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Abstract 

A polynomial time algorithm for solving the minimum-cost network flow problem has been proposed in this 

paper. This algorithm is mainly based on the binary representation of capacities; it solves the minimum-cost 

flow problem in directed graph of n nodes and m directed arcs as a sequence of O(n2) shortest path problems 

on residual networks. The algorithm runs in O(n2mr) time, where r is the smallest integer greater than or 

equal to Log2B, and B is the largest arc capacity of the network. A generalization of this proposed algorithm 

has been also performed in order to solve the minimum-cost flow problem in a directed network subject to 

non-negative lower bound on the flow vector. A formulation of both the transportation and the assignment 

problems, as a minimal cost network flow problem has been also performed. A numerical example has been 

inserted to illustrate the use of the proposed method. 

 

Keywords minimal cost flow problem; bit-scaling algorithm; polynomial time algorithm; augmenting path 

method; transportation problem; assignment problem. 

 

 

 

 

 

 

 

 

1 Introduction 

The minimum-cost network flow problem is a generalization of the maximum flow problem. It is one of the 

most fundamental network flow problems. The problem has applications to a remarkably wide range of fields, 

including chemistry, physics, computer networking, most branches of engineering, manufacturing, public 

policy and social systems, scheduling and routing, telecommunications, and transportation (Ahuja et al., 1993). 

Different approaches have been proposed to solve the minimum- cost flow problem. The classical algorithm 

for minimum-cost flow problems is the Fulkerson's Out of Kilter algorithm (Ford and Fulkerson, 1962; Zhang, 

2017) which is essentially a primal method and runs in exponential time in the worst case. 

     There are a number of different polynomial time algorithms for the minimum-cost flow problem as: the 

capacity-scaling approach of Edmonds and Karp (1972) with running time     log logO m B m n n on 
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networks with n nodes, m arcs and maximum arc capacity B , the cost-scaling approach of Goldberg and 

Tarjan (1990) which runs in  
2

log log
n

O nm nC
m

 
 
 

 time on networks with maximum arc cost magnitude 

C , the double scaling of both costs and capacities of Ahuja et al. (1992) which solves the problem in 

 log log logO nm B nC time in the worst case, the strongly polynomial time of Orlin (1991) with running 

time bounded by     log logO m n m n n and the primal network simplex polynomial time of Orlin 

(1996) which runs in   2 2 2min log , logO n m nC n m n time at most. 

     One important idea is common to all first four of these algorithms, that of scaling or successive 

approximation. Scaling algorithms work by solving a sequence of sub-problems whose numeric parameters 

more and more closely approximate those of the original problem. A solution for one sub-problem helps to 

solve the next sub-problem in the sequence. 

     In this paper, an efficient polynomial algorithm is presented for determining the minimum-cost flow in a 

network with an upper bound 2( )O n m r on the number of arithmetic operations, where n , m  are the 

numbers of nodes and arcs of the network respectively and r is the smallest integer greater than or equal to 

log B , where B is the largest arc capacity of the network. The algorithm is basically based on the binary 

representation of capacities; it solves the minimum- cost flow problem as a sequence of 2( )O n shortest path 

problems on residual networks (Zhang, 2016). 

     A generalization of this proposed algorithm has been also performed, in this paper, in order to solve a 

minimum-cost flow problem in a network subject to nonnegative lower bound on the flow vector. 

A formulation of the transportation and the assignment problems as a minimal cost network flow problem 

has been also achieved in this paper. 

 
2 Preliminary Problem 

In this section we define the minimum-cost flow problem and introduce the terminology and notation used 

throughout the paper.  

2.1 Minimum-cost flow problem statement 

Consider a directed graph (digraph)  ,G V E  consisting of a set V of nodes and a set E  of arcs whose 

elements are ordered pairs of distinct nodes. A directed network is a directed graph with numerical values 

attached to its nodes and arcs. Let n V  and m E , we associate with each arc  ,k i j E  a 

nonnegative integral unit cost kc  and a nonnegative integral capacity kb . Frequently, we distinguish two 

special nodes in a graph, the source s and the sink t . An arc  ,k i j E  has two end points i  and j , the 

node i  is called the tail and node j  is called the head of arc k . The arc  ,k i j is said to emanate from 

node i , the arc  ,k i j is an outgoing arc of node i  and an incoming arc of node j . The arc adjacency 

list of node i , ( )E i , is defined as the set of arcs emanating from node i , i.e., 

 ( ) ( , ) :E i k i j E j V    . The degree of a node is the number of incoming and outgoing arcs at that 

node.   
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     The total cost of a flow x from source node s  to sink node t is k k
k E

c x

 and let its value be z . The 

problem is to find a maximum flow of minimum-cost among the source node s  and the sink node t  with 

value *z . 

     A flow is a value x  on arcs satisfying the following constraints: 

( , )ij ijx b i j E   (capacity constraint), 

( , )ij jix x i j E    (flow anti-symmetry constraint) and 

 0 \ ,ij
j V

x i V s t


   (flow conservation constraint). 

Call a flow x extreme if it is of minimum-cost among flows with value s tx . 

2.2 Labeling function 

A labeling function (potential function) u is defined as a function from nodes to the real numbers, i.e., 

:u V  R , where R denotes real numbers. The x and u  are called compatible if the flow x and labeling 

function u  together satisfy the following conditions: for arc ( , )i j E  

If ( ) 0,ij ij j ic c u u     then 0ijx  , 

If ( ) 0ij ij j ic c u u    , then ij ijx b , 

If ( ) 0ij ij j ic c u u    , then 0 ij ijx b  ,  

( )ij ij j ic c u u    is called the reduced cost of the arc ( , )i j . 

2.3 Residual network 

A residual network ( )G x  corresponding to a feasible flow x is defined as follows: for arc ( , )i j E  

If ij ijx b , then there is a forward arc (direct arc) ( , )i j has flow 0ijx   and reduced cost 

( ) 0ij ij j ic c u u    , 

If ij ijx b , then the arc ( , )i j is ignored, 

If 0ijx  , then there is a backward arc (reverse arc) ( , )j i  has flow 0ji ijx x   and reduced cost 

( ) 0ji ij j ic c u u     , 

If 0ijx  , then the arc ( , )j i is ignored. 

2.4 Artificial arc 

We introduced on network an additional arc ( , )t s has cost 0t sc  and capacity t sb   . 

 

3 Minimum-Cost Flow Algorithm with Zero Lower Bound on The Flow Vector 

This algorithm solves the minimum-cost flow problem in polynomial time with zero lower bound and b upper 

bound on the flow vector x  i.e. 0 k kx b   for all arcs 1,...,k m on the network  ,G V E , and also 

it is considered that kb   for all 1,...,k m .  

 

Initialization 

                      Set 
0

2
q

a a
k k

a

b b


   for all arcs 1,...,k m /binary system where 0a
kb  or 1/ 

                      Set : 1r q   

                      Set : 0iu   for all nodes 1,...,i n / 1, /s t n   

                      Set : 0kx   and : 0kb  for all arcs 1,...,k m  

                      Set : 0t sx   /total flow/ and : 0z  /total cost/ 

Iterations 

While(1) ( 1)r  , then do 

                       Set  : 1r r  and : 2z z  
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                       Set : 2k kx x  and : 2k kb b for all arcs 1,...,k m  

                       Set : 2t s t sx x  

                       Set : 1k   

          While(2) ( )k m , then do /scan arcs ( , )k i j / 

                       If(1) 1r
kb  , then do 

                              Let : 1k kb b   

                             If(2) ( ) 0k k j ic c u u    , then do / ( , )k i j , 0t sc  / 

                                    Do procedure ( , )D j i from j to i on the residual network ( )G x  

                                  If(3)   i p , then do 

                                        Set : 1k kx x   

                                        Set : 1l lx x   for all forward arcs l on the shortest path   of      

                                                                 reduced costs from j  to i in ( )G x  

                                         Set : 1gf gfx x   for all backward arcs ( , )l f g on the  

                                                                 shortest path    

                                         Set : kz z c        / ( )k k j ic c u u   with new node       

                                                                                                    potentials iu and ju / 

                                  End If(3) 

                                  If(4) ( ) 0k k j ic c u u     / with new node potentials iu and ju / 

                                       Set :e e iju u c  for all nodes 1,...,e n and e j  

                                  End If(4) 

                          End If(2) 

                          Do procedure ( , )D s t from s to t  on the new residual network ( )G x  

                           If(5)t p , then do 

                                        Set : 1t s t sx x   

                                        Set : 1l lx x   for all forward arcs l on the shortest path   of      

                                                                 reduced costs from s  to t in ( )G x  

                                         Set : 1gf gfx x   for all backward arcs ( , )l f g on the  

                                                                 shortest path    

                                         Set  : t sz z u u      /with new node potentials su and tu / 

                           End If(5) 

                       End If(1) 

              Set : 1k k   

          End While(2) 

End While(1) 

Set :i i su u u   for all 1,...,i n  

End the algorithm 

 

3.1 Procedure * *( , )D j i (A variant of Dijkstra's algorithm) 

This procedure gives the shortest path of reduced costs between *j  and *i on the defined residual network 

( )G x  based on Dijkstra’s algorithm 
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Initialization 

       Set :p  ,  

       Set  : 1,2,...,I n ,  

       Set 0g  ,  

       Set 
*

*

0
j

if j j
d

if j j

  
 

        for all 1,...,j n  

Iterations  

While ( )I  do 

         Let  : inf \ih d i I   

         If ( h   or *id g ) do 

              Set :id g  for all i I  

               Set :I   

        Else  do 

                Set :g h  

                 Find i I such that id g  

                 Set  : \I I i  and  :p p i    

                 For all j I ,such that ( , )i j  is an arc in the residual network, do 

                        If ( )j ijd g c   do      / 0ijc   reduced cost/ 

                             Set :j ijd g c   

                             Set ( ) :pred j i  

                       End If 

               End For all 

         End If 

End While   

Set :i i iu u d   for all 1,...,i n  

End the procedure 

  

Notes 

1. After the application of the procedure * *( , )D j i on the defined residual network, new potential function 

u will be re-determined. 

2. After the application of the procedure * *( , )D j i on the defined residual network, it is found that the set 

p  because *j p at least.  

3. After the application of the procedure * *( , )D j i  on the defined residual network, if *i p , then there is a 

path between *j  and *i  on the defined residual network else there is not any path between  *j  and *i  on 

the defined residual network. 

  

     The following procedure determines the shortest path of reduced costs defined by nodes on the defined 

residual network from *j to *i  in the case when there is a path between them i.e., *i p . 

3.2 Identification of the shortest path from *j  to *i  on the defined residual network 

 

Initialization  

            Set *:i i  
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            Set  : i   

Iterations 

While *( )i j  do 

           Set : ( )j pred i  

           Set :i j  

           Set  : i    

End While  

 

Comments 

1. It is to notice that, in pending the execution of the algorithm the compatibility conditions between the 

current flow x and the current potential function u  must be satisfied. In the contrary case it is necessarily 

to change the current potential function as follows: for arc ( , )i j E  

 If 0ijc   and ij ijx b , then we will change the node potentials to be:   :e e iju u c   for all 

1,...,e n and e j  

 If 0ijc   and 0ijx  , then we will change the node potentials to be:  :e e iju u c   for all 

1,...,e n and e i  

2. The procedure ( , )D j i is applied when 0ijc  , in this case, there are two possibilities, the first one is 

i p (there is a path  from j to i ) in this case, it is found that new oldz z  when the arc 

( , )t s  and new oldz z  when the arc ( , )t s  . The second one is i p in this case, z dos not 

change but the node potentials will be changed. 

3. When we apply the procedure ( , )D s t , there are also two possibilities, the first one is t p (there is a path 

from s to t ) in this case, it is found that new oldz z . The second one is t p , in this case, it is found 

that, z dos not change but the node potentials will be changed. 

4. The new reduced cost ( )ijc new is equal to the old reduced cost ( )ijc old minus the deference between 

jd and id because: for arc ( , )i j E  

           

( ) ( )

( ( ) ( ) )

( ( ) ( )) ( )

ij ij j i

ij j j i i

ij j i j i

c new c u u

c u old d u old d

c u old u old d d

  

    

    

 

           ( ) ( ) ( )ij ij j ic new c old d d    

5. The reduced cost jic of the arc ( , )j i  is equal to the inverse reduced cost ijc  of the arc ( , )i j and verse 

versa because: for arc ( , )i j E  
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( )

( )

( ( ))

( ( ))

ji ji i j

ij i j

ij i j

ij j i

ij

c c u u

c u u

c u u

c u u

c

  

   

   

   

 

 

3.3 Complexity of the algorithm with zero lower bound on the flow vector 

The time taken by the procedure * *( , )D j i , which is based on Dijkstra’s algorithm is 2( )O n arithmetic 

operations, where n  is the number of nodes in the network ( , )G V E .The maximum number of iterations 

of the algorithm is m r ,where m is the number of arcs in the network ( , )G V E and r is the smallest 

integer greater than or equal to log B , where B is the largest arc capacity of the network. The procedure 
* *( , )D j i is applied twice times in each iteration, then the time taken by the algorithm is at most 
2( )O n mr arithmetic operations. 

 

4 Minimum-Cost Flow Algorithm with Nonnegative Lower Bound on The Flow Vector 

This algorithm solves the minimum-cost flow problem in polynomial time with 0a   nonnegative lower 

bound and b upper bound on the flow vector x  i.e. 0 k k ka x b    for all arcs 1,...,k m on the 

network  ,G V E , and also it is considered that kb   for all 1,...,k m .  

It is supposed that there is a nonnegative lower bound 0a   on the flow x  in the network  ,G V E i.e. 

0 k k ka x b   this implies that 

0 k k k kx a b a     for all arcs 1,...,k m . 

Let k k ky x a   and *
k k kb b a   for all arcs 1,...,k m , which implies that k k kx y a  , 

*
k k kb b a  and *0 k ky b   for all arcs 1,...,k m . 

Using the conservation constraint, it can be see that 

1 1

n n

ij js
i s

x x
 

   for all nodes 1,...,j n                                                                          (1) 

From another hand, we have 

 
1 1 1

n n n

ij ij ij
i i i

x y a
  

     for all nodes 1,...,j n                                                              (2) 

1 1 1

n n n

js js js
s s s

x y a
  

     for all nodes 1,...,j n                                                              (3) 

Using (1), (2) and (3), it can be found that 

1 1

n n

ij js j
i s

y y w
 

    for all nodes 1,...,j n  

where 
1 1

n n

j js ij
s i

w a a
 

    for all nodes 1,...,j n  

     An arc of capacity jw  and zero cost is added in the node j where, 1,...,j n , we define also a new 

88



Network Biology, 2021, 11(2): 82-96 

 IAEES                                                                                     www.iaees.org  

source (super source) called *s and a new sink (super sink) called *t . 

     In the case of 0jw  , then an outgoing arc in the node j  of the form *( , )j t  is added where, its capacity 

is *

*
jjt

b w and its cost is * 0
jt

c   , in the case of 0jw  , then an incoming arc in the node j  of the form 
*( , )s j is added where, its capacity is *

*
js j

b w  and its cost is * 0
s j

c  , in the case of 0jw  , then there 

is not any arc added in the node j . These added arcs are at most n arcs called auxiliary arcs. A special arc of 

the form * *( , )t s is also added where, its capacity is * *

*

t s
b    and its cost is * * 0

t s
c  . 

     This new defined digraph will be denoted by * * *( , )G V E , where it is consisting of the same set of nodes 

V added to it the super source *s  and the super sink *t with * * 2V n n   , the same set of arcs E added 

to it all auxiliary arcs with * *E m , where *m m m n   and the two special arcs ( , )t s and * *( , )t s . 

     Let w is the sum of capacities of auxiliary arcs which have strictly positive capacities i.e. 

{ : 0}j

j
j V w

w w
 

  , and let xz denote the total cost of the flow x  with nonnegative lower bound on x and let 

yz  denote the total cost of the flow y with zero lower bound on y , then it can see that: 

 
1 1 1 1

1

m m m m

x k k k k k k k k k
k k k k

m

x y k k
k

z c x c y a c y c a

z z c a

   



    

 

   


 

Initialization 

               Set *

0

2
q

a a
k k

a

b b


   for all arcs *1,...,k m /binary system where 0a
kb  or 1/ 

               Set * : 1r q   

               Set : 0iu   for all nodes *1,...,i n * * * * */ 1, , 1, , 2 /s t n s n t n n n        

               Set : 0ky   and * : 0kb  for all arcs *1,...,k m  

               Set : 0t sy   /total flow/ and : 0yz  /total cost/ 

               Set * * : 0
t s

y   

               Set   
{ : 0}j

j
j V w

w w
 

   

Iterations 

While(1) *( 1)r  , then do 

                       Set * *: 1r r  and : 2y yz z  

                       Set : 2k ky y  and * *: 2k kb b for all arcs *1,...,k m  

                       Set : 2t s t sy y and * * * *: 2
t s t s

y y  

                       Set : 1k   

          While(2) *( )k m , then do /scan arcs ( , )k i j / 

                       If(1) 1r
kb  , then do 

89



Network Biology, 2021, 11(2): 82-96 

 IAEES                                                                                     www.iaees.org  

                              Let * *: 1k kb b   

                             If(2) ( ) 0k k j ic c u u    , then do / ( , )k i j , 0t sc  , * * 0
t s

c  / 

                                   Do procedure ( , )D j i from j to i on the residual network *( )G y           

                                  If(3)   i p , then do 

                                        Set : 1k ky y   

                                        Set : 1l ly y   for all forward arcs l on the shortest path      

                                                           of  reduced costs from j  to i in *( )G y  

                                         Set : 1gf gfy y   for all backward arcs ( , )l f g on the  

                                                           shortest path    

                                         Set :y y kz z c        / ( )k k j ic c u u   with new node       

                                                                                                    potentials iu and ju / 

                                  End If(3) 

                                  If(4) ( ) 0k k j ic c u u     / with new node potentials iu and ju / 

                                       Set :e e iju u c  for all nodes *1,...,e n and e j  

                                  End If(4) 

                          End If(2) 

                       Do procedure * *( , )D s t from *s to *t  on the new residual network *( )G y                                                      

                           If(5) *t p , then do 

                                    Set * * * *: 1
t s t s

y y   

                                    Set : 1l ly y   for all forward arcs l on the shortest path       

                                                            of reduced costs from *s  to *t in *( )G y  

                                   Set : 1gf gfy y   for all backward arcs ( , )l f g on the shortest  

                                                            path    

                                   Set  * *:y y t s
z z u u       /with new node potentials *s

u and *t
u / 

                          End If(5) 

                          Do procedure ( , )D s t from s to t  on the new residual network *( )G y  

                           If(6)t p , then do 

                                        Set : 1t s t sy y   

                                        Set : 1l ly y   for all forward arcs l on the shortest path       

                                                            of reduced costs from s  to t in *( )G y  

                                         Set : 1gf gfy y   for all backward arcs ( , )l f g on the  

                                                            shortest path    

                                         Set  :y y t sz z u u       /with new node potentials su and tu / 

                           End If(6) 

                       End If(1) 

              Set : 1k k   

          End While(2) 

End While(1) 

Set :i i su u u   for all 1,...,i n  

If (7) * *( )
t s

y w , then, the network ( , )G V E has no feasible flow 

Else    Set k k kx y a  for all arcs 1,...,k m  
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           Set *
k k kb b a   for all arcs 1,...,k m  

           Set 
1

m

x y k k
k

z z a c


   

End If(7) 

End the algorithm 

 

Notes 

1. The quantity 
{ : 0}j

j
j V w

w w
 

  is the maximum flow in the network * * *( , )G V E , then, we always have 

* *( )
t s

y w , where * *t s
y  is the flow in * * *( , )G V E . 

2. In the case when all auxiliary arcs in * * *( , )G V E are saturated, i.e. * *t s
y w , then the flow y is optimal 

in * * *( , )G V E  and consequently the flow x y a   is optimal in ( , )G V E . 

3. In the case when there are some auxiliary arcs in * * *( , )G V E are not saturated, i.e. * *t s
y w , then the 

flow y is optimal in * * *( , )G V E and consequently there is not any feasible flow x  in ( , )G V E . 

 

    Complexity of the algorithm with nonnegative lower bound on the flow vector: The time taken by the 

procedure * *( , )D j i , which is based on Dijkstra’s algorithm is * 2(( ) )O n arithmetic operations, where *n  is 

the number of nodes in the network * * *( , )G V E .The maximum number of iterations of the algorithm is 
* *m r ,where *m is the number of arcs in the network * * *( , )G V E and *r is the smallest integer greater 

than or equal to log B , where B is the largest arc capacity of the network * * *( , )G V E . The procedure 
* *( , )D j i is applied triple times in each iteration, then the time taken by the algorithm is at most 
* 2 * *(( ) )O n m r arithmetic operations.  

 

5 Minimum-Cost Flow Problem with Infinite Upper Bound on The Flow Vector 

Two cases have been treated before in this paper, the first one is when there are a zero lower bound and a finite 

upper bound on the flow vector x  i.e. 0 k kx b     for all 1,...,k m and the second case is when 

there are a nonnegative lower bound and a finite upper bound on the flow x  i.e. 0 k k ka x b      for 

all 1,...,k m .  

     Now, two additional cases will be treated, the first one is when there are a zero lower bound and an infinite 

upper bound on the flow x  i.e. 0 k kx b     for all 1,...,k m . The second case is when there are a 

nonnegative lower bound and an infinite upper bound on the flow x  i.e. 0 k k ka x b      for all 

1,...,k m . 

     In the case of 0 k kx b     for all 1,...,k m , we will do the following procedure: 

 

Procedure  

This procedure constructs an auxiliary network derived from the original network ( , )G V E and also tests if 

the original minimum-cost flow problem has a feasible solution or not. 

 

Initialization /auxiliary network/ 

For each arc ( , )i j E , then do 
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If ijb    then, there is a forward arc ( , )i j has a reduced cost 1ijc   

If ijb    then the arc ( , )i j is ignored 

Iteration 

Do procedure ( , )D s t  from s  to t on this auxiliary network. 

   If there is a path goes from s to t , i.e. t p , then the maximum flow is infinite and the minimum-cost flow 

problem does not have any finite feasible solution, else the maximum flow is upper bounded by the value of 

 ( , ): & \
ij

i j i p j V p

b
 

  . In this case we will change the infinity   in the original network ( , )G V E   by 

the value of   and solve it anew by the proposed algorithm. 

Now, in the case of 0 k k ka x b      for all 1,...,k m , we will change it to the case of 

*0 k ky b     for all 1,...,k m , where k k ky x a  and *
k k kb b a   for all 1,...,k m , and we 

repeat the same procedure used before in the first case. 

 

6 Formulating The Transportation and The Assignment Problems As A Minimal Cost Network Flow 

Problem 

The transportation and the assignment problems can be formulated as a minimum-cost network flow problem 

on a bipartite digraph  1 2 ,G V V V E   , where  1 11,...,V n is the set of sources, 

 2 1 1,...,V n n  is the set of sinks, withV n , and  1 2( , ) : ,E i j i V j V   is the set of arcs 

with E m . The unit shipping cost from 1i V to 2j V is ijc . Node 1i V has a positive integral supply 

io , and node 2j V has a positive integral demand of jh . The transportation problem is to find a flow 
mx R , that satisfies the supply-or-demand at minimum cost.  

     An artificial source ( )s has been added and artificial arcs of the form 1( , ) ( 1,..., )s i i n  have been also 

defined, they have capacities 1( 1,..., )si ib o i n  and costs 10 ( 1,..., )sic i n  . 

     An artificial sink ( )t has been added and artificial arcs of the form 1( , ) ( 1,..., )j t j n n   have been 

also defined, they have capacities 1( 1,..., )jt jb h j n n   and costs 10 ( 1,..., )jtc j n n   . 

     The arcs of the form ( , )i j 1 1( 1,..., , 1,..., )i n j n n    have capacities ijb  , where 

1

11 1

min ,
n n

i j
i j n

o h
  

 
  

 
  and costs ijc .  

when 1i jo h  for all 11,...,i n and 1 1,...,j n n  , then the problem is called the assignment 

problem.  

     The both, the transportation problem and the assignment problem can be easily solved by the proposed 

algorithm as a minimum-cost network flow problem, in polynomial time. 
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7 Conclusion 

Using the binary representation technique of capacities, a polynomial time algorithm for the minimum-cost 

flow problem has been developed in this paper. The algorithm runs in 2( )O n m r time, where n , m  are the 

numbers of nodes and arcs of the network ( , )G V E , respectively and r is the smallest integer greater than or 

equal to log B , where B is the largest arc capacity of the network. The algorithm solves the minimum-cost 

flow problem as a sequence of 2( )O n shortest path problems on residual networks. 

 A generalization of this algorithm has been also performed in order to solve a minimum-cost flow problem in 

a network with nonnegative lower bound on the flow vector. 

 

8 Illustrative Example 

The demonstration of the proposed algorithm for solving the minimum-cost flow problem will be done though 

the following numerical example presented analytically in Table 1 and graphically in Fig 1.  

 

 

Table 1 Arcs notations, arcs capacities, arcs costs and lower bounds on the flow vector. 

Arc 

( , )k i j

Arc tail 

i 

Arc head

j 

Arc 

capacity 

kb  

Arc cost

kc  

Flow lower 

bound 

1
ka  

Flow lower 

bound 

2
ka  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

1 

1 

1 

2 

2 

3 

3 

3 

3 

4 

4 

5 

5 

6 

7 

7 

8 

8 

9 

9 

10 

2 

3 

4 

3 

5 

4 

5 

6 

8 

6 

9 

7 

8 

8 

8 

11 

10 

11 

8 

10 

11 

50 

30 

15 

50 

25 

15 

45 

10 

15 

10 

20 

90 

10 

60 

10 

10 

10 

80 

20 

10 

10 

3 

6 

8 

2 

2 

2 

1 

3 

8 

1 

3 

9 

8 

5 

1 

2 

1 

4 

2 

3 

3 

15 

7 

5 

5 

3 

5 

4 

2 

4 

5 

4 

1 

5 

1 

2 

4 

3 

50 

4 

4 

3 

45 

25 

15 

20 

25 

15 

40 

10 

14 

9 

19 

33 

8 

40 

10 

5 

3 

60 

16 

5 

7 
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1 8

7

6
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4
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10

9

11

b=
50

,c=
3,

 a
=1

5

b=30,c=6, a=7

b=15,c=8, a=5

b=25,c=2, a=3b
=

5
0

,c=
2

, a
=

5
b

=
1

5
,c=

2
, a

=
5

b=45,c=1, a=4

b=10,c=3, a=2

b=10,c=1, a=5

b=20,c=3, a=4

b=90,c=9, a=1

b=10,c=8, a=5

b=15,c=8, a=4

b=60,c=5, a=1

b
=

1
0

,c=
1

, a
=

2

b=10,c=2, a=4

b=10,c=1, a=3

b=80,c=4, a=50

b
=

2
0

,c
=

2
, 

a
=

4

b=10,c=3, a=4

b=10,c=
3, a

=3

 

Fig. 1 Diagram of the example with 
1a  lower bound on the flow vector. 

 

The solution found by the proposed algorithm is given analytically in Table 2 and graphically in Fig 2. 

 

Table 2 The solution of the proposed minimum-cost flow problem. 

Arc 

( , )k i j

 

Arc tail  

i 

Arc head

j 

Arc 

capacity 

kb  

Arc cost 

kc  

Arc flow 

with 

1
ka  

Arc flow with 

2
ka  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 

1 

1 

2 

2 

3 

3 

3 

3 

4 

4 

5 

5 

6 

7 

2 

3 

4 

3 

5 

4 

5 

6 

8 

6 

9 

7 

8 

8 

8 

50 

30 

15 

50 

25 

15 

45 

10 

15 

10 

20 

90 

10 

60 

10 

3 

6 

8 

2 

2 

2 

1 

3 

8 

1 

3 

9 

8 

5 

1 

50 

20 

15 

25 

25 

15 

5 

10 

15 

10 

20 

20 

10 

20 

10 

The minimum- 

cost flow 

problem has no 

feasible flow 
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16 

17 

18 

19 

20 

21 

7 

8 

8 

9 

9 

10 

11 

10 

11 

8 

10 

11 

10 

10 

80 

20 

10 

10 

2 
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4 

2 

3 

3 

10 

3 

68 

16 

4 

7 

Total flow  

is  

85tsx 

Total cost is

1475z 

 

 

   

1 8

7

6

5

4

3

2

10

9

11

b=
50

,c=
3,

 x=
50

b=30,c=6, x=20

b=15,c=8, x=15

b=25,c=2, x=25b
=

5
0

,c=
2

, x=
2

5
b

=
1

5,c=
2

, a
=

15

b=45,c=1, x=5

b=10,c=3,x=10

b=10,c=1, x=10

b=20,c=3, x=20

b=90,c=9, x=20

b=10,c=8, x=10

b=15,c=8, x=15

b=60,c=5, x=20

b
=

1
0,c=

1
, x=

1
0

b=10,c=2, x=10

b=10,c=1, x=3

b=80,c=4, x=68

b
=

2
0

,c
=

2
, 

x=
1

6

b=10,c=3, x=4

b=10,c=
3, x

=7

x=85, z=1475

  

Fig. 2 Diagram of the solution with 
1a  lower bound on the flow vector. 
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