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Abstract 

In this paper, we have developed a network of 20 amino acids based on a distance matrix of amino acids. This 

distance matrix is obtained by considering the transition and transversion mutation of codons. We have 

proposed that the evolutionary pattern of amino acids is reflected throughout this network. We have discussed 

different measures of centrality: degree centrality, closeness centrality, betweenness centrality and 

eigenvector centrality, concerning this network and investigated the comparative impact of the amino acids. 

We have also explored the correlation coefficients between the different centrality measures checking the 

assortativity of the network. Further, we have explored three network parameters: namely clustering 

coefficient, degree of distribution and skewness. 

 

Keywords amino acids; genetic code; centrality measure; correlation coefficient; network parameter; 
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1 Introduction 

All life forms in existence are composed of cells. In each cell, there is a set of chromosomes that serves as a 

blueprint for the whole life entity. A chromosome consists of genes (sequence of DNA), where a gene encodes 

a specific protein. A protein consists of a linear sequence of amino acids, the essential building blocks and 

functional components of living organisms. Twenty different amino acids have been found to date that exists in 

proteins. The three sequencing bases is a unit called a codon that specifies an amino acid. Since there are four 

bases, that give us a total of 64 codons. So, there must be some similarity, i.e., more than one codon code for 

the same amino acid. Codons that code for the same amino acids are classified as synonymous codons. This 

can be observed as a mapping of many to one taking codons to amino acids. Also, out of these 64 codons, 

UAA, UAG and UGA triplets are known as stop codons, and their task is to terminate the translation process.  

The flow of information from DNA to protein is carried out via transcription and translation (Shu, 2017). 

As a consequence of mutation, the sequencing bases are not duplicated exactly in replicating the DNA strand. 
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This influences the formation of proteins. Deletion, insertion, inversion, point and frame shift are different 

types of mutation in genetics. The point mutation is a replacement of one base of its genetic sequence. 

Transition, in genetics and molecular biology, corresponds to a point mutation that shifts the purine {A and G} 

to purine or pyrimidine {C and U} to a pyrimidine. The point mutation that switches purine to pyrimidine or 

vice-versa is referred to as transversion. 

A wide range of contributions have been made by various researchers to the field of the biological 

networks (Bagler and Sinha, 2007; Khansari et al., 2016; Zhang, 2016). Kundu (2005) explored that the 

hydrophobic and hydrophilic networks fulfill the “small-world properties” of proteins. In these networks, 

amino acids are taken as vertices and any two amino acids have a link within a distance of 5A. He also noticed 

that the hydrophobic network has a greater average degree of nodes than the hydrophilic one. Aftabuddin and 

Kundu (2007) explained three kinds of protein networks (hydrophobic, hydrophilic and charged). They have 

shown that the average degree of a hydrophobic network is significantly higher than that of the other two 

networks. The hydrophilic network’s average degree is slightly higher than that of the charged network. All of 

the three types of networks reflect “small-world” property. Based on contact energy, Jiao et al. (2007) explored 

the weighted amino acids network and shown that the weighted amino acids network satisfies the small-world 

property. Akhtar and Ali (2014) observed a network of amino acids dependent on codon mutations. Their 

analysis reveal that amino acids Arginine (high hydrophilic) and Serine (low hydrophilic) have the largest 

centrality values regardless of centrality measurements. Wuchty and Stadler (2003) explored multiple 

centrality measures for the biological network. They concluded that only the degree of vertex centrality is not 

enough to distinguish between lethal protein and viable protein. Newman (2002) explored assortative mixing 

characteristics in network of protein associations, neural networks and food networks. He has also observed 

that the information can be transmitted efficiently across an assortative network in contrast to a disassortative 

network. Koschutzki and Schreiber (2004) analyzed the centralities for the biological networks, namely the 

transcriptional network and the PPI network. Their research suggested that different centrality measures should 

be considered in the study of biological networks. Ali and Akhtar (2016) constructed a network of amino acids, 

depicting the evolutionary pattern of the amino acids. They have discussed different centrality measures for 

that network and noted that the hydrophobic amino acid Tyrosine (Y) has the highest centrality values 

considering the centrality measures such as degree centrality, closeness centrality, betweenness centrality and 

eigenvector centrality. They have also studied the correlation coefficients among various centrality measures. 

Zhang (2016) screened node attributes that significantly influence node centrality in the network. Zhang and 

Zhang (2019) constructed the PPI network and made centrality analysis on insecticide resistance molecular 

mechanism in Drosophila melanogaster. Xin and Zhang (2020) constructed the PPI network for the olfactory 

system of the silkworm Bombyx mori and made centrality analysis. 

In this paper, we are interested in the analysis of amino acids network based on codon mutation. For that, 

we have attempted to explore certain graph theoretic notions in the network of the amino acids. 

The paper is structured as follows. In section 2, we include some introductory principles of the graph 

theory in which we work and briefly examine the various centrality measures. In section 3, we describe the 

graph of amino acids based on transition and transversion mutation of bases of codons. We obtain a network of 

20 amino acids, where we compare various centrality measures. In section 4, we are interested in the study of 

some of the important network parameters. We have the conclusion of the paper in section 5. 

 

2 Preliminary Graph Concepts 

An undirected graph ܩ ൌ ሺܸ,  of edges or sides where ܧ ሻ is a finite set ܸ of nodes or vertices and a setܧ

ܧ ك ܸ ൈ ܸ (Bertman and Jungck, 1979; Zhang, 2018). For any edge ݁ ൌ ሺݑଵ,  ଶ areݑ ଵ andݑ ଶሻ, the verticesݑ
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said to be incident on the edge ݁ and adjacent to one another. The neighbourhood of a vertex ݑ, denoted by 

ܰሺݑሻ, is the set of all vertices adjacent to ݑ. In the case of a directed graph ܩ ൌ ሺܸ, ݁ ሻ, any edgeܧ א  has a ܧ

direction. 

The adjacency matrix ࡭ of a graph ܩ ൌ ሺܸ, ܸ ሻ, with vertex setܧ ൌ ሼݑଵ, ڮ,ଶݑ , ௡ሽ is an ሺ݊ݑ ൈ ݊ሻ matrix, 

where ܽ௜௝ ൌ 1 if and only if there is an edge from vertex ݑ௜ to  vertex ݑ௝ and  ܽ௜௝ ൌ 0 otherwise. An undirected 

simple graph’s adjacency matrix is symmetric. For any graph ܩ ൌ ሺܸ,  denoted by ,ݒ ሻ, the degree of a vertexܧ

݀ሺݒሻ or ݀݁݃ሺݒሻ is the number of edges incident to ݒ. A graph ܩ is connected if there is a path in ܩ between 

any given pair of vertices, otherwise it is disconnected. 

For any graph ܩ ൌ ሺܸ,  ሻ, a walk is a finite alternating sequence of vertices and edges, starting and endingܧ

with vertices. A walk of length ݊ is a non-empty alternating sequence ݑ଴݁଴ݑଵ݁ଵ ௡ݑ௡ିଵ݁ڮ  of vertices and 

edges in ܩ such that ݁௜ ൌ ሼݑ௜, ݅  ௜ାଵሽ for allݑ ൏ ݊. If  ݑ଴ ൌ  ௡, then the walk will be closed. A path is a walkݑ

where there are no repeated vertices. A path with the minimum length between two vertices ݑ and ݒ is the 

shortest or geodesic path between the vertices. A connected graph has a walk between every pair of vertices. 

2.1 Centrality in graph 

In graph theory, the centrality measure indicates the relative significance of a vertex (Zhang, 2018). A 

centrality is defined as a real-valued function on the vertices of a graph. More formally, the centrality is a 

function ݂ which assigns a real value ݂ሺݒሻ to each vertex  ݒ of the given graph ܩ. The four most widely used 

centrality measures, namely degree centrality, closeness centrality, betweenness centrality and eigenvector 

centrality are discussed in the following sections. 

2.1.1 Degree centrality 

The degree centrality is the simplest measure of centrality. For any vertex ݑ, it is defined as the number of 

vertices to which the vertex ݑ is directly linked (Freeman, 1978; Zhang, 2018) and denoted by ܥௗሺݑሻ. Degree 

centrality indicates that a large number of interactions are involved in an important vertex. It is mathematically 

defined as 

ሻݑௗሺܥ ൌ deg ሺݑሻ 

 

In real-world applications, the degree centrality is not a realistic measure to assess the value or importance 

of a node. In real scenario, a significant node may be linked implicitly to many other nodes. 

2.1.2 Closeness centrality 

Closeness centrality measures how connected a node is to the rest of the nodes in the network on a global scale 

(Freeman, 1978). If a node is close to other nodes, it can communicate easily with all other nodes. The 

centrality of closeness is calculated as the reciprocal of the sum of the length of the shortest paths between the 

node and all other nodes in the graph. It is mathematically defined as 

 

ሻݑ௖ሺܥ ൌ
ሺ݊ െ 1ሻ

∑ ݀ሺݑ, ሻ௩ఢ௏ݒ
 

  

where ݊ is the number of vertices or nodes of the network and ݀ሺݑ,  ሻ gives the shortest path distance betweenݒ

the pair of nodes ݑ and ݒ. It is evident from the above definition that if the node has the lowest cumulative 

shortest path distance, the node has the highest centrality of closeness. The maximum closeness centrality node 

is quite well associated with all other nodes. 

2.1.3 Betweenness centrality 

In network theory, betweenness centrality measures the magnitude to which a vertex lies on the paths between 

the other vertices (Freeman, 1978). Vertices with a high betweenness can have significant impact within the 
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network as a result of their control over information passing between others. The betweenness centrality of a 

vertex ݒ is the number of shortest paths that pass through ݒ (Watts and Strogatz, 1998). It is mathematically 

defined as 

 

ሻݒ௕ሺܥ ൌ ෍ ෍
ሻݒ௦௧ሺߪ
௦௧௧ஷ௩ఢ௏௦ஷ௩ఢ௏ߪ

 

 

where ߪ௦௧  count the number of shortest paths containing ݏ and ݐ  as their end vertices, while ߪ௦௧ሺݒሻ is the 

number of those shortest paths from ݏ to ݐ that pass through ݒ. 

Betweenness centrality reflects the recognition of vertices that make the most of the network’s information 

flow. A significant vertex will lie on a high percentage of paths between most of the other vertices on a 

network. We can monitor the information on the network from this vertex. A high degree vertex has a high 

betweenness centrality since plenty of the shortest paths will run across them. However, a high betweenness 

centrality vertex may not always be a high degree vertex. 

2.1.4 Eigenvector centrality 

The eigenvector centrality is another great important measure of centrality (Bonacich, 1972). In graph theory, 

it is way of measuring the dominance of a node in a network. For any square matrix ߣ ,࡭ is an eigenvalue if 

detሺ࡭ െ ሻࡵߣ ൌ 0, and ࡵ is the identity matrix of the same order as ࡭. Eigenvector centrality is identified as the 

principal eigenvector of the corresponding graph’s adjacency matrix. We can write the eigenvector equation as 

 

ܺ࡭ ൌ  ܺߣ

 

where ࡭ is the adjacency matrix for the graph, ߣ is the eigenvalue (constant term) and ܺ is the corresponding 

eigenvector. The eigenvector of the greatest eigenvalue is the eigenvector centrality (Bonacich, 1972). 

2.2 Network parameters 

Various network parameters are used in biological networks. We have discussed three basic network 

parameters: clustering coefficient, degree of distribution and skewness. 

2.2.1 Clustering coefficient 

Suppose there is a node ݒ of degree ݇ in the undirected graph ܩ, and there is ݁ number of edges between the ݇ 

neighbours of ݒ in ܩ. Then the clustering coefficient of ݒ in ܩ is defined as  

 

௩ܥ ൌ
2݁

݇ሺ݇ െ 1ሻ
 

 

So, ܥ௩ calculates the ratio between the edge numbers among the neighbours of ݒ and the total potential 

edge numbers: ݇ሺ݇ െ 1ሻ/2, where 0 ൑ ௩ܥ ൑ 1. 

2.2.2 Degree distribution 

The degree of a vertex for an undirected graph is the number of links or edges the vertex has to the other 

vertices (Zhang, 2018). Then the degree distribution, ܲሺ݇ሻ, ݇ ൌ  which calculates the ratio of vertices in ,ڮ,0,1

the network having degree ݇. Mathematically, 

 

௞ܲ ൌ
݊௞
݊
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where ݊ is the size of the network and ݊௞ is the total number of vertices of degree݇ in the network. 

2.2.3 Skewness 

In 1895, Karl Pearson first suggested the measuring of skewness. The situation of skewness, which implies the 

absence of symmetry, exists in a curve when the mean, median, and curve mode are not the same. Depending 

on the vertices and relative location of the mode, mean and median, two forms of skewness emerge in the 

distribution, respectively positive skewness and negative skewness. In our analysis, we consider Karl 

Pearson’s coefficient of skewness, which is denoted by ܵ௞ and defined by the following formula 

 

ܵ௞ ൌ
3ሺ݊ܽ݁ܯ െ݊ܽ݅݀݁ܯሻ
݊݋݅ݐܽ݅ݒ݁ܦ ݀ݎܽ݀݊ܽݐܵ

 

  

The value of the skewness is inside the range of െ3 to ൅3. 

 

3 Graph of Amino Acids 

The four bases Adenine (A), Guanine (G), Cytosine (C) and Uracil (U) can be classified into two groups: 

purine {A, G} and pyrimidine {C, U}. A purine base has a double carbon-nitrogen ring, while pyrimidine has 

one such carbon-nitrogen ring. We know that the transversion mutation of codons causes extreme 

physicochemical properties change to the amino acids in comparison to the transition mutation of codons. 

Firstly, we obtain a distance matrix of amino acids based on the transition and transversion mutation of codons 

at various base positions. 

3.1 Distance between amino acids based on mutation 

A codon consists of three bases, and we define the distance between codons as follows. For any two codons, 

transition mutation in any of the base position is assigned a score of  1, whereas for transversion mutation, we 

give a score of 2. 

For example, to find the difference between the codons ACG and GCC, we have the score 1 for the first 

base position (A and G), score 0 for the second base position (C and C), and a score of 2 for the third base 

position (G and C). So, the distance between the codons ACG and GCC is 1 ൅ 0 ൅ 2 ൌ 3. 

Now we can find the distance between amino acids by calculating the mean distance between their 

respective codons. 

 

 

Table 1 Distance between the amino acids Proline (P) and Tyrosine (Y). 

 CCA CCC CCG CCU 
UAC 5 3 5 4 
UAU 5 4 5 3 

  

 

For example, we compute the distance between the amino acids Proline (P) and Tyrosine (Y) is 4.25. The 

codons that code Proline are CCA, CCC, CCG, CCU and the codons that code Tyrosine are UAC, UAU. In 

Table 1, we measure the distances between the codons. The distance between the amino acids P and Y is 

obtained by considering the mean distance between the above codons. 

In Table 2, we obtain the distance between each pair of amino acids. 

The distance matrix we obtain above is symmetric, and it has 210 data points. We have constructed a 

network of amino acids from the distance matrix above. In consideration of the 210 data points, we have found 

that the mean is 3.496. Since “mean” implies that the data points tend to cluster around it, this “mean” value 
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(i.e., 3.496) is assumed to be the threshold value for determining the relationship between pairs of amino acids. 

So, we define two amino acids as comparable, i.e., connected by an edge if their distance is less or equal to 

3.496. The subsequent graph ܩ is represented in Fig. 1. 

 

 

Table 2 Distance matrix of amino acids based on transition and transversion mutation. 

 R K E Q D N H P Y S T G W A M C F L V I 

R 0.00 3.33 3.67 2.67 4.17 3.83 3.17 3.92 4.00 4.00 4.50 2.92 2.33 4.92 4.33 2.83 4.83 4.05 5.08 4.72

K 3.33 0.00 1.50 2.50 2.00 2.00 4.00 5.25 4.00 3.83 3.25 4.25 3.50 4.25 2.50 5.00 6.00 5.00 4.25 3.50

E 3.67 1.50 0.00 2.50 2.00 3.00 4.00 5.25 4.00 4.83 4.25 3.25 3.50 3.25 3.50 5.00 6.00 5.00 2.25 4.50

Q 2.67 2.50 2.50 0.00 4.00 4.00 2.00 3.25 4.00 4.50 5.25 5.25 2.50 5.25 4.50 4.00 5.00 3.33 5.25 5.50

D 4.17 2.00 2.00 4.00 0.00 1.50 2.50 5.25 2.50 4.33 4.25 2.50 5.00 3.25 5.00 3.50 4.50 5.50 3.25 4.00

N 3.83 2.00 3.00 4.00 1.50 0.00 2.50 5.25 2.50 4.00 3.25 3.25 5.00 4.25 4.00 3.50 4.50 5.50 4.25 3.00

H 3.17 4.00 4.00 2.00 2.50 2.50 0.00 3.25 1.50 4.00 5.25 4.25 4.00 5.25 6.00 2.50 3.50 3.83 5.25 5.00

P 3.92 5.25 5.25 3.25 5.25 5.25 3.25 0.00 4.25 3.50 3.25 5.25 4.25 3.25 4.25 4.25 3.25 2.58 4.25 4.25

Y 4.00 4.00 4.00 4.00 2.50 2.50 1.50 4.25 0.00 3.33 5.25 4.25 3.00 5.25 6.00 1.50 2.50 3.83 5.25 5.00

S 4.00 3.83 4.83 4.50 4.33 4.00 4.00 3.50 3.33 0.00 3.33 4.25 3.50 3.58 4.17 3.00 3.00 3.78 4.25 3.83

T 4.50 3.25 4.25 5.25 4.25 3.25 5.25 3.25 5.25 3.33 0.00 4.25 5.25 2.25 2.25 5.25 4.25 4.25 3.25 2.25

G 2.92 4.25 3.25 5.25 2.50 3.25 4.25 5.25 4.25 4,25 4.25 0.00 3.25 3.25 4.25 3.25 5.25 5.25 3.25 4.25

W 2.33 3.50 3.50 2.50 5.00 5.00 4.00 4.25 3.00 3.50 5.25 3.25 0.00 5.25 4.00 2.00 4.00 3.67 5.25 5.67

A 4.92 4.25 3.25 5.25 3.25 4.25 5.25 3.25 5.25 3.58 2.25 3.25 5.25 0.00 3.25 5.25 4.25 4.25 2.25 3.25

M 4.33 2.50 3.50 4.50 5.00 4.00 6.00 4.25 6.00 4.17 2.25 4.25 4.00 3.25 0.00 6.00 2.50 3.00 2.25 1.67

C 2.83 5.00 5.00 4.00 3.50 3.50 2.50 4.25 1.50 3.00 5.25 3.25 2.00 5.25 6.00 0.00 2.50 4.17 5.25 5.00

F 4.83 6.00 6.00 5.00 4.50 4.50 3.50 3.25 2.50 3.00 4.25 5.25 4.00 4.25 2.50 2.50 0.00 2.17 3.25 3.00

L 4.05 5.00 5.00 3.33 5.50 5.50 3.83 2.58 3.83 3.78 4.25 5.25 3.67 4.25 3.00 4.17 2.17 0.00 3.25 3.33

V 5.08 4.25 2.25 5.25 3.25 4.25 5.25 4.25 5.25 4.25 3.25 3.25 5.25 2.25 2.25 5.25 3.25 3.25 0.00 2.25

I 4.72 3.50 4.50 5.50 4.00 3.00 5.00 4.25 5.00 3.83 2.25 4.25 5.67 3.25 1.67 5.00 3,00 3.33 2.25 0.00
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Fig. 1 Graph of amino acids (ܩ) (based on transition and transversion mutation). 

  

 

Since the distance in the matrix is dependent on the distinctions between the respective codons of the two 

amino acids, it can be assumed that two amino acids are compatible if they are bound by an edge. If two 

amino acids are bound by an edge, there is a high probability that one amino acid will evolve from the other. 

The evolution of the amino acid from the other is regulated by the mutation of the related codons. So, we 

assume that the graph shows the evolutionary trend of amino acids. We obtain the corresponding adjacency 

matrix of amino acids for the graph in the following 

 

ࡹ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0
1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0
1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0
0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1
1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1
1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1
0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 ے0
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ۑ
ۑ
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ۑ
ۑ
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Here, ࡹ ൌ  is connected as no row or column of the lower (or ܩ  we can say that graph ,ࡹ Observing .ࢀࡹ

upper) triangular matrix is zero. 

3.2 Centralities in amino acids graph 

Here, we have computed different centrality measures to analyze the amino acids graph ܩ  (Fig. 1) and 

displayed all values in Table 3. Table 3 shows that the degree centrality, the eigenvector centrality, and the 

closeness centrality give the amino acid Valine (V) the highest rank, while the betweenness centrality assigns 

the highest rank to the amino acid Phenylalanine (F). 

 

 

Table 3 Different centrality measures for the 20 amino acids. 

Vertex Degree Centrality Closeness Centrality Betweenness Centrality Eigenvector Centrality

R 6 0.576 3.564 0.164 

K 7 0.613 6.206 0.225 

E 7 0.594 3.283 0.246 

Q 7 0.594 9.563 0.187 

D 8 0.633 6.724 0.271 

N 8 0.633 7.861 0.261 

H 7 0.594 6.292 0.201 

P 6 0.594 5.294 0.185 

Y 7 0.613 7.111 0.194 

S 4 0.528 1.900 0.119 

T 8 0.613 9.039 0.256 

G 8 0.633 11.649 0.255 

W 5 0.528 1.667 0.136 

A 8 0.633 5.546 0.276 

M 7 0.576 3.492 0.238 

C 7 0.613 7.267 0.180 

F 8 0.633 12.553 0.229 

L 6 0.594 3.928 0.191 

V 9 0.655 9.318 0.304 

I 7 0.576 3.305 0.242 

 

 

For any amino acid X (say), the degree centrality is determined by the number of first neighbours of X. For 

example, the amino acid Valine (V) has the degree centrality 9. Accordingly, V is like to be the immediate 

antecedent or follower of nine acids in the evolutionary process, i.e., D, G, E, L, F, T, A, I, M. 

If the closeness centrality of an amino acid is high, it can interact easily with all other amino acids. Thus, 

higher value of the closeness centrality for an amino acid indicates that the evolutionary mechanism is readily 

shared with other amino acids. The amino acids V and D have the closeness centrality value of 0.633 and 

0.593, respectively. So, we can assume that the evolutionary mechanism is better mediated by V than through 

D, i.e., more amino acids precede or succeed V than D in the process of evolution. 

The betweenness centrality of the amino acid is an estimate of the contribution it has made in the course of 

expressing the evolutionary process. Higher value of the betweenness centrality for an amino acid represents 

the identification of amino acids that render much of the network’s information flow. For example, the 
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betweenness centralities for the amino acids F and G are 12.552 and 11.649, while for the amino acids S and 

W are 1.900 and 1.667. Thus, more pairs of amino acids are related through the evolutionary mechanism by F 

and G than through S and W, i.e., amino acids F and G appear as an intermediate between more pairs of amino 

acids relative to S and W. 

Eigenvector centrality is more striking and well-preserved than the degree of centrality in a network. It’s 

large for a node if it either has many neighbours and/or important neighbours. The top 4 amino acids with the 

highest eigenvector centrality are D, N, A and V, as the sum of the direct and indirect bonds of amino acids D, 

N, A and V is maximum. Consequently, in the evolutionary process, the contribution of neighbours and 

neighbours, and so on, to these amino acids is higher (Chakrabarty and Parekh, 2014). So, we can say that the 

top 4 amino acids with highest eigenvector centrality D, N, A and V play a crucial role in the evolutionary 

process. The amino acids D and N are hydrophilic and one can be obtained from another by a 1st base 

transition mutation, while A and V are hydrophobic and one can be obtained from another by 2nd base 

transition. 

3.3 Bivariate correlation between various centralities 

Here, we have discussed the bivariate correlation of different measures of centralities for the amino acids 

network. Correlation is the most significant element in the study of assortative or disassortative networks. A 

network is called assortative if the nodes with higher degree appear to communicate with other nodes that also 

have a high degree of connectivity. In a disassortative network, the nodes with higher degree appear to 

communicate with other nodes with low degree connectivity (Newman, 2002). In Table 4, we obtain the 

correlation coefficients for all the centrality measures. 

 

 

Table 4 Correlation coefficients for the different centrality measures. 

 ࣅ࡯ ࢈࡯ ࢉ࡯ ࢊ࡯ 

 0.796 0.733 0.916 1 ࢊ࡯

 0.702 0.775 1 0.916 ࢉ࡯

 0.418 1 0.775 0.733 ࢈࡯

 1 0.418 0.702 0.796 ࣅ࡯

 

 

Here, all the correlation coefficients ሺ࢘ሻ are computed using Pearson’s method. The value of ࢘ ranges from 

൅1 to െ1. In the case of an assortative network, we have ࢘ ൐ 0, and for a disassortative network, we have ࢘ ൏

0. From Table 4, we note that all the centrality measures are strongly correlated with each other except 

betweenness centrality with eigenvector centrality. We observe that correlation coefficient is positive for each 

pair of centrality measures, and so our network  ܩ (in Fig. 1) is assortative. Consequently, the evolutionary 

information transmits efficiently through this network. 

 

4 Network Parameters 

We use different network parameters to analyze biological networks. In the following sections, we tackle a few 

of them to interpret network’s communication pattern. 

4.1 Clustering coefficients of amino acids 

The clustering coefficient is a metric that indicates the tendency of a graph to be split into clusters. A cluster is 

a group of nodes that involved several links connecting these nodes. The high clustering coefficient of a node 

represents a close association between adjacent nodes. The clustering coefficient of a node seems to have an 
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impact on the neighbouring node of that node and hence stabilizes the flow of information (Sengupta and 

Kundu, 2012). 

Table 5 displays the clustering coefficients of all amino acids for the network ܩ. 

 

 

Table 5 Clustering coefficients of the amino acids 

R K E Q D N H P Y S T G W A M C F L V I 

0.467 0.333 0.524 0.286 0.464 0.357 0.333 0.267 0.381 0.500 0.357 0.393 0.500 0.464 0.571 0.428 0.250 0.533 0.472 0.571

 

 

The clustering coefficient of the amino acid depends on the degree of amino acid as well as the number of 

direct interactions between the neighbouring amino acids. For the network ܩ , we observe that large 

hydrophobic amino acids I and M have a high clustering coefficient value of 0.571. The whole network has a 

clustering coefficient value of 0.422, approximately the same as the hydrophobic amino acid C (Cysteine). The 

clustering coefficient is getting higher with the higher number of links between neighbours. So, the higher 

clustering coefficient values of the network slow down the flow of evolutionary messages. From the clustering 

coefficient of the whole network and the clustering coefficients of the amino acids, we can say that the 

evolutionary mechanism is comparatively slow in the vicinity of M and I in comparison to the whole network. 

4.2 Degree of distribution 

In this section, we compute the degree of distribution of the nodes (amino acids) for the network ܩ. The degree 

of a node in a network is the number of links that the node has to the other nodes. If there are ݊ number of 

nodes in a network and ݊௞ of them have degree ݇, we have the degree distribution ܲሺ݇ሻ ൌ ݊௞/݇. The degree 

distribution value of a node describes the probability that the selected node will have exactly ݇ connections. In 

Table 6, we have shown the degree of distribution values of different amino acids. 

 

 

Table 6 Degree distribution of amino acids. 

R K E Q D N H P Y S T G W A M C F L V I 

0.15 0.40 0.40 0.40 0.30 0.30 0.40 0.15 0.40 0.05 0.30 0.30 0.05 0.30 0.40 0.40 0.30 0.15 0.05 0.40

 

 

4.3 Skewness 

As described above, skewness is a measure of the asymmetry of a variable distribution (Zhang, 2018). The 

Karl Pearson’s coefficient of skewness (ܵ௞) is given by the following formula 

 

ܵ௞ ൌ
3ሺ݊ܽ݁ܯ െ݊ܽ݅݀ܽ݁ܯሻ
݊݋݅ݐܽ݅ݒ݁ܦ ݀ݎܽ݀݊ܽݐܵ

 

 

If ܵ௞ ൌ 0, then the distribution is symmetrical. If ܵ௞ ൐ 0, then the distribution is positively skewed, and if 

ܵ௞ ൏ 0, then it is negatively skewed. 

Here, we assume the degree of distribution as a variable ሺܺሻ and the number of amino acids carrying the 

same distribution as frequency ሺ݂ሻ. We have Table 7 (using Table 6), where we compute Karl Pearson’s 

coefficient of skewness. 
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Table 7 Calculation of Karl Pearson’s coefficient of skewness. 

࢞ࢊ ࢌࢄ ࢌ ࢄ ൌ ࢄ െ  ૛࢞ࢊࢌ ࢞ࢊࢌ ഥ࢞
 

0.05 3 0.15 -0.23 -0.0115 0.1587 
 

0.15 3 0.45 -0.13 -0.0195 0.0507 
 

0.30 6 1.80 0.02 0.0060 0.0024 
 

0.40 8 3.20 0.12 0.0480 0.1152 

 

 

From Table 7, we have mean is ݔҧ ൌ 0.28 and that median is 0.30. Also, the standard deviation is 0.1279. So, 

Pearson’s coefficient of skewness is െ0.469 ൏ 0 . We see that, the coefficient of skewness is negative. 

Accordingly, the degrees of distribution of the amino acids are negatively skewed. 

 

5 Conclusion 

In this paper, we have explored the evolutionary mechanism of amino acids based on codon mutation. For this 

reason, we have considered the fact that the transversion mutation of codons induces extreme physicochemical 

property variations in amino acids as compared to the transition mutation of codons. We have constructed a 

graph structure of 20 amino acids that specifies the compatibility relationship based on the amino acids 

distance matrix. Different centrality measures have been discussed, and we observe that the hydrophobic 

amino acid Valine (V) has the highest degree of centrality, closeness centrality and eigenvector centrality value.  

Phenylalanine (F) has the highest betweenness centrality value, which suggests it has the highest contribution 

in communicating the evolutionary process. So, more pairs of amino acids are connected through F than 

through the rest of the amino acids. 

Next, we have obtained correlation coefficients for the various centrality measures of amino acids and 

noticed that all centrality measures are closely correlated except betweenness centrality with eigenvector 

centrality. Also, the correlation coefficient is positive for each pair of centrality measures which indicates that 

our network is an assortative one. Consequently, the evolutionary data flow will be smooth. 

We have also observed that large hydrophobic amino acids M and I have high clustering coefficient values. 

So, the rate of the evolutionary process is comparatively slow in the vicinity of M and I. Lastly, we have 

observed that the degree of distribution of the 20 amino acids is negatively skewed. 
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