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Abstract 

Long non-coding RNAs (lncRNAs) have attracted lots of attention worldwide. With the rapid advances in 

bioinformatics, several lncRNAs have been identified in the last decade. Ample evidence has shown that 

lncRNAs are involved in different mechanisms and play chief roles in many biological processes. Therefore, 

dysregulations of lncRNAs are associated with human complex diseases including glioblastoma (GBM). In 

this study, we have used lncRNA high throughput data analysis and some databases about their expression 

level, function, etc. Currently, a limited number of GBM-related lncRNAs have been reported experimentally. 

Therefore, analyzing lncRNA-GBM associations and predicting potential lncRNAs would benefit mechanism 

understanding, diagnosis, treatment, and prevention of this tumor. Therefore, we applied in silico analysis to 

find GBM-related lncRNAs and select the most promising lncRNAs for experimental validation. According to 

the results RP11-573G6.6 and HCG11, lncRNAs play critical role in GBM pathogenesis and could be 

promising targets in novel therapeutic approaches. 
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1 Introduction 

Glioblastoma, also known as glioblastomamultiforme (GBM), is the most common and the most aggressive 

type of primary malignant brain tumor associated with high morbidity and mortality (Louis et al., 2016; Van 

Meir et al., 2010). Despite advances in new techniques of radiotherapy and chemotherapy and also 

multimodality treatment efforts, the median survival for GBM remains less than 14 months (Bai et al., 2011). 

Due to this high mortality, attention has been given to understand the GBM pathogenesis (Alifieris and 

Trafalis 2015). This tumor is highly variable at the molecular level and shows momentous heterogeneity in 

each tumor. Molecular analysis of these tumors and finding diagnostic and therapeutic options therefore have 
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fundamental implications for targeted therapeutic strategies (Parker et al., 2015). Recently, there is growing 

evidence demonstrating that the discovery and use of molecular markers facilitate the identification and also 

the treatment of this tumor (Ducray et al., 2009). More recently, dysregulated functional non-coding RNAs 

(ncRNAs) as molecular markers in human diseases have attracted extensive attention. Actually, only 2% of the 

genome is involved in protein-encoding, and at least 75% of the total is transcribed into ncRNAs that do not 

encode for a protein including lncRNAs and small ncRNAs (Ponting et al., 2009). LncRNAs are defined as a 

heterogeneous class of ncRNAs with a length of more than 200 nucleotides. They have been shown to get 

involved in transcriptional and post-transcriptional regulation (Yoon et al., 2012). Furthermore, existing 

research displays that lncRNAs are associated with various biological processes such as cellular development 

and differentiation, proliferation, DNA damage response, and many others (Sánchez and Huarte, 2013; Fang 

and Fullwood, 2016). Increasing evidence has shown that lncRNAs are involved in the regulation of various 

biological processes in carcinomas, including GBM, and are therefore known as new modulators in the 

development of GBM (Huarte, 2015; Qureshi and Mehler, 2012). However, little is known about the role of 

functional lncRNAs in this tumor and only a few of them have been well characterized. Recent advances in 

computational methods have led to identifying noteworthy lncRNAs and also a better understanding of the key 

molecular changes that underlie GBM which results in better treatment design (Zhou et al., 2018). Using an 

lncRNA-mining approach, in this study we performed an in silico study to identified differently expressed 

lncRNAs in GBM. The role of RP11-573G6.6 and HCG11 in the regulation of mitochondrial gene expression 

in GBM was elucidated. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene 

Ontology (GO) analysis, as well as network analysis were used to assess the potential functions of lncRNAs. 

Overall, this study could provide novel biomarkers for the diagnosis and treatment of GBM. 

 

2 Materials and Methods 

2.1 RNA-seq data analysis 

Transcriptome data can be seen in Table 1 was analyzed using the Galaxy web interface as a web-based 

analysis platform (https://galaxyproject.org) (Afgan et al., 2018) and read quality was assessed via FastQC 

(Galaxy Version 20.09)(Andrews, 2010). Then, HiSAT2 software (Galaxy Version 20.09) was applied to align 

the RNA-seq reads to the human genome and Homo Sapiens (hg38) was utilized as a reference genome (Kim 

et al., 2019). Subsequently, we used StringTie software (Galaxy Version 20.09) as a highly effective assembler 

of RNA-Seq alignments to count aligned reads (Pertea et al., 2015). The DESeq2 method (Galaxy Version 

20.09) was used for differential gene expression analysis and only genes with p-value ≤ 0.05 were considered 

differentially expressed (Love et al., 2014). 

 

Table 1 RNAseq data. 

Experiment Glioblastoma Control Platform Sample 

GSE86202 3 3 IlluminaHiSeq 2500 Brain tissue 

GSE151352 12 12 Ion Torrent S5 Brain tissue 

 

2.2 GO function and KEGG pathway enrichment analysis 

R Language Cluster Profiler package were applied to analyze both Gene ontology (GO) functional 

classification and enrichment analysis (p-value Cutoff = 0.05, q-value Cutoff = 0.05) and KEGG pathway (p-

value Cutoff = 0.05, q-value Cutoff = 0.05) (Love et al., 2014).  
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2.3 Construction and analysis of PPI network complex 

STRING (The Retrieval of Interacting Genes Database) (https://string-db.org/) is a biological database 

providing protein-protein interactions (PPI) information. This database includes information from 

experimental data, and computational prediction methods (Szklarczyk et al., 2015). The STRING database was 

used to explore the interactions between the common differentially expressed genes (DEGs) which were 

obtained, and we also used Cytoscape software to visualize the results. MCODE, a Cytoscape plug-in,  

provided access to select hub modules of PPI in a network (Shannon et al., 2003). The criteria default 

parameters as follows: k-core = 2, degree cut-off = 2, max. Depth = 100 and node score cut-off = 0.2. To 

recognize genes in the hub module, a cluster profiler was used again for functional enrichment analysis, and 

subsequently, the hub genes were extracted using CytoHubba. Through the CytoHubba plugin, 12 topological 

analysis methods were found (Chin et al., 2014). The top 3 hub-forming genes/proteins were found. 

2.4 LncRNA/mRNA interaction 

Co-expression relationships between the lncRNAs and the protein-coding genes were assessed by Pearson’s 

correlation test in R (version 3.6.2) software. Differently expressed lncRNAs and their significantly correlated 

mRNAs were considered to draw the network with Cytoscape (version 3.7.2). 

 

3 Results 

A total of 4851 and 210 genes with a P-value less than 0.05 were found in the GSE86202 dataset and 

GSE151352 dataset respectively (Fig. 1).  

A total of 109 overlapped genes were extracted using the Venn Diagram 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) (Fig. 2). 

The expression and P-value of overlapped genes in the selected studies are represented in Table 2. The 

expression of these 109 genes in each sample of the two studies was also shown in a heatmap (Fig. 3).  

 

 
Fig. 1 Volcano Plot related to A) Total genes with p-value less than 0.05 in GSE86202 dataset and B) Total genes with p-value 
less than 0.05 in GSE151352 dataset. 
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Fig. 2 A total of 109 overlapped genes between two studies. 

 

 

 

Fig. 3 The heat map corresponds to the expression level of 109 common genes in each sample. 
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Table 2 Expression level and P-value of common genes in two studies. 

Gene symbol Ensembl ID 
GSE86202 GSE151352 

log2 (FC) P-value log2(FC) P-value 

ACER2 ENST00000340967 -0.92439 0.008446 -2.93603 1.08E-06 

AHDC1 ENST00000646642 2.329249 0.033568 -1.82233 0.051625 

ANXA2P2 ENST00000426153 2.31776 0.024915 1.949792 0.001424 

APPBP2 ENST00000083182 -3.59057 3.38E-10 -2.38027 0.043415 

ATP8A1 ENST00000381668 -4.11575 8.69E-13 -2.23614 0.022211 

BRWD1 ENST00000342449 -4.15748 4.76E-19 -2.12716 0.044661 

BZRAP1 ENST00000355701 1.801038 0.010656 -1.40895 0.024284 

C10orf105 ENST00000441508 -2.46155 5.65E-08 -2.009 0.023451 

C10orf54 ENST00000394957 -1.32171 0.002002 -2.29119 0.005264 

C14orf182 ENST00000399206 -1.24508 0.027207 -2.76875 0.007508 

CCSER2 ENST00000224756 -2.13239 0.000504 -2.4546 0.007593 

CDCA2 ENST00000330560 -3.60615 9.15E-11 -1.61281 0.024817 

CDH13 ENST00000566620 -0.966 0.039536 -1.66339 0.016059 

CDKAL1 ENST00000274695 0.745617 0.036995 -1.26984 0.057022 

CELF2 ENST00000379261 -1.36465 0.043937 -1.21724 0.044355 

CEND1 ENST00000330106 -1.5742 0.000117 -1.93396 0.008947 

COX14 ENST00000550487 -1.39102 0.007905 -1.45636 0.010692 

CTC-523E23.1 ENST00000561778 -4.43124 0.000691 -3.1443 0.00635 

DAPK3 ENST00000545797 1.343237 0.031748 0.94757 0.025381 

DCBLD2 ENST00000326840 -2.99668 7.61E-08 -2.2612 0.054243 

DCTN5 ENST00000300087 1.187836 0.002034 1.748943 0.049762 

DNM3 ENST00000358155 -2.83418 0.000288 -2.99611 0.001322 

ERMP1 ENST00000339450 -5.19543 0.000226 -1.92047 0.001039 

FOCAD ENST00000380249 -1.39964 0.001009 -1.69309 0.000732 

GCM1 ENST00000259803 0.795224 0.045104 1.22849 0.052886 

GLDC ENST00000321612 1.203492 0.053106 3.020103 0.02001 

GNAL ENST00000334049 -2.41052 7.21E-08 -2.86754 0.011923 

GOLGA8F ENST00000526619 -0.95829 0.001641 -1.41682 0.002393 

HCG11 ENST00000411553 -2.01944 1.50E-07 -2.34298 0.016015 

HIST1H1C ENST00000343677 1.583037 0.000683 1.398955 0.001719 

HIST1H1D ENST00000244534 2.858958 0.000241 1.732041 0.000142 

HIST1H1E ENST00000304218 1.595 0.000265 0.956392 0.012931 

HIST1H2AB ENST00000259791 2.713195 0.024399 2.025183 0.002894 

HIST1H2AE ENST00000303910 1.69979 5.70E-05 1.040369 0.009124 

HIST1H2BD ENST00000377777 3.059881 9.38E-08 1.106006 0.042063 

HIST1H2BE ENST00000356530 2.255335 2.22E-05 1.456406 0.000118 

HIST1H2BF ENST00000359985 2.275923 9.68E-06 1.345888 0.004676 

HIST1H2BH ENST00000356350 3.330695 0.000769 1.939894 0.001028 

HIST1H2BI ENST00000377733 3.32683 6.55E-05 2.608898 7.51E-06 

HIST1H3A ENST00000357647 1.834295 0.010046 1.123063 0.005839 
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Gene symbol Ensembl ID 
GSE86202 GSE151352 

log2 (FC) P-value log2(FC) P-value 

HIST1H3B ENST00000244661 2.96976 0.011347 1.793676 0.002083 

HIST1H3C ENST00000540144 4.332482 1.03E-05 2.2274 0.000294 

HIST1H3F ENST00000446824 3.639764 0.00148 2.646263 3.32E-05 

HIST1H3G ENST00000305910 3.551631 0.001931 2.394536 0.000418 

HIST1H4B ENST00000377364 1.576506 0.035705 1.058994 0.004073 

HIST1H4F ENST00000377745 2.505499 0.000159 2.092219 0.025997 

HIST1H4H ENST00000377727 1.411921 0.017862 1.084119 0.006424 

HOXC8 ENST00000040584 1.791915 0.003366 1.417364 0.026152 

HS3ST6 ENST00000443547 1.184542 0.036486 0.962369 0.041368 

IFNA1 ENST00000276927 -3.01617 0.031691 -2.85547 3.69E-05 

IFNA13 ENST00000449498 -3.65737 0.046477 -3.39071 3.08E-06 

IFNA2 ENST00000380206 -5.67428 0.000151 -3.41811 4.75E-05 

IFNA8 ENST00000380205 -3.75256 0.015381 -2.50979 0.024463 

IL17RA ENST00000319363 -1.42996 0.000334 -1.82596 0.012315 

ITGB8 ENST00000222573 3.561464 0.007786 2.968351 0.001909 

KHSRP ENST00000398148 1.235108 0.008779 0.685364 0.052267 

KIAA0232 ENST00000307659 -0.95766 0.004258 -2.68765 0.011804 

KIAA2026 ENST00000399933 -1.01599 0.01139 2.657938 0.040735 

LINC00598 ENST00000400430 -1.03835 0.008825 -1.98548 0.038955 

LRBA ENST00000510413 -1.60087 0.016237 -2.03184 0.000628 

LRCH4 ENST00000310300 2.517906 3.24E-08 2.566669 0.001532 

LRP1 ENST00000243077 -2.87881 6.05E-07 -3.52727 0.003264 

LRRC37A6P ENST00000448648 -1.57738 0.004212 -1.19878 0.003962 

LSM7 ENST00000252622 1.70144 0.001312 1.007773 0.005019 

MATK ENST00000310132 -2.5564 0.00735 -3.9044 0.001666 

MIR210HG ENST00000500447 2.471826 0.001893 1.863773 0.007699 

MITF ENST00000352241 -3.48317 0.003374 -2.50621 0.051999 

MT-CO1 ENST00000361624 -2.01998 0.004584 -1.68413 9.37E-05 

MT-ND4 ENST00000361381 -1.62436 0.008119 -1.38229 0.005128 

MT-ND5 ENST00000361567 -1.27629 0.013104 -1.41304 0.0028 

MUC17 ENST00000306151 1.767869 0.002968 1.001419 0.002931 

MUC5B ENST00000447027 -0.81995 0.059909 -2.33313 0.011835 

OR2T8 ENST00000319968 -3.91338 0.016412 -3.98342 3.33E-06 

OR5H15 ENST00000356526 -1.24872 0.001252 -1.88243 0.051818 

OR6C3 ENST00000379667 1.897442 9.39E-08 0.925041 0.023102 

OR6C6 ENST00000358433 2.656523 0.00166 0.964638 0.041351 

PCDHB16 ENST00000361016 0.649723 0.030141 -2.18918 0.000285 

PSAPL1 ENST00000319098 -1.59782 0.007921 -1.97582 0.018494 

PTBP1 ENST00000356948 1.779227 0.01009 1.265473 0.002932 

PTENP1 ENST00000532280 -1.19383 0.028207 -1.1246 0.002654 

PTPN11 ENST00000351677 2.36303 0.002438 1.851827 0.03007 
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Gene symbol Ensembl ID 
GSE86202 GSE151352 

log2 (FC) P-value log2(FC) P-value 

RANBP6 ENST00000259569 -0.9764 0.010593 -0.9782 0.018178 

RAPGEF5 ENST00000344041 -3.29659 0.011222 -3.87801 6.11E-09 

RBM20 ENST00000369519 -1.49963 0.035341 -1.83547 0.000478 

RERE ENST00000337907 -0.71607 0.057925 -1.04612 0.046666 

RP11-364B14.3 ENST00000453380 -3.07645 0.013006 -2.679 0.00647 

RP11-548O1.3 ENST00000495287 -1.41003 0.005495 -1.19579 0.000307 

RP11-573G6.6 ENST00000566763 -2.43661 3.79E-05 -2.98811 5.64E-05 

SAMD4B ENST00000314471 2.425298 0.032765 2.193776 0.009102 

SH3BP2 ENST00000503393 2.999039 0.058144 2.351316 0.053821 

SHMT1 ENST00000316694 1.376769 0.057446 0.478809 0.040998 

SLC6A9 ENST00000372310 -2.9317 6.60E-06 -2.36244 0.003276 

SMG6 ENST00000574501 -4.4652 0.001828 -1.94312 0.049293 

SNORD116-6 ENST00000384711 -2.36355 0.000573 -3.4219 2.16E-07 

SOX3 ENST00000370536 -2.86093 0.003264 -4.03012 5.4E-06 

SPARC ENST00000231061 1.541774 0.018242 0.809204 0.010656 

SYNM ENST00000561323 -1.16092 0.012187 -0.80428 0.047329 

TEK ENST00000380036 -1.08628 0.04334 -2.59451 0.016505 

TNIK ENST00000436636 -1.65314 0.022505 -3.661 0.001868 

TNRC6C ENST00000335749 0.711425 0.041801 0.628342 0.021548 

TTN ENST00000589042 -2.99415 0.000902 -2.42567 0.008926 

U3 ENST00000391249 1.486661 0.011397 0.939354 0.001736 

USP15 ENST00000280377 -1.76516 3.87E-05 -2.64442 0.033033 

WASH7P ENST00000423562 1.648156 0.022976 1.410344 0.022637 

ZNF514 ENST00000496060 -0.74585 0.058723 -1.08466 0.03908 

GLIS3 ENST00000324333 -2.7891 0.03567 2.77801 0.02682 

FLRT2 ENST00000330753 -0.9836 0.011457 -1.322 0.054359 

POLH ENST00000372236 0.818777 0.0123 0.739577 0.053572 

PPIL4 ENST00000253329 -1.1034 0.006928 -1.19579 0.000307 

 

 

Furthermore, functional enrichment analysis of overlapped genes was identified (Fig. 4) and an interaction 

network was constructed, which included55 nodes and 189 edges (Fig. 5). 

 

 

213



Network Biology, 2021, 11(3): 207-221 

 IAEES                                                                                                                                                                           www.iaees.org

 
Fig. 4 Enrichment analysis of 109 overlapped genes. KEGG pathway (Left figure) and GO (Biological Process) function 
enrichment (Right figure). 

 

 

 
Fig. 5 Network of 109 overlapped genes. This network comprised of 55 nodes and 189 edges. 
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In addition, the cluster was investigated using the MCODE plugin including 25 nodes and 161 edges (Fig. 

6).  

 
 

Fig. 6 Cluster analysis using the MCODE plugin. This network comprised of 25 nodes and 161 edges. 

 

 

In the next step, the hub genes of the extracted clusters were examined based on 12 methods. (HIST1H2AE 

–HIST1H1C-HIST1H2AB) which are showed in Table 3 and the interaction network of hub genes was 

identified based on degree method that contains 18 nodes and 153 edges (Fig. 7). 

 

 

Fig. 7 Network of hub genes based on degree method. This network comprised of 18 nodes and 153 edges. In this network 
HIST1H2AE, HIST1H1C, and HIST1H2AB proteins had the most number of targets which are highlighted in red. 
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Table 3 Investigation of hub genes clusters based on 12 methods. 

Node name MCC DMNC MNC Deg. EPC
Bottle 

Neck

Ec 

Centricity
Closeness Radiality Betweenness Stress

Clustering 

Coef. 

IFNA8 2 0.30779 2 2 1.169 1 0.12 2 0.24 0 0 1 

IFNA2 2 0.30779 2 2 1.18 1 0.12 2 0.24 0 0 1 

PTPN11 2 0.30779 2 2 1.171 1 0.12 2 0.24 0 0 1 

TTN 2 0.30779 2 2 1.226 1 0.08 2.5 0.42667 0 0 1 

MT-ND5 2 0.30779 2 2 1.229 1 0.08 2.5 0.42667 0 0 1 

MT-ND4 4 0.30898 3 3 1.313 1 0.16 3 0.48 1 2 0.66667

MT-CO1 4 0.30898 3 3 1.322 1 0.16 3 0.48 1 2 0.66667

HIST1H2BI 9.22E+13 1.10097 17 17 8.166 1 0.72 17 0.80471 0 0 1 

HIST1H4B 9.22E+13 1.10097 17 17 8.394 1 0.72 17 0.80471 0 0 1 

HIST1H2AB 9.22E+13 1.10097 17 17 8.059 1 0.72 17 0.80471 0 0 1 

HIST1H2AE 9.22E+13 1.10097 17 17 8.186 1 0.72 17 0.80471 0 0 1 

HIST1H3C 9.22E+13 1.10097 17 17 8.275 1 0.72 17 0.80471 0 0 1 

HIST1H3B 9.22E+13 1.10097 17 17 8.316 1 0.72 17 0.80471 0 0 1 

HIST1H3G 9.22E+13 1.10097 17 17 8.276 1 0.72 17 0.80471 0 0 1 

HIST1H1C 9.22E+13 1.10097 17 17 8.163 1 0.72 17 0.80471 0 0 1 

HIST1H3F 9.22E+13 1.10097 17 17 8.102 1 0.72 17 0.80471 0 0 1 

HIST1H1E 9.22E+13 1.10097 17 17 8.205 1 0.72 17 0.80471 0 0 1 

HIST1H3A 9.22E+13 1.10097 17 17 8.188 1 0.72 17 0.80471 0 0 1 

HIST1H1D 9.22E+13 1.10097 17 17 8.145 1 0.72 17 0.80471 0 0 1 

HIST1H2BD 9.22E+13 1.10097 17 17 8.273 1 0.72 17 0.80471 0 0 1 

HIST1H4F 9.22E+13 1.10097 17 17 8.233 1 0.72 17 0.80471 0 0 1 

HIST1H2BH 9.22E+13 1.10097 17 17 8.475 1 0.72 17 0.80471 0 0 1 

HIST1H2BE 9.22E+13 1.10097 17 17 8.33 1 0.72 17 0.80471 0 0 1 

HIST1H4H 9.22E+13 1.10097 17 17 8.529 1 0.72 17 0.80471 0 0 1 

HIST1H2BF 9.22E+13 1.10097 17 17 8.283 1 0.72 17 0.80471 0 0 1 

 

 

Among 109 common genes, 6 lncRNAs were obtained and the relationship between lncRNA and mRNA 

was examined using correlation testing based on expression data. These 6 lncRNAs had a correlation greater 

than 0.5 with 91 genes and negative correlations greater than -0.5 were not found. Using Cytoscape software, 

the interaction network was constructed only based on correlations greater than 0.5.Then CytoHubba plugin 

was used and lncRNAs associated with the largest number of genes that possessed the highest correlation were 

selected. Three lncRNAs were selected as hubs which correlated with 56 altered genes greater than 0.5 (Fig. 8).  
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Fig. 8 Network related to the investigation of lncRNA correlation and DEGs. This network comprised of 93 nodes and 250 
edges and the thickness and color of the edges are adjusted based on the correlation rate from 0.5 to 0.9 from thin to thick and 
according to the color scale in the image. 

 

 

The network of hub lncRNAs was then identified. Hub lncRNA networks including 60 nodes and 213 

edges were visualized, in which lncRNAs based on the degree of the largest number of targets, are marked in 

red, orange, and yellow (Fig. 9). 

 

 

Fig. 9 Network of hub lncRNAs based on degree method. This network comprised of 60 nodes and 231 edges and lncRNAs 
which had the most of the targets are marked in red (LINC00598) – orange (RP11-573G6.6) and yellow (HCG11) respectively. 
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LINC00598, RP11-573G6.6, and HCG11 were selected as significant lncRNAs, respectively, all three of 

which have showed decreased expression in GBM compared to the controls and have been selected as hubs in 

this study. In addition, these three lncRNAs are also related to IFNA2, IFNA8, MT-CO1, MT-ND4, MT-ND5, 

and TTN which are obtained from MCODE clusters. The highest associations are between RP11-573G6.6, and 

HCG11 with MT-CO1, MT-ND4, MT-ND5, and TTN. Decreased expression of HCG11 in GBM has 

previously been reported. In this study decreased expression of lncRNA RP11-573G6.6 is reported as a novel 

result, which is associated with decreased expression of mitochondrial genes. Moreover, the network between 

lncRNA and the MCODE cluster genes were constructed in which the correlation number on the edge is 

specified (Fig. 10). 

 

Fig. 10 The network between lncRNA and MCODE cluster genes. The thickness and color of the edges in this network are 
adjusted based on the correlation rate from the highest ratio (the thickest edge in blue) to the lowest one (thin and yellow in color). 
The correlation scores are shown on the edges. 
 

 

4 Discussion 

In recent years, with technological advances in high-throughput screening, lncRNAs are rapidly being 

identified and characterized (Yang et al., 2014). Based on growing evidence, lncRNAs play an important role 

in fundamental biological processes and also attracted much attention. Therefore, it is not surprising that 

lncRNAs have been implicated in various human diseases, including the development and progression of 

various cancers (Wilusz et al., 2009; Managadze et al., 2011). In particular, although many experimental 

studies have been performed on lncRNAs, only a few of them have been extensively investigated that have 

identified potential links to different cancers, including GBM. Predicting the association between lncRNA and 

various diseases in different fields of biology and medicine is of great importance. Recently, scientists have 

focused on in silico studies for predicting new disease-related lncRNAs, which help to understand the 

biogenesis, regulation, and function of lncRNAs, and the molecular mechanism of human disease (Taft et al., 

2010; Chen et al., 2015; Chen and Yan 2013; Chen 2015a, 2015b). Based on computational models, disease-

related lncRNAs with higher scores can be selected for further experimental validation. In other words, 

bioinformatics methods can provide powerful guidance for research to identify new lncRNA related to human 

diseases. Computational approaches can also be used to predict the potential functions of lncRNAs, identify 

new lncRNAs, and build regulatory networks (Mohanty et al., 2015). Network analysis can be considered as a 

powerful and efficient tool in predicting the potential association of lncRNA with human diseases and can 
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have a profound impact on the prognosis, diagnosis, and treatment of diseases at the lncRNA level (Chen et al. 

2017). In this paper, we summarized the functions of lncRNAs, introduced important lncRNAs related to 

GBM, some important pathways, and biological processes, etc. This disease has a poor prognosis and remains 

an incurable disease. With recent advances, molecular mechanisms have provided opportunities for the 

development of effective treatments for this tumor. We found two lncRNAs that could be used as the 

promising and novel GBM-related lncRNAs for biological experiment validation. RNA-seq data was used to 

find lncRNAs related to GBM. Some approaches also were used to search for pathways and biological 

processes that are implicated in a process of GBM. Totally, based on the P-value score and network analysis, 

the potential role of LINC00598, RP11-573G6.6, and HCG11 as significant lncRNAs in GBM was elucidated. 

LINC00598 (LncFOXO1) suppresses the growth of breast cancer (BC) cells in humans through BAP1. In fact, 

lncFOXO1 is involved in suppressing BC growth by increasing FOXO1 transcription. Besides, lncFOXO1 is 

associated with BRCA-1-associated protein 1 (BAP1) and controls its binding and also the level of mono-

ubiquitinated H2A at K119 (ubH2AK119) at FOXO1 promoter. lncFOXO1 is considerably reduced in both 

BC tissues and cell lines, and there is a correlation between the down regulation of lncFOXO1 and poorer 

overall survival  (Xi et al., 2017). Also, HCG11 was down regulated in both glioma tissues and cell lines. 

Besides, low HCG11 levels show a decline in the overall survival rate of GBM patients. HCG11 was also 

present in the cytoplasm of glioma cells and released MTA3 expression by interacting with miR-4425 (Zhang 

et al., 2019). HCG11 expression levels are lower in glioma samples compared to normal subjects.FOXP1 can 

bind to HCG11 and inactivate it at the transcriptional level. Overexpression of HCG11 efficiently leads to cell 

proliferation, cell cycle arrest, and increased cell apoptosis. HCG11 is enriched in the cytoplasm of glioma 

cells and represented a competing endogenous RNAs (ceRNAs) role using sponging micro-496 to upregulate 

cytoplasmic polyadenylation element binding protein 3 (CPEB3).CEPB3 and miR-496 are implicated in 

HCG11-mediated glioma development (Chen et al., 2019). In addition, HCG11 acts as a tumor suppressor in 

prostate cancer and is also dysregulated in BC as well as gastric cancer (Liu et al., 2016; Zhang et al., 2016). 

Moreover, the TTN protein is encoded by Ttn and is responsible for the passive elasticity of cells. A mutation 

leading to an altered TTN was associated with GBM (Balakrishnan et al., 2007).  

 

5 Conclusion 

In conclusion, we have identified the role of RP11-573G6.6 and HCG11 based on in silico analysis in GBM. 

The present study has also shown the cellular and biological role of both lncRNAs and identified potential 

molecular interaction partners and furthermore suggested that they play key roles in GBM pathogenesis and 

can be exploited as promising targets in effective management, and novel therapeutic approaches. 
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