of binary flow networks. 

The function ܥ௜௝ሺࢄሻ, which expresses the source-to-terminal capacity function of a binary flow network is 

characterized by the following algebraic decomposition of the function with respect to one of its input 

variables ௟ܺ for ݈ ൌ 1,2,… , ݊ (Rushdi, 1987a, 1988, 1990; Alsalami and Rushdi, 2020, 2021) 

ሻࢄ௜௝ሺܥ ൌ ܺ௟ܥ௜௝ሺࢄ| ௟ܱሻ ൅ ௟ܺܥ௜௝ሺ1|ࢄ௟ሻ 

             ൌ ሺ1 െ ௟ܺሻܥ௜௝ሺ0|ࢄ௟ሻ ൅ ௟ܺܥ௜௝ሺ1|ࢄ௟ሻ ൌ |ࢄ௜௝ሺܥ ௟ܱሻ ൅ 1௟ሻ|ࢄ௜௝ሺܥൣ െ |ࢄ௜௝ሺܥ ௟ܱሻ൧ ௟ܺ                                    (1) 

Equation (1) can be validated through proof by perfect induction of all cases or values of ࢄ, viz., ሼ0|ࢄ௟ሽ and 
ሼ1|ࢄ௟ሽ.  This decomposition relation of ܥ௜௝ሺࢄሻ can be used to assert many properties of it as a pseudo-Boolean 

function, including, in particular,  

(a) Proof of the fact that ܥ௜௝ሺࢄሻ is a multi-affine function (Rushdi, 1983, 1985b; Rushdi and Ghaleb, 2015; 

Rushdi and Rushdi, 2017), i.e., it is an algebraic function which is a first-degree polynomial in each of 

its variables. This means that, if fixed values are given to any ሺ݊ െ 1ሻ variables, the function reduces 

to a first-degree polynomial in the remaining variables. 

(b) Demonstration of the existence of a multitude of representations for ܥ௜௝ሺࢄሻ through the repeated 

application of (1) with respect to distinct input variables, thereby leading to an expansion tree (Rushdi 

and Ghaleb, 2016) for ܥ௜௝ሺࢄሻ.  Each level of the expansion tree represents the capacity function 

-ሻ via a variable-entered Karnaugh map (VEKM) (Rushdi, 1985a, 1987a, 2001; Rushdi and Alࢄ௜௝ሺܥ 

Yahya, 2000, 2001a, 2001b, 2002). The two-extreme levels of the tree are of particular interest. For 

the zeroth level of the tree (its root), the VEKM degenerates into the initial purely-algebraic 

expression. For the ݊th level of the tree (its leaves), the VEKM degenerates into a multi-valued 

Karnaugh map (MVKM) (Rushdi, 2018; Rushdi and Rushdi, 2018), also called a value-entered 

Karnaugh map. This is a Karnaugh map of the usual Boolean combinations of the input domain, but of 

entries that are multiple specific real elements rather than just the two binary values ሼ0, 1ሽ. 

(c) Manifestation of system coherence of the binary flow network as properties of causality, monotonicity, 

and component relevancy of the capacity function  ܥ௜௝ሺࢄሻ. Causality is expressed as 

  

௜௝ሺ૙ሻܥ ൌ 0,                                                                     (2a) 

 

௜௝ሺ૚ሻܥ ൌ ∑ ܿ௟
௡
௟ୀଵ                                                             (2b) 
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Monotonicity means that the function ܥ௜௝ሺࢄሻ is monotone non-decreasing in ࢄ , and hence, the 

coefficient of ௟ܺ in (1) is non-negative, i.e., 

 

1௟ሻ|ࢄ௜௝ሺܥ  ൒    |ࢄ௜௝ሺܥ ௟ܱሻ, ݈ ൌ 1,2, … , ݊.  (3)                        ࢄ ݈݈ܽ ݎ݋݂

 

Component relevancy means that the coefficient of ௟ܺin (1) is strictly positive for some particular 

value(s) of ࢄ, i.e., 

 

1௟ሻ|ࢄ௜௝ሺܥ ൐ |ࢄ௜௝ሺܥ ௟ܱሻ,   ݈ ൌ 1,2, … , ݊.  (4)                     ࢄ ݎ݈ܽݑܿ݅ݐݎܽ݌ ݁݊݋ ݐݏ݈ܽ݁ ݐܽ ݎ݋݂

 

(d) Deduction of the fact that ܥ௜௝ሺࢄሻ can be expressed in terms of a polynomial representation, i.e., as a 

sum-of-products form, where the terms ‘sum’ and ‘product’ here refer to their standard genuine 

meanings of real addition of real products, rather than to the logical addition (ORing) of logical 

products (ANDed literals). Moreover, monotonicity as given by (3) asserts that the sum-of-products 

expression of ܥ௜௝ሺࢄሻ involves only un-complemented literals ௟ܺ. Since the expectation of a (real) sum 

is the (real) sum of expectations, the mean (expected) value of the random function ܥ௜௝ሺࢄሻ, when 

written in a sum-of-products form, equates to; 

 

ሻൟࢄ௜௝ሺܥ൛ܧ ൌ  ሻ ,                                                         (5)࢖௜௝ൟሺܥ൛ܧ

and can be directly obtained (on a one-to-one basis) from ܥ௜௝ሺࢄሻ(s-o-p) by introducing the component 

means ݌௟ ൌ Eሼ ௟ܺሽ and  ݍ௟ ൌ  ሼܺ௟ሽ, in place of the corresponding Boolean arguments ௟ܺ, and ܺ௟ . Theܧ

polynomial representation has been conventionally used for handling pseudo-Boolean functions 

(Hammer et al., 1963; Rushdi, 1987b, 1988, 1990; Rushdi and Alsalami, 2020a, 2020b, 2021a, 2021b, 

2021c; Alsalami and Rushdi, 2020). 

Pseudo-Boolean functions are essentially equivalent to set functions, i.e., mappings of the subsets of a 

finite set into the real field (Foldes and Hammer, 2000b). The term pseudo-Boolean function reflects the 

similarity of these functions with the Boolean ones and was introduced by Hammer et al. (1963), and 

elucidated, explicated, and popularized by Hammer and Rudeanu (1968). In fact, a pseudo-Boolean function 

,ሻ is Boolean if its range is contained in ሼ0ࢄ௜௝ሺܥ 1ሽ. A necessary and sufficient condition for this is that the 

function ܥ௜௝ሺࢄሻ is equal to its square. Beside the polynomial representations of pseudo-Boolean functions, they 

also possess disjunctive normal forms (DNFs) as well as conjunctive normal forms (CNFs), in a striking 

similarity to Boolean functions (Foldes and Hammer, 2000a, 2000b). These forms are constructed in terms of 

the join (disjunction, ORing), meet (conjunction, ANDing) and complementation (negation) in ሼ0, 1ሽ௡ denoted 

by ࢄ ש ,ࢅ ࢄ ר ࢄ respectively, with the order relation ,ࢄ and ࢅ ൑ ,in ሼ0 ࢅ 1ሽ௡ being defined component-wise. 

The symbols שand ר also denote the maximum (max) and the minimum (min) operators in R. While the 

functions ܺ and ܺ are called Boolean literals, any function of the form ܽ ൅ ܾܺ or ܽ ൅ ܾܺ (where ܽ and ܾ are 

constants and ܾ is not equal to 0) is called a pseudo-Boolean literal. Every pseudo-Boolean literal has a unique 

expression ܽ ൅ ܾܺ or ܽ ൅ ܾܺ  such that ܾ ൐ 0 . Obviously ܽ is the minimum value of such a literal, and  ܽ ൅ ܾ 

is the maximum value of it. An elementary conjunction is the greatest lower bound of one or more literals 
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having the same minimum. Every pseudo-Boolean function ݂ can be expressed as a finite join (disjunction) of 

elementary conjunctions having the same minimum ܽ. Since the function ܥ௜௝ሺࢄሻ is monotone non-decreasing 

in ࢄ, then it can be expressed in a disjunctive normal form that contains no complemented variables. Since the 

function ܥ ൌ ௜௝ሺ૙ሻܥ  ሻis causal, with non-negative values, and attaining its minimum atࢄ௜௝ሺܥ  ൌ 0,  it can be 

expressed as a finite disjunction of elementary conjunctions, each having a zero minimum (Rushdi and 

Alsalami, 2021b; 2021c), namely 

 

ܥ ൌ ڀ  ܽ௜ ௜ܲ
௡೛
௜ୀଵ                                                                                                      (6) 

where ܽ௜ ௜ܲ is an elementary conjunction with a zero minimum, and   ௜ܲdepicts a standard Boolean term or 

product. The expression in (6) resembles a standard sum-of-products in the Boolean jargon, with the two 

exceptions that (a) a sum now depicts a join (or maximum) operator, and (b) a Boolean product   ௜ܲis now 

multiplied by a real weight  ܽ௜. 

4 The Inclusion-Exclusion Principle 

The Inclusion-Exclusion (IE) Principle allows the analyst to compute the probability of the union of ݊ events, 

or equivalently the expectation of the disjunction (ORing) of ݊ indicator variables (Rushdi and Hassan, 2016). 

For example, we can apply the IE Principle to the coherent capacity function (6) to obtain the following 

expression for its expectation 

ሽܥሼܧ ൌ ڀ൛ܧ  ܽ௜ ௜ܲ
௡೛
௜ୀଵ ൟ  ൌ  ∑ ሼܽ௜ܧ ௜ܲሽ െ ∑∑ ൛ܽ௜ܧ ௜ܲ ר ௝ܽ ௝ܲൟଵஸ௜ழ௝ஸ௡೛

௡೛
௜ୀଵ  ൅ ∑∑∑ ሼܽ௜ܧ ௜ܲ ר ௝ܽ ௝ܲ ଵஸ௜ழ௝ழ௞ஸ௡೛ר

ܽ௞ ௞ܲሽ  െ  . …൅    ሺെ1ሻ௡೛ିଵܧ൛ٿ ܽ௜ ௜ܲ
௡೛
௜ୀଵ ൟ        

 ൌ ∑ ሼܽ௜ܧ ௜ܲሽ െ ∑∑ ൛ሺܽ௜ܧ ר ௝ܽሻሺ ௜ܲ ר ௝ܲሻൟଵஸ௜ழ௝ஸ௡೛
௡೛
௜ୀଵ  ൅ ∑∑∑ ሼሺܽ௜ܧ ר ௝ܽ ר ܽ௞ሻሺ ௜ܲ ר ௝ܲ ଵஸ௜ழ௝ழ௞ஸ௡೛ר

௞ܲሻሽ  െ  . …൅    ሺെ1ሻ௡೛ିଵܧ൛ሺٿ ܽ௜
௡೛
௜ୀଵ ሻሺٿ ௜ܲ

௡೛
௜ୀଵ ሻൟ                                                                                (7) 

The number of terms in (7) is  

൫௡೛ଵ ൯ ൅ ൫௡೛ଶ ൯ ൅ ൫௡೛ଷ ൯ ൅ ൅ڮ ቀ௡೛௡೛ቁ ൌ  2
௡೛ െ 1    (8) 

i.e., it is exponential in the number of disjuncted (joined) terms. This means that if we apply IE to a formula 

with ݊௣ ൌ 7, we get 63expectation terms, and if we apply IE to a formula with ݊௣ ൌ 12 , we get 4095 

expectation terms. Note that the IE formula is subject to dramatic simplifications through the application of 

idempotency of AND ( ௜ܺ ר ௜ܺ ൌ ௜ܺ ), the application of the minimization or meet operator ൫ܽ௜ ר ௝ܽ൯ ൌ

min ሺܽ௜, ௝ܽሻ , and the imposition of term addition/cancellation. These simplifications usually resultin a 

substantial reduction of the final number of expectation terms. The IE formula is not our method of choice, not 

only because of its exponential temporal complexity, but also because of its high susceptibility to excessive 

round-off errors that might amount to catastrophic cancellation (Rushdi, 1986, 2010; Rushdi and Hassan, 2016; 

Rushdi and Amashah, 2021). 
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In passing, we note that if the terms ௜ܲ in equation (7) are statistically independent, then it reduces to  

ሽܥሼܧ      ൌ  ∑ ሼܽ௜ܧ ௜ܲሽ െ ∑∑ ሼܽ௜ܧ ௜ܲሽܧ൛ ௝ܽ ௝ܲൟଵஸ௜ழ௝ஸ௡೛
௡೛
௜ୀଵ  ൅  ∑∑∑ ሼܽ௜ܧ ௜ܲሽܧ൛ ௝ܽ ௝ܲൟܧሼܽ௞ ௞ܲሽଵஸ௜ழ௝ழ௞ஸ௡೛  െ … ൅

              ሺെ1ሻ௡೛ିଵ ∏ ሼܽ௜ܧ ௜ܲሽ
௡೛
௜ୀଵ          

  

ൌ  1 െ ∏ ሺ1 െ ሼܽ௜ܧ ௜ܲሽሻ
௡೛
௜ୀଵ        (9) 

Moreover, if the terms ௜ܲ in equation (7) are mutually disjoint, then (7) reduces to  

ሽܥሼܧ ൌ  ∑ ሼܽ௜ܧ ௜ܲሽ
௡೛
௜ୀଵ                                                                                                                                        (10) 

 

5 Probability-Ready Expressions for the DNA of A Pseudo-Boolean Functions  

To avoid the undesirable troubles of inclusion-exclusion, we convert the DNF in (6) into a disjoint one, i.e., 

into a probability-ready-expression (PRE) (Rushdi and Rushdi, 2017). The crucial step in this conversion is to 

disjoint two non-disjoint pseudo-Boolean products ܽଵ ଵܲ and ܽଶ ଶܲ into disjoint ones. Here ܽଵ and ܽଶ are real 

values, assumed to satisfy ܽଵ ൒ ܽଶ, ܽଵ ר ܽଶ ൌ ܽଶ, while ଵܲ and ଶܲ are Boolean products with ଵܲ ൌ ଵܶܤ and 

ଶܲ ൌ ଶܶܤ . Here, ܤ  is a product of literals shared between ଵܲ  and ଶܲ  while ଵܶ  is the product ݕଵݕଶ ௘ݕ…  of 

literals that appear in ଵܲ but not in ଶܲ. We assume further that the set of literals ሼݕଵ, ,ଶݕ … ,  ௘ሽ(whose productݕ

constitutes the product  ଵܶ) is not empty (otherwise, the Boolean product ଶܲ subsumes the Boolean product ଵܲ 

and hence ଶܲ is absorbed in  ଵܲ, so that we might say thatܽଶ ଶܲ is absorbed in ܽଵ ଵܲ(remember that ܽଵ ൒ ܽଶ), and, 

therefore, ܽଵ ଵܲ ש ܽଶ ଶܲ ൌ ܽଵ ଵܲሻ. We now use the IE principle to write 

ሼܽଵܧ ଵܲ ש ܽଶ ଶܲሽ ൌ ሼܽଵܧ ଵܲሽ ൅ ሼܽଶܧ ଶܲሽ െ ሼሺܽଵܧ ר ܽଶሻ ଵܲ ଶܲሽ 

ൌ ሼܽଵܧ ଵܲሽ ൅ ሼܽଶܧ ଶܶܤ ሽ െ ሼܽଶܧ ଵܶ ଶܶܤ ሽ 

ൌ ሼܽଵܧ ଵܲሽ ൅ ሼܽଶሺ1ܧ െ ଵܶሻ ଶܶܤሽ 

ൌ ሼܽଵܧ ଵܲሽ ൅ ሼܽଶܧ ଵܶഥ ଶܲሽ 

ൌ ሼܽଵܧ ଵܲሽ ൅ ଵതതതݕሼܽଶሺܧ ש  ଶതതതݕଵݕ ש ש … ଶݕଵݕ ௘ഥݕ… ሻ ଶܲሽ                                                                                     (11)   

ൌ ሼܽଵܧ ଵܲ ൅ ܽଶݕଵതതത ଶܲ ൅ ܽଶݕଵݕଶതതത ଶܲ ൅ ൅ڮ ܽଶݕଵݕଶ ௘ഥݕ ௘ିଵݕ… ଶܲሽ 

ൌ ሼܽଵܧ ଵܲ ש ܽଶݕଵതതത ଶܲ ש ܽଶݕଵݕଶതതത ଶܲ ש ש… ܽଶݕଵݕଶ ௘ഥݕ ௘ିଵݕ… ଶܲሽ                                                                         (12)                  

Equation (12) means that the expectation is preserved if we replace the non-disjoint disjunction  

ܽଵ ଵܲ ש ܽଶ ଶܲ                                                                                                                                                                        (13a) 
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                                   ൌ 3 ൅ 4ܺସ൫ܺଷ ൅ ܺଷܺହ൯                                                                                         (16a)     

,ሺ0ܥ ܺଶ, 1,1, ܺହሻ ൌ minሼ4, 3ܺଶ ൅ 4, 4 ൅ 5ܺହ, 3ܺଶ ൅ 4ሽ ൌ 4                                                               (16b) 

,ሺ1,0,1,1ܥ ܺହሻ ൌ minሼ14, 4, 14 ൅ 5ܺହ, 4 ൅ 5ܺହሽ ൌ 4                                                                         (16c)   

ሺ1,0,0,1,1ሻܥ ൌ minሼ10, 4, 19, 5ሽ ൌ 4                                                                                                   (16d)          

ሺ0,1,1,0,1ሻܥ ൌ minሼ4,3,5,12ሽ ൌ 3                                                                                                       (16e)                       

 

The results of (15) and (16) are displayed in the Karnaugh map of Fig. 3 which is equivalent to the one in Fig. 

2. The expected value of ܥ௦௧ሺࢄሻ is therefore obtained based on a one-to-one transformation of the polynomial 

representation of ܥ௦௧ሺࢄሻ, namely  

ሻሽࢄ௦௧ሺܥሼܧ ൌ ൫3 ൅ ଷ݌ସሺ݌4 ൅ ଶ݌ଵ݌ହሻ൯݌ଷݍ ൅ ସ݌ଷ݌ଵݍ4 ൅ ସ݌ଷ݌ଶݍଵ݌4 ൅ ହ݌ସ݌ଷݍଶݍଵ݌4 ൅                               ହ   (17)݌ସݍଷ݌ଶ݌ଵݍ3

An equivalent (albeit more compact) expression was obtained via the Karnaugh-map procedure of Rushdi 

(1988) as  

ሻሽࢄ௦௧ሺܥሼܧ ൌ ଷ݌ସሺ݌4 ൅ ହሻ݌ଷݍଵ݌ ൅ ଵ݌ଶሺ݌3 ൅                ହሻ.                                                                         (18)݌ସݍଷ݌ଵݍ

Equation (18) might be rewritten as an all-݌ formula by substituting each ݍ௜ ൌ 1 െ   ௜ to obtain݌

ሻሽࢄ௦௧ሺܥሼܧ ൌ ସ݌ଷ݌4 ൅ ହ݌ସ݌ଵ݌4 െ ହ݌ସ݌ଷ݌ଵ݌4 ൅ ଶ݌ଵ݌3 ൅ ହ݌ଷ݌ଶ݌3 െ ହ݌ଷ݌ଶ݌ଵ݌3 െ ହ݌ସ݌ଷ݌ଶ݌3 ൅

 ହ                                                                                                                                              (19)݌ସ݌ଷ݌ଶ݌ଵ݌3

We now demonstrate the novel contribution of this paper by constructing a DNF for ܥ௦௧ሺࢄሻ by adapting 

procedures of the variable-entered Karnaugh map in (Rushdi, 1985a; 1987; 2001; 2018) to the value-entered 

Karnaugh map in Fig. 2. The function ܥ௦௧ሺࢄሻ is the weighted disjunction of the values ݒ entered in the map, 

where each entered value ݒ is weighted by its ‘contribution’ ݋ܥሺݒሻ, namely  

ሻࢄ௦௧ሺܥ ൌ ሻݒሺ݋ܥݒ୴׊  ൌ ሺ7ሻ݋ܥ 7 ש  ሺ4ሻ݋ܥ 4  ש            ሺ3ሻ                                                                          (20)݋ܥ 3 

The contribution of ݒ is a function of ࢄrepresented by a standard Karnaugh map derived from the original or 

parent map for ܥ௦௧ሺࢄሻ (the one in Fig. 2). In the map for ݋ܥሺݒሻ, a cell is entered with 1 if its entry in the parent 

map is ݒ, entered with a don’t care (d) if its entry in the parent map is greater than ݒ, and entered with 0 

otherwise. Figure 4 displays the maps for  ݋ܥሺ3ሻ,  ሺ7ሻ to be used in conjunction with Fig. 2. The݋ܥ ሺ4ሻ and݋ܥ

coverage in these maps seeks minimality rather than completeness. In fact, we ignore all-d loops (called 

absolutely eliminable loops) in the coverage of  ݋ܥሺ3ሻ. The final minimal DNF for ܥ௦௧ሺࢄሻ is given by 

 

ሻࢄ௦௧ሺܥ ൌ 7ሺ ଵܺܺଶܺଷܺସ ש ଵܺܺଶܺସܺହሻ ש 4ሺܺଷܺସ ש  ଵܺܺସܺହሻ ש 3ሺ ଵܺܺଶ ש ܺଶܺଷܺହሻ                                  (21)       

We reiterate that the operator ‘ש’ now represents the ‘max’ operator over the real field ܴ. Obtaining the 

expectation of ܥ௦௧ሺࢄሻ is not as easy as before, since it might involve the use of the notorious Inclusion-
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Exclusion (IE) Principle (Rushdi, 1986, 2010; Rushdi and Hassan, 2016; Rushdi and Amashah, 2021). The IE 

formula with ݊௣ ൌ 7 has63expectation terms, namely 

ሻሽࢄ௦௧ሺܥሼܧ ൌ ሼ7ܧ ଵܺܺଶܺଷܺସሽ ൅ ሼ7ܧ ଵܺܺଶܺସܺହሽ ൅ ሼ4ܺଷܺସሽܧ ൅ ሼ4ܧ ଵܺܺସܺହሽ ൅ ሼ3ܧ ଵܺܺଶሽ ൅ ሼ3ܺଶܺଷܺହሽܧ

െ ሼሺ7ܧ ר 7 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሽ െ ሼሺ7ܧ ר 4ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሽ

െ ሼሺ7ܧ ר 4ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺସܺହሻሽ െ ሼሺ7ܧ ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶሻ

െ ሼሺ7ܧ ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺܺଶܺଷܺହሻ െ ሼሺ7ܧ ר 4ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሽሻ

െ ሼሺ7ܧ ר 4ሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሽ െ ሼሺ7ܧ ר 3ሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺଶሻሽ

െ ሼሺ7ܧ ר 3ሻሺ ଵܺܺଶܺସܺହሻሺܺଶܺଷܺହሻሽ െ ሼሺ4ܧ ר 4ሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሽ

െ ሼሺ4ܧ ר 3ሻሺܺଷܺସሻሺ ଵܺܺଶሻሽ െ ሼሺ4ܧ ר 3ሻሺܺଷܺସሻሺܺଶܺଷܺହሻሽ െ ሼሺ4ܧ ר 3ሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ

െ ሼሺ4ܧ ר 3ሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ െ ሼሺ3ܧ ר 3ሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ 

൅ ܧሼሺ7 ר 7 ר 4 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሽ ൅ ሼሺ7ܧ  ר 7 ר 4 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሽ

൅ ሼሺ7ܧ  ר 7 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺଶሻሽ

൅ ሼሺ7ܧ  ר 7 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 4 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺଶሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ7ܧ  ר 3 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 4 ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺଶሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ

൅ ሼሺ7ܧ  ר 4 ר 3 ሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ 

൅ ܧሼሺ7 ר 3 ר 3 ሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ ൅ ሼሺ4ܧ  ר 4 ר 3 ሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ 

൅ ܧሼሺ4 ר 4 ר 3 ሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ ൅ ሼሺ4ܧ  ר 3 ר 3 ሻሺܺଷܺସሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

൅ ሼሺ4ܧ  ר 3 ר 3 ሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 7 ר  4 ר 4ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሽ

െ ሼሺ7ܧ  ר 7 ר 4 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺଶሻሽ

െ ሼሺ7ܧ  ר 7 ר  4 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 7 ר 4 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ 
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െ ܧሼሺ7 ר 7 ר 4 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 7 ר 3 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 4 ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ

െ ሼሺ7ܧ  ר 4 ר 4 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 4 ר 3 ר 3 ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 4 ר 3 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 4 ר 4 ר 3ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ

െ ሼሺ7ܧ  ר 4 ר 4 ר 3ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ

െ ሼሺ7ܧ  ר 4 ר 3 ר 3ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ

െ ሼሺ4ܧ  ר 4 ר 3 ר 3ሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ 

൅ ܧሼሺ7 ר 7 ר  4 ר 4 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሽ ൅ ሼሺ7ܧ  ר 7 ר  4 ר 4 ר

3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺܺଶܺଷܺହሻሽ ൅

ሼሺ7ܧ  ר 7 ר  4 ר 3 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ ൅

ሼሺ7ܧ  ר 7 ר  4 ר 3 ר 3ሻሺ ଵܺܺଶܺଷܺସሻሺ ଵܺܺଶܺସܺହሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ ൅ ሼሺ7ܧ  ר 4 ר  4 ר 3 ר

3ሻሺ ଵܺܺଶܺଷܺସሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ ൅

ሼሺ7ܧ  ר 4 ר  4 ר 3 ר 3ሻሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ െ

ሼሺ7ܧ ר 7 ר 4 ר 4 ר 3 ר 3ሻሺ ଵܺܺଶܺଷܺସሻ ሺ ଵܺܺଶܺସܺହሻሺܺଷܺସሻሺ ଵܺܺସܺହሻሺ ଵܺܺଶሻሺܺଶܺଷܺହሻሽ                         (22)  

Equation (22) can be reduced to (19) after repeated application of the meet or minimization operator ൫ܽ௜ ר

௝ܽሻ ൌ min ሺܽ௜, ௝ܽሻ and the idempotency operator ሺ ௜ܺ ௜ܺ ൌ ௜ܺሻ, and after extremely tedious enumerations. We 

now apply the disjointing procedure implied by (13) to (21) so as to gradually obtain the final expectation  

ሻሽࢄ௦௧ሺܥሼܧ ൌ ሼ7ሺܧ ଵܺܺଶܺଷܺସ ש ଵܺܺଶܺସܺହሻ ש 4ሺܺଷܺସ ש  ଵܺܺସܺହሻ ש 3ሺ ଵܺܺଶ ש ܺଶܺଷܺହሻሽ 

ൌ ሼ7൫ܧ ଵܺܺଶܺଷܺସ ש ଵܺܺଶࢄ૜ܺସܺହ൯ ש 4൫ܺଷܺସ ש  ଵܺࢄ૜ܺସܺହ൯ ש 3൫ ଵܺܺଶ ש  ૚ܺଶܺଷܺହ൯ሽࢄ

ൌ ሼ7൫ܧ ଵܺܺଶܺଷܺସ ש ଵܺܺଶࢄ૜ܺସܺହ൯ ש 4൫ܺଷܺସሺࢄ૚ ש ૛ሻࢄ૚ࢄ ש  ଵܺࢄ૛ࢄ૜ܺସܺହ൯

ש 3൫ ଵܺܺଶሺࢄ૝ ש ૞ሻࢄ૝ࢄ૜ࢄ ש  ૝ܺହ൯ሽࢄ૚ܺଶܺଷࢄ

ൌ ൛7൫ܧ ଵܺܺଶܺଷܺସ ש ଵܺܺଶࢄ૜ܺସܺହ൯ ש 4൫ࢄ૚ܺଷܺସ ש ૛ܺଷܺସ൯ࢄ૚ࢄ ש 4൫ ଵܺࢄ૛ࢄ૜ܺସܺହ൯ ש 3൫ ଵܺܺଶࢄ૝ ש

ଵܺܺଶࢄ૜ࢄ૝ࢄ૞൯ ש 3൫ࢄ૚ܺଶܺଷࢄ૝ܺହ൯ൟ                                                                                                        (23)  

ൌ ସ݌ଷ݌ଶ݌ଵ݌7 ൅ ହ݌ସ݌૜ࢗଶ݌ଵ݌7 ൅ ସ݌ଷ݌૚ࢗ4 ൅ ସ݌ଷ݌૛ࢗଵ݌4 ൅ ହ݌ସ݌૜ࢗ૛ࢗଵ݌4 ൅ ૝ࢗଶ݌ଵ݌3 ൅ ૞ࢗସ݌૜ࢗଶ݌ଵ݌3 ൅

 ହ                                                                                                                                          (24)݌૝ࢗଷ݌૛࢖૚ࢗ3

The result in (24) can be shown to be equivalent to the earlier one in (18). Equation (23) might also be 

obtained from (20) if the contributions therein are interpreted as disjoint-loop coverings for the asserted cells 

only (See Fig. 5). 
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ሻࢄ௦௧ሺܥ ൌ min ሺ ܿଵ ଵܺ ൅ ܿଶܺଶ , ܿ଺ܺ଺ ൅ ܿ଻ܺ଻ , ܿସܺସ ൅ ܿଷܺଷ ൅ ܿଶܺଶ  ,

ܿସܺସ ൅ ܿହܺହ ൅ ܿ଻ܺ଻ , ܿଵ ଵܺ ൅ ܿଷܺଷ ൅ ܿହܺହ ൅ ܿ଻ܺ଻  , ܿଶܺଶ ൅ ܿଷܺଷ ൅ ܿହܺହ ൅ ܿ଺ܺ଺ ሻ    

 

              ൌ minሺ 6 ଵܺ ൅ 7ܺଶ , 3ܺ଺ ൅ 4ܺ଻ , 10ܺସ ൅ 4ܺଷ ൅ 7ܺଶ  , 10ܺସ ൅ 5ܺହ ൅ 4ܺ଻ , 6 ଵܺ ൅ 4ܺଷ ൅ 5ܺହ ൅ 4ܺ଻ ,

7ܺଶ ൅ 4ܺଷ ൅ 5ܺହ ൅ 3ܺ଺ሻ                                                                                                                  (25) 

 

We note that the capacity function in (25) might be expanded through a repeated application of (1) with respect 

to the following convenient set of non-overlapping (disjoint) paths 

ሼܺଶܺ଻,   ଵܺܺଶܺଷܺ଻,  ܺଶܺହܺ଺ܺ଻,   ଵܺܺଶܺଷܺସܺ଺,   ଵܺܺଶܺଷܺହܺ଺ܺ଻,  ܺଶܺଷܺସܺହܺ଺ܺ଻,   ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻,

ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻, ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻ ሽ as 

ሺܥ ଵܺ, ܺଶ, ܺଷ, ܺସ, ܺହ, ܺ଺, ܺ଻ሻ ൌ ሺܥ  ଵܺ, 1, ܺଷ, ܺସ, ܺହ, ܺ଺, 1ሻܺଶܺ଻ ൅ ,ሺ1,0,1ܥ  ܺସ, ܺହ, ܺ଺, 1ሻ  ଵܺܺଶܺଷܺ଻ ൅

ሺܥ ଵܺ, 1, ܺଷ, ܺସ, 1,1,0ሻܺଶܺହܺ଺ܺ଻ ൅ ,ሺ1,0,0,1ܥ  ܺହ, 1, ܺ଻ሻ  ଵܺܺଶܺଷܺସܺ଺ ൅ ,ሺ1,0,1ܥ  ܺସ, 1,1,0ሻ  ଵܺܺଶܺଷܺହܺ଺ܺ଻ ൅

ሺܥ ଵܺ, 1,1,1,0,1,0ሻܺଶܺଷܺସܺହܺ଺ܺ଻ ൅ ሺ1,0,1,1,0,1,0ሻܥ  ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻ ൅

 ሺ1,1,0,1,0,1,0ሻܥ ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻ ൅ ሺ1,0,0,1,1,0,1ሻܥ  ଵܺܺଶܺଷܺସܺହܺ଺ܺ଻                                               (26)                     

In the disjoint arithmetic sum of products (26), arithmetic addition (൅) might be replaced with the maximum 

operation (שሻ. The pertinent coefficients or subfunctions in (26) are expressed explicitly as restrictions of (25) 

ሺܥ ଵܺ, 1, ܺଷ, ܺସ, ܺହ, ܺ଺, 1ሻ ൌ minሺ 6 ଵܺ ൅ 7 , 3ܺ଺ ൅ 4 , 10ܺସ ൅ 4ܺଷ ൅ 7  , 10ܺସ ൅ 5ܺହ ൅ 4 , 6 ଵܺ ൅ 4ܺଷ ൅

5ܺହ ൅ 4 , 7 ൅ 4ܺଷ ൅ 5ܺହ ൅ 3ܺ଺ሻ ൌ 4 ൅ 3ܺ଺ ቀܺହ ൅ ܺସܺହ൫ ଵܺ ൅ ܺଵܺଷ൯ቁ                                                    (27a) 

,ሺ1,0,1ܥ ܺସ, ܺହ, ܺ଺, 1ሻ ൌ minሺ 6 , 3ܺ଺ ൅ 4 , 10ܺସ ൅ 4  , 10ܺସ ൅ 5ܺହ ൅ 4 , 14 ൅ 5ܺହ , 4 ൅ 5ܺହ ൅ 3ܺ଺ሻ ൌ 4 ൅

2ܺସܺ଺                                                                                                                                                                                  (27b) 

ሺܥ ଵܺ, 1, ܺଷ, ܺସ, 1,1,0ሻ ൌ minሺ 6 ଵܺ ൅ 7 , 3 , 10ܺସ ൅ 4ܺଷ ൅ 7  , 10ܺସ ൅ 5 , 6 ଵܺ ൅ 4ܺଷ ൅ 5 , 15 ൅ 4ܺଷሻ ൌ

3                                                                                                                                                                                            (27c) 

,ሺ1,0,0,1ܥ ܺହ, 1, ܺ଻ሻ ൌ minሺ 6 , 3 ൅ 4ܺ଻ , 10  , 10 ൅ 5ܺହ ൅ 4ܺ଻ , 6 ൅ 5ܺହ ൅ 4ܺ଻ , 5ܺହ ൅ 3 ሻ ൌ 3 ൅

3ܺହܺ଻                                                                                                                                                                                  (27d) 

,ሺ1,0,1ܥ ܺସ, 1,1,0ሻ ൌ minሺ 6 , 3 , 10ܺସ ൅ 4  , 10ܺସ ൅ 5 , 15 , 12 ሻ ൌ3                                                            (27e) 

ሺܥ ଵܺ, 1,1,1,0,1,0ሻ ൌ minሺ 6 ଵܺ ൅ 7 , 3 , 21  , 10 , 6 ଵܺ ൅ 4 , 14 ሻ ൌ 3                                                         (27f) 

ሺ1,0,1,1,0,1,0ሻܥ ൌ minሺ 6 , 3 , 14  , 10 , 10 , 7 ሻ ൌ 3                                                                                            (27g) 

ሺ1,1,0,1,0,1,0ሻܥ ൌ minሺ 13 , 3 ,17  , 10 , 6 ,10 ሻ ൌ 3                                                                                            (27h) 

ሺ1,0,0,1,1,0,1ሻܥ ൌ minሺ 6 ,4 , 10  , 19 , 15 , 5 ሻ ൌ 4                                                                                              (27i) 

113



Network Biology, 2021, 11(2): 97-124 

 

 
IAEES                                                                                                                                                                          www.iaees.org 
 

The results of (26) and (27) are displayed in the Karnaugh map of Fig. 8, which is equivalent to the one in Fig. 

7. The expected value of ܥሺࢄሻ ൌ  ሻ is therefore obtained based on a one-to-one transformation of theࢄ௦௧ሺܥ

polynomial representation of ܥ௦௧ሺࢄሻ, namely  

ሻሽࢄ௦௧ሺܥሼܧ ൌ ቀ4 ൅ ହ݌଺൫݌3 ൅ ଵ݌ହሺݍସ݌ ൅ ଷሻ൯ቁ݌ଵݍ ଻݌ଶ݌ ൅ ሺ4 ൅ ଻݌ଷ݌ଶݍଵ݌଺ሻ݌ସ݌2 ൅ ଻ݍ଺݌ହ݌ଶ݌3 ൅ ሺ3 ൅

଺݌ସ݌ଷݍଶݍଵ݌଻ሻ݌ହ݌3 ൅ ଻ݍ଺݌ହ݌ଷ݌ଶݍଵ݌3 ൅ ଻ݍ଺݌ହݍସ݌ଷ݌ଶ݌3 ൅ ଻ݍ଺݌ହݍସ݌ଷ݌ଶݍ ଵ݌3 ൅ ଻ݍ଺݌ହݍସ݌ଷݍଶ݌ଵ݌3 ൅

 ଻                                                                                                                                                           (28)݌଺ݍହ݌ସ݌ଷݍଶݍଵ݌4

An equivalent (albeit looking different and slightly more compact) expression might be obtained via the 

Karnaugh map procedure in Rushdi (1988) as  

ሻሽࢄ௦௧ሺܥሼܧ ൌ ଶ݌଻൫݌4 ൅ ଺ݍଷሺ݌ଶሺݍଵ݌ ൅ ଺ሻ݌ହݍସݍ ൅ ଺ሻ൯ݍହ݌ସ݌ଷݍ ൅ ଺݌3 ቀ݌ଶሺ݌ହ ൅ ହሻݍସ݌ଷ݌ ൅ ଷݍଵሺ݌ହ൫ݍସ݌ ൅

ଶሻ൯ݍ ൅ ହ݌ଷ݌ଶ൫ݍଵ݌ ൅ ହ݌଻ሺ݌ସ݌ ൅ ହሻ൯ቁݍଷ݌ ൅  ଻.                                                                   (29)݌଺݌ହ݌ସݍଷ݌ଶݍଵ݌

Equation (29) might be rewritten as an all-݌ formula by substituting each ݍ௜ ൌ 1 െ   ௜ to obtain݌

ሻሽࢄ௦௧ሺܥሼܧ ൌ ଻݌4 ൬݌ଶ ൅ ଵሺ1݌ െ ଶሻ݌ ቀ݌ଷ൫ሺ1 െ ଺ሻ݌ ൅ ሺ1 െ ହ݌ െ ସ݌ ൅ ଺൯݌ହሻ݌ସ݌ ൅ ହሺ1݌ସ݌ െ ଷ݌ െ ଺݌ ൅

଺ሻቁ൰݌ଷ݌ ൅ ଺݌3 ൬݌ଶ൫݌ହ ൅ ସሺ1݌ଷ݌ െ ହሻ൯݌ ൅ ସሺ1݌ െ ହሻ݌ ቀ݌ଵ൫ሺ1 െ ଷሻ݌ ൅ ሺ1 െ ଶሻ൯ቁ݌ ൅ ଵሺ1݌ െ ଶሻ݌ ቀ݌ଷ݌ହ ൅

ହ݌଻൫݌ସ݌ ൅ ଷሺ1݌ െ ହሻ൯ቁ൰݌ ൅ ଻൫1݌଺݌ହ݌ଷ݌ଵ݌ െ ଶ݌ െ ସሺ1݌ ൅  ଶሻ൯                                                                     (30)݌

We now construct a DNA for ܥ௦௧ሺࢄሻ by adapting procedures of the variable-entered Karnaugh map in (Rushdi, 

1985a, 1987a, 2001; Rushdi and Al-Yahya, 2000, 2001b) to the value-entered Karnaugh map in Fig. 7. The 

function ܥ௦௧ሺࢄሻ is the weighted disjunction of the values ݒ entered in the map, where each entered value ݒ is 

weighted by its ‘contribution’ ݋ܥሺݒሻ, namely  

ሻࢄ௦௧ሺܥ ൌ ሻݒሺ݋ܥݒ୴׊  ൌ ሺ7ሻ݋ܥ 7  ש ሺ6ሻ݋ܥ 6  ש ሺ4ሻ݋ܥ 4 ש                          ሺ3ሻ                                                        (31)݋ܥ 3

The contribution of ݒ  is a function of ࢄrepresented by a standard (conventional) Karnaugh map derived 

fromthe original or parent map for ܥ௦௧ሺࢄሻ (the one in Fig. 7). In the map for ݋ܥሺݒሻ, a cell is entered with 1 if 

its entry in the parent map is ݒ, entered with a don’t care (d) if its entry in the parent map is greater than ݒ, and 

entered with 0 otherwise. Fig. 9 displays the maps for  ݋ܥሺ3ሻ, ,ሺ4ሻ݋ܥ  .ሺ7ሻ to be derived from Fig݋ܥ ሺ6ሻ and݋ܥ

7. The coverage in these maps seeks a minimal sum rather than a complete sum (Blake canonical form). In fact, 

we ignore all-d loops (called absolutely eliminable loops) in the coverage of  ݋ܥሺ3ሻ ܽ݊݀ ݋ܥሺ6ሻ. The final 

minimal DNF for ܥ௦௧ሺࢄሻ is given by 

ሻࢄ௦௧ሺܥ ൌ 7ሺܺଶܺହܺ଺ܺ଻ ש ଵܺܺଶܺସܺ଺ܺ଻ ש ܺଶܺଷܺସܺ଺ܺ଻ሻ ש 6ሺ ଵܺܺସܺହܺ଺ܺ଻ ש ଵܺܺଷܺସܺ଺ܺ଻ሻ ש 4ሺܺଶܺ଻ ש

ଵܺܺଷܺ଻ ש ଵܺܺସܺହܺ଻ሻ ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻ                                                     (32) 
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We reiterate that the operator ‘ש’ now represents the ‘max’ operator over the real field ܴ .Obtaining the 

expectation of ܥ௦௧ሺࢄሻ  is not easy, as it might involve the use of the notorious Inclusion-Exclusion (IE) 

Principle, which now involves (212െ1ሻ ൌ 4095  terms. Due to space limitations, we refrain from writing the 

IE formula in full and write just a few terms, namely 

ሻሽࢄ௦௧ሺܥሼܧ

ൌ ሼ7ܺଶܺହܺ଺ܺ଻ሽܧ ൅ ሼ7ܧ ଵܺܺଶܺସܺ଺ܺ଻ሽ ൅ ሼ7ܺଶܺଷܺସܺ଺ܺ଻ሽܧ ൅ ሼ6ܧ ଵܺܺସܺହܺ଺ܺ଻ሽ ൅ ሼ6ܧ ଵܺܺଷܺସܺ଺ܺ଻ሽ

൅ ሼ4ܺଶܺ଻ሽܧ ൅ ሼ4ܧ ଵܺܺଷܺ଻ሽ ൅ ሼ4ܧ ଵܺܺସܺହܺ଻ሽ ൅ ሼ3ܧ ଵܺܺସܺ଺ሽ ൅ ሼ3ܺଶܺହܺ଺ሽܧ ൅ ሼ3ܺଶܺଷܺସܺ଺ሽܧ

൅ ሼ3ܧ ଵܺܺଷܺହܺ଺ሽ െ ሼሺ7ܧ ר 7ሻሺܺଶܺହܺ଺ܺ଻ሻሺ ଵܺܺଶܺସܺ଺ܺ଻ሻሽ…െڮ

െ ሼሺ7ܧ ר 7 ר 7 ר 6 ר 6 ר 4 ר 4 ר 4 ר 3 ר 3 ר 3

ר 3ሻሺܺଶܺହܺ଺ܺ଻ሻሺ ଵܺܺଶܺସܺ଺ܺ଻ሻሺܺଶܺଷܺସܺ଺ܺ଻ሻሺ ଵܺܺସܺହܺ଺ܺ଻ሻሺ ଵܺܺଷܺସܺ଺ܺ଻ሻሺܺଶܺ଻ሻሺ ଵܺܺଷܺ଻ሻሺ ଵܺܺସܺହܺ଻ሻ 

ሺ ଵܺܺସܺ଺ሻሺܺଶܺହܺ଺ሻሺܺଶܺଷܺସܺ଺ሻሺ ଵܺܺଷܺହܺ଺ሻሽ                                                                                                        (33)    

Equation (33) can be reduced to (30) after repeated application of the minimization operator ൫ܽ௜ ר ௝ܽ൯ ൌ

min ሺܽ௜, ௝ܽሻ and the idempotency operator ሺ ௜ܺ ௜ܺ ൌ ௜ܺሻ, and after tedious enumerations.  These are some of the 

essential troubles with IE manipulations, which consume a lengthy time in making extensive constructions, 

only to mainly destroy most of them later on. We now apply the disjointing procedure proposed in Section 4 to 

gradually obtain the following equivalent expressions, which tend to a PRE-expectation in the last step 

ሻሽࢄ௦௧ሺܥሼܧ ൌ E{7ሺܺଶܺହܺ଺ܺ଻ ש ଵܺܺଶܺସܺ଺ܺ଻ ש ܺଶܺଷܺସܺ଺ܺ଻ሻ ש 6ሺ ଵܺܺସܺହܺ଺ܺ଻ ש ଵܺܺଷܺସܺ଺ܺ଻ሻ ש

4ሺܺଶܺ଻ ש ଵܺܺଷܺ଻ ש ଵܺܺସܺହܺ଻ሻ ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻ} 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6ሺ ଵܺܺସܺହܺ଺ܺ଻ ש ଵܺܺଷܺସܺ଺ܺ଻ሻ

ש 4ሺܺଶܺ଻ ש ଵܺܺଷܺ଻ ש ଵܺܺସܺହܺ଻ሻ ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺܺସܺହܺ଺ܺ଻ ש ଵܺܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4ሺܺଶܺ଻ ש ଵܺܺଷܺ଻ ש ଵܺܺସܺହܺ଻ሻ ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4ሺܺଶܺ଻ ש ଵܺܺଷܺ଻ ש ଵܺܺସܺହܺ଻ሻ ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4൫ܺଶܺ଻ሺࢄ૟ ש ૟ሻࢄ૞ࢄ ש ଵܺࢄ૛ܺଷܺ଻ ש ଵܺࢄ૛ࢄ૜ܺସܺହܺ଻൯

ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4൫ܺଶܺ଻ሺࢄ૟ ש ૝ࢄ૟ሺࢄ૞ࢄ ש ૝ሻሻࢄ૜ࢄ૚ࢄ ש ଵܺࢄ૛ܺଷܺ଻ ש ଵܺࢄ૛ࢄ૜ܺସܺହࢄ૟ܺ଻൯

ש 3ሺ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ ש ܺଶܺଷܺସܺ଺ ש ଵܺܺଷܺହܺ଺ሻൟ 
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ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4൫ܺଶܺ଻ሺࢄ૟ ש ૝ࢄ૟ሺࢄ૞ࢄ ש ૝ሻሻࢄ૜ࢄ૚ࢄ ש ଵܺࢄ૛ܺଷܺ଻ሺࢄ૟ ש ૟ࢄ૝ࢄ ש ૟ሺ૙ሻሻࢄ૞ࢄ૝ࢄ

ש ଵܺࢄ૛ࢄ૜ܺସܺହࢄ૟ܺ଻൯

ש 3൫ ଵܺܺସܺ଺ ש ܺଶܺହܺ଺ሺࢄ૝ ש ૝ሻࢄ૚ࢄ ש  ૞ܺ଺ࢄ૚ܺଶܺଷܺସࢄ ש ଵܺࢄ૛ܺଷࢄ૝ܺହܺ଺൯ൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯

ש 4൫ܺଶܺ଻ሺࢄ૟ ש ૝ࢄ૟ሺࢄ૞ࢄ ש ૝ሻሻࢄ૜ࢄ૚ࢄ ש ଵܺࢄ૛ܺଷܺ଻ሺࢄ૟ ש ૟ሻࢄ૝ࢄ ש ଵܺࢄ૛ࢄ૜ܺସܺହࢄ૟ܺ଻൯

ש 3൫ ଵܺܺସܺ଺ሺࢄૠ ש ૠࢄ૞ࢄ૜ࢄ૛ࢄ ש ૠሺ૙ሻሻࢄ૞ࢄ૛ࢄ ש ܺଶܺହܺ଺ሺࢄ૝ࢄૠ ש ૠሻࢄ૝ࢄ૚ࢄ  

ש ૠࢄ૞ܺ଺ࢄ૚ܺଶܺଷܺସࢄ ש ଵܺࢄ૛ܺଷࢄ૝ܺହܺ଺ࢄૠ൯ൟ 

ൌ ൛7ሺܺଶܺହܺ଺ܺ଻ܧ ש    ଵܺܺଶܺସࢄ૞ܺ଺ܺ଻ ש  ૞ܺ଺ܺ଻ሻࢄ૚ܺଶܺଷܺସࢄ  ש  6൫ ଵܺࢄ૛ܺସܺହܺ଺ܺ଻ ש ଵܺࢄ૛ܺଷܺସࢄ૞ܺ଺ܺ଻൯ ש

4൫ܺଶܺ଻ሺࢄ૟ ש ૝ࢄ૟ሺࢄ૞ࢄ ש ૝ሻሻࢄ૜ࢄ૚ࢄ ש ଵܺࢄ૛ܺଷܺ଻ሺࢄ૟ ש ૟ሻࢄ૝ࢄ ש ଵܺࢄ૛ࢄ૜ܺସܺହࢄ૟ܺ଻൯ ש 3൫ ଵܺܺସܺ଺ሺࢄૠ ש

ૠሻࢄ૞ࢄ૜ࢄ૛ࢄ ש ܺଶܺହܺ଺ሺࢄ૝ࢄૠ ש ૠሻࢄ૝ࢄ૚ࢄ ש  ૠࢄ૞ܺ଺ࢄ૚ܺଶܺଷܺସࢄ ש ଵܺࢄ૛ܺଷࢄ૝ܺହܺ଺ࢄૠ൯ൟ.                     (34) 

Finally, we obtain a compact probability-domain expression by a one-to-one transformation of (34) 

ሻሽࢄ௦௧ሺܥሼܧ ൌ ଻݌଺݌ହ݌ଶ݌7 ൅ 7݌ଵ݌ଶ݌ସࢗ૞݌଺݌଻ ൅ ଻݌଺݌૞ࢗସ݌ଷ݌ଶ݌૚ࢗ7  ൅ ଻݌଺݌ହ݌ସ݌૛ࢗଵ݌6 ൅ ଻݌଺݌૞ࢗସ݌ଷ݌૛ࢗଵ݌6 ൅

଻݌૟ࢗଶ݌4    ൅ ଻݌଺݌૞ࢗ૝ࢗଶ݌4 ൅ ଻݌଺݌૝ࢗଷ݌૛ࢗଵ݌଻൅ 4݌૟ࢗଷ݌૛ࢗଵ݌଻൅ 4݌଺݌૞ࢗସ݌૜ࢗଶ݌૚ࢗ4 ൅ ଻݌૟ࢗହ݌ସ݌૜ࢗ૛ࢗଵ݌4 ൅

ૠࢗ଺݌ସ݌ଵ݌3 ൅ ଻݌଺݌૞ࢗସ݌૜ࢗ૛ࢗଵ݌3 ൅ ૠࢗ଺݌ହ݌૝ࢗଶ݌ 3 ൅ ૠࢗ଺݌ହ݌ସ݌ଶ݌૚ࢗ3 ൅ ૠࢗ଺݌૞ࢗସ݌ଷ݌ଶ݌૚ࢗ3 ൅

 ૠ                                                                                                                                                      (35)ࢗ଺݌ହ݌૝ࢗଷ݌૛ࢗଵ݌3

The result in (35) can be shown to be equivalent to the earlier one in (29). Figure 10 shows that (35) 

corresponds to a disjoint-loop covering for the map in Fig. 7. In fact, (35) might be obtained from (31) if the 

contributions therein are interpreted as a disjoint-loop covering for the asserted cells only (See Fig. 11). 
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8 Conclusions 

This paper introduces a novel method for analyzing capacitated flow networks through the utilization of the 

concept of a “probability-ready expression” for a Boolean-based coherent pseudo-Boolean function. This 

function serves as the capacity function of the pertinent flow network, which might be a biology or ecology 

network, in which the flowing ‘commodity’ might be migrating species, infectious pathogens, energy, 

nutrients, or genes. The method introduced is very useful since it generalizes Boolean techniques and tools for 

handling pseudo-Boolean functions. 
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