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Abstract 

The pathogenesis of Cystic Fibrosis (CF) airway disease is not well understood. CF is an autosomal recessive 

monogenic genetic disease. It affects the exocrine glands, which normally produce thin secretions such as 

mucus, sweat and tears. In CF, the mucus is thick and sticky which interferes with certain normal organs. A 

broad knowledge of the genes which are involved in the regulation or co-regulation of affected organs in the 

CF is required to get a better understanding of its pathophysiological mechanisms. DNA microarray 

approaches have made it possible to get an insight on gene expression across the genome. In the current study, 

microarray data related to CF and CF-associated affected organs were retrieved from the NCBS Gene 

Expression Omnibus database and were subjected to gene regulatory network analysis. We constructed two 

separated networks of up and down regulated genes from six microarray datasets. The power-law obeying 

topological properties showed scale-free hierarchical nature of the both networks. Density and compactness of 

both networks at each level was calculated by modularity and Hamiltonian energy. From all the leading hubs 

we found four key genes namely GSTT1, ANKRD7, PBX1, and TGFB2 deeply rooted in up and down 

regulated networks respectively. Conclusively these genes may have prognostic significance. 
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1 Introduction 

Cystic fibrosis (CF) is a progressive, inherited disorder (Kulkarni et al., 2019). CF causes severe lung 

infections and bounds the breath capability over time (De Boeck, 2020). It also infects the digestive system 

and other organs in the body including pancreas, lungs, liver, kidneys and intestine (Gibson-Corley et al., 

2016). An estimated 1 in 29 Caucasian Americans have the CF gene, but it is rare in people of Asian and 

Middle Eastern origin (In India-1 in 40,000-100,000) (Sanders and Fink, 2016). Diversity of CF around the 
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world is shown in Fig 1. CF affects the cells that produce different fluids such as mucus, perspiration and 

digestive fluids which are usually thin and greasy. But in CF patients, the fluids become adhesive and dense. 

Complications associated with Cystic Fibrosis are categorized according to the different CFTR mutations, 

modifier genes and environmental factors (Patel et al., 2020). Primary complications associated with CF are- 

respiratory problems, pancreatic insufficiency, gastro-intestinal abnormalities, hepatobiliary involvement, 

reproductive system problems, and reduction in nutritional status (Aris et al., 2005; Augarten et al., 2008; 

Cheng et al., 2000; Cohn et al., 1993; Colombo et al., 2004; Declercq et al., 2016; Fuchs et al., 1994; Gibson et 

al., 2003; Gorter et al., 2010; Haeusler et al., 1994; Herrmann et al., 2010; Lyon et al., 2002; Rowe et al., 

2014). Secondary complications include CF-associated diabetes, low bone mineral density, gastro-intestinal 

problems, and psychological problems (Haeusler et al., 1994; Bruzzese et al., 2004; Elkins et al., 2006; Kelly 

et al., 2013; Ooi et al., 2012; Rose et al., 2013). 

CF is a multisystem genetic disease (Ideozu et al., 2019a). CFis caused by mutations in the cystic fibrosis 

conductance regulator (CFTR) gene (Ideozu et al., 2019; Madácsy et al., 2018; Riordan et al., 1989). A number 

of mutations in cystic fibrosis transmembrane conductance regulator (CFTR) gene are responsible for this 

condition (Al Balushi et al., 2021; Cui et al., 2020; Lopes-Pacheco, 2020). The most common mutation found 

in CFTR protein in CF patients is F508del (deletion of phenylalanine coding bp at position 508)(Trouvé et al., 

2017). CFTR protein belongs to the family of ATP-binding-cassette (ABC) transporter proteins. CFTR is 

present at apical membrane of epithelial cells and act as an ion channel (Gadsby et al., 2006; Ramjeesingh et 

al., 2003). It contains two cytoplasmic nucleotide-binding domains (NBDs) along with a regulatory domain 

(RD) (Hwang et al., 2013). CFTR protein basically regulates concentration gradient and ATP dependent flow 

of ions (He et al., 2008). It is well documented that multitude of CF disease phenotypes arise from over 

2000types of mutational variations in CFTR gene (Al Balushi et al., 2021), but phenotypic variability 

presented among patients with the same CFTR genotype remains a major therapeutic challenge (Ideozu et al., 

2019). This has driven an intense search for novel molecular drivers associated with CF pathophysiology that 

may hold promise as biomarkers or therapeutic targets (Ideozu et al., 2019b). 

CF is posing pharmacological issues and great challenge for the co-management and treatment of CF-

associated affected organs. Computational biology involves uniquely suited approach based on theoretical 

paradigm and methodological tools to research, describe, explore, and understand structural and relational 

aspects of human health and diseases (Luke et al., 2007; Sultan et al., 2021). Network-based studies are 

emerging as an important tool to determine the disease susceptibility genes and their relationship with different 

diseases. These studies have also improved our understanding of drug targets and effect of drugs and suggested 

new drug targets and approaches for therapeutics and therapeutic management in severe diseases (Berger and 

Iyengar, 2009; Freshour et al., 2021). Analysis of networks is significantly contributing to the genesis of 

systems pharmacology. 

The present study was aimed to identify key regulatory genes associated with pathophysiology of Cystic 

Fibrosis. We implemented computational biology approaches involving related microarray data retrieval from 

Gene Expression Omnibus (NCBI), differentiating the genes according to their expressions, and construction 

and analysis of up and down regulatory networks to find out the key regulatory genes. We also carried out the 

gene ontology enrichment and pathway enrichment analysis to explore the physiological relevance of 

associated key genes (Trouvé et al., 2017). 
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The first step for building a new biological network is pluging an app with Cytoscape. We used String that is 

in built in Cytoscape (version 3.3.0). This plugin operates on target set gene given by a user (Farooqui et al., 

2018). The input data in the form of gene name can be directly provided or imported in the concerned format. 

In this biological era, vast amount of molecular interaction data is being produced by several experimental 

techniques and computational approaches. In order to gain deep insight in to the complex network organization 

and their structural behavior formed by interacting molecules, we have used the versatile Cytoscape plugin 

Network Analyzer. It operates and shows a comprehensive set of topological properties of complex network. 

The parameters include how many numbers of nodes, edges, radius, density, the network diameter, connected 

components, cluster coefficient, the characteristic path length, centralization, heterogeneity and the 

distributions of node degrees, neighborhood connectivity’s, shortest path length and centrality parameters 

(Zhang, 2016, 2018). The Network Analyzer is an interactive and highly customizable application, that does 

not require to expertise in network theory by the user (Assenov et al., 2008; Su et al., 2014). 

2.4 Community detection/finding: Leading eigenvector method 

Several community finding algorithms have been created to uncover the properties of complex network. 

However, algorithm evaluation remains still open in terms of computing time and accuracy (Newman et al., 

2006). In this study, to detect the communities in the network, we used Leading eigenvector method from R 

package ‘igraph’. The heart of this method is the spectral optimization of modularity by using the eigenvalues. 

In the beginning it calculates the eigenvalue and then network is split into further parts in a way that 

modularity improvement is maximized based on LEV. Furthermore, the modularity contribution is calculated 

at each level of network. It terminates once the value of modularity contribution is negative or it stops at motif 

level (Xie et al., 2011; Yang et al., 2016). 

2.5 Modularity and energy (HE) calculation of network 

Tightly connected groups of nodes in a complex network represent individuals belonging to communities, 

while modules in a biological network are somehow associated with functional modules. Modules sometime 

called community structures in biological science are tightly linked subcommunities of a complex network, i.e., 

subsets of nodes within the network connections are dense, and between which connections are sparser (Zhang, 

2018). Nodes indeed belonging to such tight-knit modules, constitute units that separately contribute to the 

collective functioning of the network (Gary et al., 1979). To understand the compactness and organization of 

network at some state/level of network, we calculated the Hamiltonian energy (HE) of that gene network at 

that level. HE provides an understanding of the stability at global as well as community level (Traag et al., 

2011). 

2.6 Tracing of genes 

One primary goal of gene network analysis is to identify fundamental gene regulators/gene of modules or sub-

modules with respect to various biological contexts. For this, the Cystic Fibrosis genes of our interest were 

traced at each level of the extracted modules or sub-modules by using communities finding method. At each 

level genes were filtered and the genes that reached their motif level at the sixth level were considered the 

fundamental genes of our main network. 

 

3 Results and Discussion 

3.1 Retrieval of deferential expressed genes 

First a small-scale analysis was performed with human epithelial cells and liver cells (F508 Del homozygous 

patients vs controls) (Clarke et el., 2013). Normalization of datasets (for noise data or redundancy in datasets) 

was carried out by using Limma package in R. Our analysis was to establish the set of fundamental genes by 

comparing analysis across data sets that is relevant in understanding gene functions. In our study we have 
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included total six GSE microarray series (GSE15568, GSE38956, GSE39843, GSE48452, GSE70442, and 

GSE78914) associated with CF. Gene name conversion, statistical analysis etc. was done by GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r), DAVID (http://david.abcc.ncifcrf.gov/), and Panther 

(http://www.pantherdb.org/) gene annotation tools. Each series has different number of genes. The up and 

down regulated genes were filtered through Log fold change. Finally, 787 common DEGs (467 up-regulated 

and 320 down-regulated) were identified from the six microarray datasets. All the DEGs are Listed in Venn 

diagram (Fig. 2) and Table 1. 

 

 
 

Fig. 2 Venn diagram of DEGs. 

 

 

 
Table 1 Data sets and retrieved DEGs. 

GSE Series Samples Number of probe/genes UpR genes DownR genes 
GSE15568           29 22283 1006 1008 
GSE38956           15 33297 704 535 
GSE39843 12 54675 1073 1069 
GSE48452           73 33297 988 706 
GSE70442 8 54675 764 802 
GSE78914 24 54675 807 1004 

 

 

3.2 Gene ontology and pathway association of the DEGs 

To better understand the function of these regulatory genes, we analyzed these DEGs for their gene ontology 

and annotated pathways, established by DAVID, Panther for GO and KEGG (https://www.genome.jp/kegg/) 

for pathway annotations. We search gene ontology and pathway enrichment for all common DEGs (up and 

down regulated genes) and found most of the genes involved in cellular process and metabolic processes as 

depicted in Fig. 3. The KEGG pathway enrichment analysis was also conducted to further evaluate the 

biological pathways in that common up and down regulated genes. The results of KEGG pathways analysis 
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indicated several most significant enriched pathways including metabolism of xenobiotics by cytochrome 

P450, chemical carcinogenesis, drug metabolism, drug metabolism –cytochrome P450, and retinol metabolism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Pie chart and bar graph representing the Gene Ontology (GO) terms and KEGG pathways. A: Pie chart showing GO of up-
regulated genes; B: Bar graph showing pathway annotation of up-regulated genes; C: Pie chart showing GO of down-regulated 
genes; D: Bar graph is showing pathway annotation of down-regulated genes. 

 

 

3.3 PPI networks association of the new potential key genes 

To elucidate proteins which are encoded by our candidate potential key genes, we applied network theory 

approach for their potential interactions using the STRING (Szklarczyk et al., 2015). The default 

parameters/units were used in string for functional association between proteins. We constructed two separate 

regulatory networks of up and down-regulated common genes. The network of up-regulated genes is 

comprised of 691 nodes, 23312 edges, and 128 leading hubs (Fig. 4). Similarly, down-regulated gene’s 

network showed 993 nodes, 30141 edges and 182 leading hubs (Fig. 5). All the hubs or nodes may not behave 

as the fundamental regulators for clinical and drug targets genes. To prove this, we have traced the complete 

network communities and found few genes that are deeply rooted from top to bottom in both networks and the 

vice-versa and provide the backbone of the network organization. So, these genes are important and can be 

termed as fundamental regulators. These leading genes in the cystic fibrosis networks take part at each level of 

organization of the network from starting to fundamental, regulating each unit i.e. motif. Out of these genes 

two genes ANKRD7 (Ankyrin repeat domain-containing protein 7) and GSTT1 (Glutathione S-transferase 

theta-1) expressed as up-regulated and other two genes PBX1 (Pre-B-cell leukemia transcription factor 1) and 

TGFB2 (Transforming growth factor-beta 2) expressed as down-regulated genes. 
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Fig. 4 Network, modules or sub modules at different levels of up-regulated genes. 

 

 

The gene TGFB2 encodes a secreted ligand of the TGF-beta (transforming growth factor-beta) superfamily 

of proteins (Starling, 2019). Ligands of this family bind various TGF-beta receptors leading to recruitment and 

activation of SMAD family transcription factors that regulate gene expression (Kubiczkova et al., 2012; 

Starling, 2019). The encoded preproprotein is proteolytically processed to generate a latency-associated 

peptide (LAP) and a mature peptide, and is found in either a latent form composed of a mature peptide 

homodimer, a LAP homodimer, and a latent TGF-beta binding protein, or in an active form consisting solely 

of the mature peptide homodimer (Lebrun, 2012). The mature peptide may also form heterodimers with other 

TGF-beta family members. TGF beta pathway has been studied extensively and disruption in this pathway is 

linked to cause a variety of human cancers (Lebrun, 2012). Dietz syndrome is associated with mutated tgfb2 

gene (Alansari et al., 2002). PBX1 is a well-known transcription factor associated with TALE class and is 

responsible for number of embryonic processes, including organogenesis, morphogenic patterning and 

haematopoiesis. It has been observed that growth and survival of the ovarian, melanoma and breast cancer 

cells depend on PBX1 (McCarthy et al., 2002). The GSTT1gene is involved in the regulation of conjugation of 

carcinogenic substances to excretable metabolites, because of this it is susceptible to cause cancer (Dahabreh, 

et al., 2010). A cytosolic enzyme is encoded by this gene which carries the catalytic cleavage of the epoxides, 

aliphatic aromatic and heterocyclic radicals, and arenoxides to glutathione. Its involvement is also associated 

with Alzheimer disease (Dahabreh et al., 2010). ANKRD7 is a ankyrin repeat domain, testis specific ankyrin 

motif containing protein (Fagerberg et al., 2014). This gene has no specific pathway in KEGG (Kyoto 

Encyclopedia of Gene and Genome).The term fundamental genes can be defined as the genes that are found to 

show the differential expression irrespective to the condition, state of diseases and pattern of their expression 
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(Lee and Loscalzo, 2019). They are found embedded deeper inside the network as backbone genes and if 

traced at different level of organization it can be found to from basic structural unit of the network called motif 

(Barabási et al., 2011; Lee and Loscalzo, 2019; Sonawane et al., 2019). Finally, by tracking down these genes, 

we found that the eleven more genes which are interacting with signature genes at motif level NCOR1, 

HOXB1, HIST2H2AA3, HIST2H2AC, VEGFB, FGB, RPL10L, GNB2L1, RPLS, WDR31 and RPL10. Apart 

from fundamental genes these interacting genes can be used in further research in future. 

 

 

Fig. 5 Network, modules or sub modules at different levels of down-regulated genes. 

 

 

3.4 Topological properties and organization of networks 

The topology properties of the networks are probability of degree distribution P(k), clustering coefficient C(k) 

and neighbourhood connectivity CN(k) which exhibits power law nature with respect to degree k (Singh et al., 
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2016; Zhang, 2018). The power law on the data distribution are confirmed and verified by following a standard 

statistical fitting procedure proposed by Clauset et al (2009). We summarized the networks as follows; the 

negative value of γ of degree distribution shows availability of each node in the network and the Positive value 

of β indicates assortivity nature of the network which means the importance of few hubs forming a cluster 

(rich-club formation). The negative value of α of clustering parameter shows disassociation in the 

communication between the nodes in the network (Fig. 6). 

 

 

Fig. 6 Topological properties of UP-regulated network.  A: Degree Distribution; B: Clustering coefficient; C: Neighborhood 

connectivity D: Betweenness centrality; E: Eigenvector centrality F: Closeness Centrality. The centrality measurement are 

betweenness centrality CB(k), closeness centrality CC(k) and eigen value centrality CE(k) which displays the importance of the 

hubs, their regulating mechanisms and obeys power law behaviours as follows: 

 

Equation:
ࡼ
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൩ 

Topological properties of up regulated gene’s network 

 

 

The positive value of exponents of these centrality parameters shows the strong regulatory role of the 

leading hubs in the network (Fig. 7). Therefore, we can say that the network follows hierarchical scale free 

properties. 
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Fig. 7 Topological properties of down-regulated network. a: degree distribution; b: clustering co-efficient; c: neighborhood 

connectivity d: betweenness centrality; e: eigenvector centrality f: closeness centrality. 
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Next, we calculated the distribution of energy for complete network, modules and sub modules. It 

describes the energy distribution for each node (Singh et al., 2016). Hamiltonian energy provides energy 

distribution not only at the global level of a network, but also at modular level (Haider et al., 2019). It is the 

ratio of Hamiltonian energy (Fig. 8, 9) of a module and sub modules at individual level. The distribution of 

energy for these genes shows how effectively they participate in the organization of network that has direct 

correlation to communication.  
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 Fig. 8 Plots of distribution of Hamiltonian energy of Up-regulated genes network. 

 

 

       Fig. 9 Plots of distribution of Hamiltonian energy of Down-regulated genes network. 

 

 

147



Network Biology, 2021, 11(3): 137-153 

 IAEES                                                                                                                                                                           www.iaees.org

Distribution of energy is beneficial to understand the roles of modules and hubs in network organization 

(Sporns, 2018). The Hamiltonian energy decrease as one goes down from top to bottom indicating its 

important regulating activity at complete network level then at a basic level (Haider et al., 2019). Large 

biological networks are partitioned into clusters or modules where similar or interacting nodes are grouped 

together. Modules or communities are actually the connected hub networks that are densely connected within 

themselves and sparsely connected to the rest of the network (Cherifi et al., 2019). Such a grouping of nodes 

can help us to identify the underlying structure of the network and extract insights from it. In biological 

networks modularity is defined as a degree to which its components i.e. nodes are relatively connected or 

separated to each other (Serban, 2020). From this notion we can say that modularity degree is high when many 

of its nodes belong to dense modules and low if many nodes do not belong to dense modules at all. Modularity 

(Fig. 10, 11) of a network helps us to understand the structure of the network as well as the mechanism that 

define the network (Serban, 2020). 

 

 

 

  Fig. 10 Modularity distribution plots of Up-regulated genes network. 
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Fig. 11 Modularity distribution plots of Down-regulated genes network. 

 

 

In hierarchical networks, communication between the different highly clustered neighbourhoods is 

maintained by a few hubs. The appearance of hierarchical modularity in biological networks supports the 

assumption that evolution acts on many levels. Modularity shows function of level of organization which is 

found to be decreasing as one goes from top to bottom organization.  

 

4 Conclusion 

The CF is characterized by lung abnormality with inflammation and pancreatic insufficiency. It is not known 

whether defects in CFTR are responsible or a consequence. The one simple hypothesis with defective CFTR is 

responsible to decrease airway surface liquid which fails to clear infected secretions from the lung, 

accelerating the excessive inflammatory response. It is therefore still unknown fact, whether this hyper 

inflammation is solely the result of chronic infection or is a primary task due to CFTR defects. Despite the role 

of residues in CFTR's sequence and its variation over lung functions, signature genes are of main importance. 

Indeed, it is defined that differences in CF genotype are not only responsible for the disease variation. 

Microarray studies were undertaken to find genetic determinants of phenotypic variation. Nevertheless, further 

studies are still needed to get a deep insight. Therefore, our aim was to identify new modifier genes associated 

with CF through microarray data analysis. We found four genes that were obtained from microarray analysis 

and highlighted their importance for CF, which were also found involved in other diseases (called as Inferred 

genes). Interestingly, ANKRD7 is one of the highlighted among these four genes that is specifically involved 

in very basic level of CF network. The ANKRD7somehow modifies the compensation of X-linked gene during 

spermatogenesis as obtained by RPL10L. We suggest that some other modifier genes may be missing and 

more studies are required to provide some physiological relevance. Finally, these biomarker/modifier genes 

reported in our study may contribute to clinical severity in CF, which may have prognostic significance and 

could prompt to start a more targeted therapy in the CF patients. 
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