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Abstract 
In present study, a statistical simulation method for causality inference of Boolean variables was proposed. 

First, I used statistical simulation to generate artificial data of two Boolean variables with known independent 

and dependent variables. A law was drawn from the simulation analysis of the artificial data. For a set of data 

of two Boolean variables, a randomization method was proposed and used to test the statistical significance of 

the Boolean correlation measure (point correlation, quartile correlation, or Jaccard correlation, etc.). The 

causality inference was then conducted to observed data based on the law. Finally, the statistical simulation 

was used to determine the statistic significance of the causality. Full Matlab codes were presented also. 
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1 Introduction 

Causality inference is a frontier area in science. So far few successful theories have been made in causality 

inference of variables. Causality will result in correlation between two variables. We can conduct causality 

inferernce only the two variables are correlated with each other. Theories and applications of correlations have 

been well studied, including that in network biology (Qi and Zhang, 2003; Kuang and Zhang, 2011; Huang 

and Zhang, 2012; Jiang and Zhang, 2015a, b; Zhang, 2007, 2011b, 2012a, 2014-2018, 2021; Zhang and Zhang, 

2019; Xin and Zhang, 2020). There are many correlation measures, among which Pearson correlation, 

Spearman correlation, etc., are for interval variables, and point correlation, Jaccard coefficient, etc., are for 

Boolean (binary) variables. In addition to the methods of parametrical statistics, statisticall simulation 

(randomization) methods are widely used to make statistical inferences (Solow, 1993; Manly, 1997; Zhang and 

Schoenly, 1999; Zhang, 2010, 2011a). In present study, a statistical simulation (randomization) method for 

causality inference of Boolean variables was proposed. Full Matlab codes were presented also. 
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2 Correlations and Statistic Tests 

Causality will result in correlation between two variables. We can conduct causality inferernce only the two 

variables are correlated with each other. There are many correlation measures, among which Pearson 

correlation, Spearman correlation, etc., are for interval variables, and point correlation, Jaccard coefficient, etc., 

are for Boolean (binary) variables (Qi and Zhang, 2003; Zhang, 2007, 2012a, 2014, 2015, 2016, 2017, 2018, 

2021). 

2.1 Correlation measures of Boolean variables 

There are a lot of correlation measures for Boolean variables. Here I use five representative ones as follows. 

2.1.1 Point correlation 

Suppose there are n pairs of Boolean data. The point correlation between Boolean variables x and y is (Qi and 

Zhang, 2003; Zhang, 2007, 2012a, 2015, 2016, 2017, 2018, 2021; Zhang et al., 2014) 

 

             r=(ad-bc)/((a+b)(c+d)(a+c)(b+d))1/2     

 

where -1≤r≤1, both variable x and variable y take values 0 or 1. a is number of both variable x and variable y 

take value 0, b is number of variable x takes 0 and variable y takes 1, c is number of variable x takes 1 and 

variable y takes 0, and d is number of both variable x and variable y take value 1. n=a+b+c+d. A greater and 

positive r means a positive point correlation between variables x and y; a greater and negative r means a 

negative point correlation between variables x and y.     

2.1.2 Quartile correlation 

Quartile correlation is defined by (Zhang, 2016, 2018):  

 

r=sin((a+d-(b+c))/(a+b+c+d)*π/2)    

 

where -1≤r≤1; a, b, c and d follow the definitions above. 

2.1.3 Cosine correlation 

Cosine correlation is defined by (Zhang, 2016, 2018):  

 

r=(a2*d2/((a+b)(a+c)(b+d)(c+d)))1/2    

 

where 0≤r≤1; a, b, c and d follow the definitions above. 

2.1.4 Cosine+ correlation 

 

r=(a2/((a+b)(a+c)))1/2   

 

where 0≤r≤1; a, b, and c follow the definitions above. 

2.1.5 Jaccard correlation  

Jaccard correlation is defined by (Qi and Zhang, 2003; Zhang, 2007, 2012a, 2014, 2015, 2016, 2017, 2018, 

2021):  

 

r=(d-(c+b))/(d+c+b)    

 

where -1≤r≤1; b, c and d follow the definitions above. 
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2.2 Detection of correlation between two Boolean variables 

Following the principle of randomization methods (Manly, 1997; Solow, 1993; Zhang, 2007, 2010, 2011a; 

Zhang and Schoenly, 1999), here I propose a method to test the statistical significance of the Boolean 

correlation measures as described above. Suppose that there are n pairs of observed data for two Boolean 

variables x and y, as demonstrated bellow: 

 

               x  0 1 1 0 0 0 1 0 0 1 1 0 … 

               y  1 1 0 1 0 0 0 1 0 0 1 0 … 

 

We assume that there are nx and ny of 1 in vector x and vector y respectively. First, calculate the practical 

correlation r of x and y. Second, randomly re-assign nx and ny of 1 in x and y respectively, and calculate the 

theoretical correlation r of re-arranged x and y. Repeat the procedure s times, and find the times of absolute 

theoretical correlations greating than the absolute practical correlation, w. If w/s<p, here p=0.01, 0.001, etc., 

then we conclude that the practical correlation r between x and y is ststistically significant at the statistical 

level p. 

 

3 Causality Inference of Two Boolean Variables 

There is a possible causality between two Boolean variables if their correlation is statistically significant. To 

exploit the general law of causality and correlation, we need to construct the artificial data of two Boolean 

variables, known the independent variable, x, and dependent variable, y.  

3.1 Causality principle of Boolean variables 

Suppose that the significant correlation between two Boolean variables x and y is confirmed. We assume that 

there is likely a causality between two Boolean variables x and y, and furthermore, x is the independent 

variable and y is the dependent variable. In a set of sample data, as demonstrated above, x=1 will most likely 

result in y=1 at a greater probability. And, y=1 that have not been resulted from x=1 occurs occasionally at a 

smaller probability and meet x=0 or x=1. The latter stochastic y=1 is produced from the stochasticity of 

variable y and the dependence of y on other unknown variables. 

3.2 Relationship between causality and statistic parameters 

3.2.1 Statistical simulation 

From the Boolean correlation measures above, it is apparent that the only valuable parameters for causality 

inference are b and c. The parameters, a and d, are not able to provide any valuable information on the 

inference of between-variable causality. I try to find the deterministic relationship between (b, c) and causality 

by statistical simulation.   

   To avoid infinity (Inf, value/0) or non-value (NaN, 0/0), only quartile correlation is used in the simulation. 

In a simulation, construct the data of independent variable x and dependent variable y following the method 

above. Second, calculate the quartile correlation r, and b, c. Repeat the procedure many times, each time 

construct the new data of independent variable x and dependent variable y with random data sizes and 

dependency probabilities and dependency errors, etc., and record r, and b, c. Finally, calculate the mean r, 

mean b and mean c, and test the statistic difference between mean b and mean c. Meanwhile, calculate the 

Pearson correlation between absolute r and c>b (c>b: 1; c≤b: 0) and the Pearson correlation between absolute r 

and c-b, and make statistic tests on the Pearson correlations.  

   The full Matlab codes of the statistical simulation, xyGen, for finding relationship between causality and 

statistic parameters are as follows (see supplementary material also): 
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clear 

sel=1;      %sel=1: for constructing positive dependency; sel=2: for constructing negative dependency 

sig=0.01;   %Statistic significance level for detecting Pearson correlation between Boolean correlation r and c-b 

xdevi=0.2;  %Deviation of dependency of y on x, e.g., 0.1, 0.2, 0.3, etc. 

yerr=0.7;    %1-yerr: stochastic error of y, determined by random error and the influence of other unknown variables,  

%e.g., 0.6, 0.7, 0.8, etc. 

m=200;      %For determining the maximum size of Boolean variables x and y 

sim=20000;   %Number of simulations (randomizations); generally, sim>=m*100  

res=zeros(sim,7); 

nn=zeros(sim,1);  

for i=1:sim  

n=floor(m*rand()+10);  %The size, n, can be fixed, e.g., n=m  

nn(i)=n; 

xprob=rand()-xdevi; 

x=zeros(n,1); 

y=zeros(n,1);  

xbas=rand(n,1); 

x=xbas>xprob; 

if (sel==1) yx=xbas>(xprob+xdevi);    

elseif (sel==2) yx=xbas<(xprob-xdevi); end; 

yran=rand(n,1)>yerr; 

y=yx | yran; 

[r,a,b,c,d]=quartilecorr(x,y); 

res(i,:)=[sum(x) sum(y) r a b c d]; 

end 

means_of_b_and_c=mean(res(:,5:6)) 

[h,p_value_for_difference_between_b_and_c,v]=ttest2(res(:,5),res(:,6),sig); 

p_value_for_difference_between_b_and_c 

if (h==0)  

sprintf(['The difference between b and c is not statistically significant at p=',num2str(sig),'\n']) 

else sprintf(['The difference between b and c is statistically significant (p=', num2str(p_value_for_difference_between_b_and_c), 

')\n']) 

end     

r_mean=mean(res(i,3)) 

Pearson_correlation_between_absolute_r_and_c_great_than_b=corr(abs(res(:,3)),double(res(:,6)>res(:,5))) 

tvalue=abs(Pearson_correlation_between_absolute_r_and_c_great_than_b)./sqrt((1-Pearson_correlation_between_absolute_r_an

d_c_great_than_b.^2)/(n-2)); 

alpha=(1-tcdf(tvalue,mean(nn)-2))*2; 

if (alpha<=sig) 

sprintf(['Pearson correlation between absolute r and c>b is statistically significant (p=',num2str(alpha),')\n']) 

else sprintf(['Pearson correlation between absolute r and c>b is not statistically significant at p=',num2str(sig),'\n']) 

end     

Pearson_correlation_between_absolute_r_and_c_minus_b=corr(abs(res(:,3)),res(:,6)-res(:,5)) 

tvalue=abs(Pearson_correlation_between_absolute_r_and_c_minus_b)./sqrt((1-Pearson_correlation_between_absolute_r_and_c_

minus_b.^2)/(n-2)); 
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alpha=(1-tcdf(tvalue,mean(nn)-2))*2; 

if (alpha<=sig) 

sprintf(['Pearson correlation between absolute r and c-b is statistically significant (p=',num2str(alpha),')\n']) 

else sprintf(['Pearson correlation between absolute r and c-b is not statistically significant at p=',num2str(sig),'\n']) 

end  

 

function [r,a,b,c,d]=quartilecorr(x,y)               %x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

a=sum((x==0) & (y==0)); 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0)); 

d=sum((x~=0) & (y~=0));                  

r=sin((a+d-(b+c))/(a+b+c+d)*pi/2);     

 
3.2.2 Law found from statistical simulation 

The results of statistical simulation indicated that for positive causality (r>0; x: independent variable, y: 

dependent variable), there is a significant positive Pearson correlation between absolute r and c>b (c>b: 1; c≤b: 

0), and between absolute r and c-b; for negative causality (r<0; x: independent variable, y: dependent variable), 

there is a significant positive Pearson correlation between absolute r and c≤b (c>b: 0; c≤b: 1), and between 

absolute r and b-c.  

3.3 Statistical simulation for causality inference based on observed Boolean data 

According to the law above, a significant r and c>b (r>0; x: independent variable, y: dependent variable) or 

c<b (r>0; y: independent variable, x: dependent variable) can be used as the criteria for possible causality of 

Boolean variables. 

   First, assume that the Boolean correlation between the two Boolean variables is statistically significant. 

Following the principle of randomization tests (Manly, 1997; Solow, 1993; Zhang, 2007, 2010, 2011a; Zhang 

and Schoenly, 1999), I try to use statistical simulation to find the causality based on observed Boolean data. In 

each randomization process, two re-arranged Boolean variables, xx and yy, are generated based on the 

observed data, x and y. The elements with shared 0 and 1 in original observed data are reserved in re-arranged 

x and y. And other elements are proportionally randomized re-arranged as follows: 

 

v1=c/(b+c) 

v2=b/(b+c) 

z=rand(n) 

xy=x ˅ y   

xx=(x ˄ y) ˅ (xy ˄ (z>1- v1)) 

yy=(x ˄ y) ˅ (xy ˄ (z≤v2)) 
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Then calculate and record b and c. Repeat the procedure many times, finally calculate the proportions (i.e., 

calculated p values, p1, p2) of c>b and c≤b.  

   For r>0, if c>b and p2<p, where p is the given significance level, then x is the independent variable and y is 

the dependent variable; or else if c<b and p1<p, then y is the independent variable and x is the dependent 

variable. For r<0, if c<b and p1<p, then x is the independent variable and y is the dependent variable; or else if 

c>b and p2<p, then y is the independent variable and x is the dependent variable. 

The full Matlab codes, causalInferBool, of the statistical simulation for causality inference based on 

observed Boolean data are as follows (see supplementary material also): 

 

clear 

xyd=input('Input the Excel file name of raw data (e.g., xyd.xls: xyd=(dij)n×2, dij=0 or 1, i=1,2,...,n; j=1,2. In the file, column 1 

is for variable 1 and column 2 is for variable 2): ','s'); 

sel=input('Choose a correlation measure (1: point correlation; 2: quartile correlation; 3: cosine correlation; 4: cosine+ correlation; 

5: Jaccard correlation): ');  

p=input('Input the statistical significance level p for correlation inference (e.g., 0.001): ');  

sig=input('Input the statistical significance level p for causality inference (e.g., 0.05, 0.1, 0.2, etc.): ');  

sim=input('Input the number of simulations (e.g., 10000): ');  

xyd=xlsread(xyd);  

n=size(xyd,1); 

x=xyd(:,1); 

y=xyd(:,2); 

switch (sel) 

    case 1  

        [r,a,b,c,d]=pointcorr(x,y); str='point correlation';  

    case 2  

        [r,a,b,c,d]=quartilecorr(x,y); str='quartile correlation'; 

    case 3  

        [r,a,b,c,d]=cosinecorr(x,y); str='cosine correlation'; 

    case 4  

        [r,a,b,c]=cosinepluscorr(x,y); str='cosine+ correlation'; 

    case 5  

        [r,b,c,d]=jaccard(x,y); str='Jaccard correlation'; 

end 

if (isnan(r) | (r==Inf) | (r==-Inf))  

sprintf(['The ',str,' measure is not valid. Try to use another correlation measure.\n']) 

pause(); 

end 

nx=sum(x); 

ny=sum(y); 

ww=0; 

ss=0; 

for s=1:sim 

xx=zeros(n,1); 

yy=zeros(n,1); 

idx=randperm(n); 
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idy=randperm(n); 

for i=1:nx 

xx(idx(i))=1; 

end 

for i=1:ny 

yy(idy(i))=1; 

end 

switch (sel) 

    case 1  

        [rs,as,bs,cs,ds]=pointcorr(xx,yy);   

    case 2  

        [rs,as,bs,cs,ds]=quartilecorr(xx,yy);  

    case 3  

        [rs,as,bs,cs,ds]=cosinecorr(xx,yy);  

    case 4  

        [rs,as,bs,cs]=cosinepluscorr(xx,yy);  

    case 5  

        [rs,bs,cs,ds]=jaccard(xx,yy);  

end 

if (isnan(rs) | (rs==Inf) | (rs==-Inf)) continue; end 

ss=ss+1; 

if (((r>0) & (rs>r)) | ((r<0) & (rs<r))) ww=ww+1; end 

end 

id=0; 

if ((ww/ss)<p)  

sprintf(['There is a significant ',str,' (r=',num2str(r),') between two variables (p=',num2str(ww/ss),')\n']) 

id=1; 

else sprintf(['There is not significant ',str,' (r=',num2str(r),') between two variables (p=',num2str(ww/ss),')\n']) 

sprintf(['So, causality may not exist between two variables based on ',str,'\n'])     

end 

v1=c/(b+c); 

v2=b/(b+c); 

for s=1:sim 

z=rand(n,1); 

xy=x | y;   

xx=(x & y) | (xy & (z>1-v1)); 

yy=(x & y) | (xy & (z<=v2)); 

bs=sum((xx==0) & (yy~=0)); 

cs=sum((xx~=0) & (yy==0)); 

bc(s,:)=[bs cs]; 

end 

p1=sum(bc(:,2)>bc(:,1))/sim; 

p2=sum(bc(:,2)<=bc(:,1))/sim; 

if (r>0) 

if ((c>b) & (id==1) & (p2<sig)) 
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sprintf(['The variable for column 1 is the independent variable, and the variable for column 2 is the dependent variable 

(p=',num2str(p2),')\n']) 

elseif ((c<b) & (id==1) & (p1<sig)) 

sprintf(['The variable for column 2 is the independent variable, and the variable for column 1 is the dependent variable 

(p=',num2str(p1),')\n']) 

else sprintf(['However, causality may not exist between two variables (p=',num2str(sig),')\n'])     

end 

elseif (r<0) 

if ((c<b) & (id==1) & (p1<sig)) 

sprintf(['The variable for column 1 is the independent variable, and the variable for column 2 is the dependent variable 

(p=',num2str(p1),')\n']) 

elseif ((c>b) & (id==1) & (p2<sig)) 

sprintf(['The variable for column 2 is the independent variable, and the variable for column 1 is the dependent variable 

(p=',num2str(p2),')\n']) 

else sprintf(['However, causality may not exist between two variables (p=',num2str(sig),')\n'])   

end 

end 

 

function [r,a,b,c,d]=pointcorr(x,y)       

%x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

a=sum((x==0) & (y==0)); 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0)); 

d=sum((x~=0) & (y~=0));                  

r =(a*d-b*c)/sqrt((a+b)*(c+d)*(a+c)*(b+d));       

 

function [r,a,b,c,d]=quartilecorr(x,y)               %x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

a=sum((x==0) & (y==0)); 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0)); 

d=sum((x~=0) & (y~=0));                  

r=sin((a+d-(b+c))/(a+b+c+d)*pi/2); 
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function [r,a,b,c,d]=cosinecorr(x,y)               %x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

a=sum((x==0) & (y==0)); 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0)); 

d=sum((x~=0) & (y~=0));                  

r=sqrt(a^2*d^2/((a+b)*(a+c)*(b+d)*(c+d)));  
 

function [r,a,b,c]=cosinepluscorr(x,y)               %x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

a=sum((x==0) & (y==0)); 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0));          

r=sqrt(a^2/((a+b)*(a+c)));     
 

function [r,b,c,d]=jaccard(x,y)    

%x and y: two column vectors to be tested. 

if (max(size(x))~=max(size(y)))                                           

 error('Array sizes do not match.');                           

end 

if ((min(size(x))~=1) | (min(size(y))~=1)) 

 error('Both x and y are vectors'); 

end 

b=sum((x==0) & (y~=0)); 

c=sum((x~=0) & (y==0)); 

d=sum((x~=0) & (y~=0)); 

r =(d-(c+b))/(d+c+b);       
 

   A set of theoretical data were used to validate the method and the goodness of the method was confirmed. 

 

4 Discussion 

To increase the reliability of causality inference, the size of Boolean data should be large enough. For a large 

data, the present method can be used on randomly segmented data blocks (i.e., bootstrap method) in order to 

draw more reliable conclusion from multiple results. The present method has been tested and validated with 
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theoretical data. However, future applications and futher validations are expected and possible improvements 

on the method may be expected.  
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