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Abstract 

Ultrasonic is one of the promising technological innovation to modify structure, inactivate enzymes and/or 

neutralize microorganisms in food products for enhancement of their quality and safety. Apart from 

pasteurization, sanitation, disinfection and cleaning procedures, in the area of food microbiology, ultrasound 

can facilitate recovery of microorganisms and their identification through cell lysis or detachment of microbe 

from food surface. Hence, study of effect of sound waves on microbial cells in suspended condition and food 

matrices has opened a new horizon of its application in the area of food microbiology. Use of ultrasound in 

microbial analysis is already in practice and expanding, but the physics of interaction of acoustic waves with 

microbial cells in presence of actual food matrices need further attention. Ultrasonic reactor (UR) design 

needs interdisciplinary approach to further exploit the promise of ultra sound in food microbiology. 

Substantial demand in recent years for bench-top ultrasound reactors for cleaning of food contact surfaces in 

common households has increased. This review deals with the state of art of the ultrasound technology, 

process development, and further scope of the technology specific for its applications in cleaning and 

sanitization, microbial inactivation and in microbiological analysis in food processing industries. 

 

Keywords acoustic wave; cell lysis; cell separation; microbial analysis; sanitization. 

 

 

 

 

 

 

 

 

1 Introduction 

Green technology and minimal processing techniques are the two main concepts which are capturing the 

interest of both industries and academics researchers. With respect to that, ultrasound (US) fit the criteria the 

most, being eco-friendly, non-thermal, simple, easy and cost-efficient technique for food processing, cleaning 

and preservation (Chemat et al., 2011). Either alone or in combination, this non-thermal technique is used as an 

efficient replacement/complement to the conventional thermal techniques of food preservation and processing. 

Applications of US for both processing and analysis of food products have been covered in many recent 
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3 Ultrasonic Inactivation of Microorganisms: Kind of Microorganism, Food Matrices and Process 

Conditions 

Cavitation is the major cause of microcidal effect of US waves. As discussed, earlier, cavitation (Fig. 4) 

comprises of mechanical (shear disruption), chemical (free radical formation) and physical (pressure and high 

temperature) effects as the primary causes responsible for destruction of microorganisms (Bermúdez-Aguirre 

et al., 2011; Majid et al., 2015). The free radicals formed, attack the cell wall of microbes and causes cell wall 

disruption. Also, the high localized temperature and high pressure causes the cell to rupture (Table 1).  

 
 

 

   Fig. 4 Microbial inactivation by the phenomenon of cavitation. Picture was adapted by the author on Jan 28, 2021 from São    

   José et al. (2014). 

 

 
Table 1 Phenomenon of microbial inactivation: causes and effects. 

Causes  Effect 

 

Cavitation  
 Bubble formation, bubble growth, bubble collapse. 

 Disruption of cell wall and structures 

 Cell thinning 

 Cell wall lysis and release of the cytoplasmic content 

 Cell breakage, pore formation, and membrane disruption 

Free radical generation and mechanical effects  DNA injury which results in breakages and fragmentation 

 
 

However, it is often difficult to converge into the actual mechanism of inactivation when US is used with 

some other factors lethal for microorganisms. The microbial inactivation via US normally follows first-order 

kinetics when US is considered as the only lethal agent whereas with multiple lethal factors it follows a 

nonlinear kinetic (Lee et al., 2009). This brings us to the limitation on predicting biological adaption, 

suggesting necessity on developing more comprehensive knowledge on mechanistic analysis to predict 

adaptation and growth of microbes during storage. Generally, US frequency range of 200 - 600 kHz is more 

invasive to microorganisms. Several microorganisms have been studied to establish effectiveness of US (with 
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or without other treatments) for the microbial inactivation (Table 2). Efficacy of such US treatment depends on 

critical processing factors, such as characteristics of the ultrasonic waves, exposure time, the food matrix, and 

pathogen itself. 

 
 

Table 2 Phenomenon of microbial inactivation: causes and effects. 

Microorganism Food Treatment conditions Reduction References 

Mesophilic bacteria, 

mesophilic spores, yeast and 

molds 

Coriander 

leaves 

High power US + 

supercritical carbon dioxide 

(scCO2) 40 W; 10 MPa; 

40 °C 

4 log, 1 log, while yeast 

and molds <2 log CFU/g, 

respectively. 

Michelino et al. 

(2018) 

Aerobic mesophilic 

heterotrophic bacteria, total 

and thermo tolerant coliforms 

and yeasts and molds 

Prebiotic 

whey 

beverage 

High-intensity US (HIUS) at 

53 ± 3°C 

2, 2 log and 0.2, 0.4 log, 

respectively. 

Guimarães et al. 

(2018) 

E. coli O157:H7 and B. cereus Brining 

liquid and 

beef 

US intensity: 20.96 W/cm 

sq. for 120 min 

A significant reduction in 

number of microbes was 

observed. 

Kang et al. 

(2017) 

L. monocytogenes Raw salmon 

fillets 

UV + US and UV + US + 

AEW (acidic electrolyzed 

water) 

0.79 and 0.75 log CFU/g, 

respectively. 

Mikš-Krajnik et 

al. (2017) 

E. coli Fresh Carrot 

Juice 

US treatment at 

58 0C/ 2 min 

No viable cells (>5 log 

reduction) 

Pokhrel et al. 

(2017) 

E. coli O157:H7 Blueberry 

Juice 

Manothermosonication 

(MTS) (560 W, 5 min, 

40°C/350 MPa, 40°C) 

5.85-log reduction Zhu et al. 

(2017) 

S. enterica subsp. Enterica Strawberry US treatment (40 kHz, 500 

W) at 8°C/ 5 min + Peracetic 

acid 

1.8 and 2.0 log CFU/g 

reduction  

Rosário et al. 

(2017) 

Saccharomyces cerevisiae 

ascospores 

Beer Thermosonication (TS) at 

50°C-1.9 min and TS at 

55°C 

A significant reduction in 

microbe count was 

observed. 

Milani and 

Silva (2017) 

L. monocytogenes and 

Salmonella enterica serovar 

Typhimurium 

Fresh-cut 

bell pepper 

Slightly acidic electrolyzed 

water (SAEW)+US+60°C 

for 1 min  

3.0 CFU/g reductions. Luo and Oh 

(2016) 

Cronobacter sakazakii Head lettuce 100 min US and 200 ppm 

NaOCl. 

1.08 log CFU/g reduction Park et al. 

(2016) 

B. cereus Potato 3 min of US with 400 W/L 

of acoustic energy densities 

2.3 ± 0.1 log CFU/g 

reduction 

Luo et al. 

(2016) 
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(AED) at 40 °C treatment 

Bacillus cereus spores Skim milk Thermosonication (TS) at 24 

kHz, 200 W and up to 20 

min at 50, 60, 70°C, energy 

density up to 2.40 kJ/ml 

D70°C value was 2.9 min 

for TS. 

Evelyn and 

Silva (2015) 

Total aerobic mesophilic 

bacteria (TAMB), total 

coliform bacteria and 

Staphylococcus spp. 

Skimmed 

sheep milk 

US at 20 kHz, 78 W for 6 

and 8 min and 104 W for 4 

and 6 min, energy density 

0.62–0.94 kJ/ml 

Reduction: >1.81 log 

CFU/ml for TAMB, 

complete inactivation for 

coliforms and >1.6 log 

CFU/ml for 

Staphylococcus spp. 

Balthazar et al.  

(2019) 

Escherichia coli O157:H7 and 

Salmonella typhimurium 

Camel milk US at 20 kHz, 900 W for 15 

min; energy density 8.10 

kJ/ml 

Total elimination of E. 

coli O157:H7 and a 4.4 

log reduction in S. 

typhimurium 

Dhahir et al. 

(2020) 

 

 

3.1 Effect of type of microorganism 

The resistance of microorganism to US treatment varies with the type of microorganisms. These variations 

arise due to differences in cellular structure, envelope and metabolism. ‘D’ (death rate) value is used to 

estimate the killing rate of microbes at specific temperature and pressure. When temperature and pressure are 

kept constant, the resistance of the five types of microorganisms is expressed in D-values in the sequence of: 

spores > fungi > yeasts > Gram-positive > Gram-negative cells, as a result, the inactivation rate (log CFU/min) 

is in the order of Gram-negative cells > Gram-positive cells > yeasts > fungi > spores (Feng and Yang, 2011). 

Escherichia coli is one of the most studied organisms for US assisted inactivation (Badday et al., 2012; 

Zhao et al., 2019; Li et al., 2018). Though the US treatment time varied on the food matrix, in general, US of 

120 μm 400 W at 24 kHz combined with thermal treatment, ideally at 54°C was found to be most effective 

(Pokhrel et al., 2017). With a 90% amplitude and thermal treatment at lesser than 56°C, US treatment for 5-10 

min resulted in non-detectable levels of E. coli cells (Pokhrel et al., 2017). 

B. subtilis spores are more resilient than its vegetative cells. Manosonication (MS) treatment of 117 µ 

amplitude for 12 min at 500 kPa for Bacillus subtilis was sufficient for inactivation of both vegetative cells and 

spores (Raso et al., 1998). This was achieved due to inactivation of spore enzymes. L. monocytogenes 

pathogenic bacterium was most of concerned in ready to eat food product (meat and milk). Listeria strains 

were effectively inactivated via a combination of US with pulsed electric field (PEF) or high-pressure 

processing (HPP) (Pyatkovskyy et al., 2018). Similarly, ultraviolet light or/and ultrasounds with acidic 

electrolyzed water, another classic example of combining non-thermal-non-invasive preservation techniques, 

inactivated both L. monocytogenes along and natural microbiota present on raw salmon fillets (Mikš-Krajnik et 

al., 2017). It is observed that despite extensive works done to minimize food losses by application of US there 

still limited information available on behavior of microorganisms post the treatment during storage of product. 

Bacteria especially E. coli is well known for its notorious capability of adaption to the chemical treatments. 

The concerns have been grown exponentially recently due to the proofs emerging for their resilience towards 

antimicrobial agents (Wang et al., 2020). Therefore, US being a non-chemical method provides a solution 
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however, some extensive works in this direction would be better to support the claims made. 

3.2 Effect of processing conditions  

It is envisaged that the power of US and exposure time has more trivial role compared to the frequency used 

for the effective decontamination of the microorganisms in case of minimally processed fruits and vegetables 

(Seymour et al., 2002). In this context ultrasonic cleaning of fresh produce showed cell removal that were 

adhered on the surface, more susceptible to the secondary treatment by the sanitizer (Feng and Yang, 2011). 

Effective destruction of S. typhimurium attached on iceberg lettuce were obtained by treatment with US + 

water and US + chlorinated water than with convectional sanitation techniques (Seymour et al., 2002). Valero 

et al. (2007) effectively prevented microbial spoilage in orange juice using US with 500 kHz at 240 W for 

treatment time of more than 10 min. However, treatments of less than 10 min. exposure did not produce 

evident microbial reduction. In a similar study, commercial sanitizers in combination of US were also studied 

to evaluate the effectiveness in killing Salmonella from minimally processed cherry tomatoes (São José and 

Vanetti, 2012). The effect of US waves on permeability of membrane is well established, as it contributes in 

increasing the pore size of membrane, resulting in the increased uptake of soluble gradients, which as 

consequence lead to inactivation, this is evident from above experiments on E. coli. The combined effect of US 

(at 40 kHz) and ozone (at 1.5 mg/l for 8 min) was successfully applied for effective disinfection of cabbage 

leaves (Traore et al., 2020). The treatment effectively reduced microbial load from the surface of cabbage 

while retaining bioactive and antioxidant compounds. 

The effects of temperature, pH, organic acids and soluble solids on the inactivation of E. coli ATCC 25922 

has been investigated using US pasteurization. The study revealed the enhanced sensitivities of E. coli to 

thermal assisted US inactivation (Salleh-Mack and Roberts, 2007). A study based on microbial responses and 

relation to kinetic modelling is conducted to evaluate inactivation mechanism in E. coli cells with 

manothermosonication, thermosonication, manosonication and sonication. It was concluded that the treatment 

time required to attain 5-log reduction of E. coli was shorter once US was combined with other lethal factors 

(Lee et al., 2009). Both Temperature and pH show synergistic effect to US treatment, the reason for this is 

probably they enhance either cell permeability and free radical generation or both. Microbial behaviors are 

predicted using kinetic models using empirical relationships such as Logistic and Gompertz. These derived 

parameters are then related with matrix defining parameters such as processing related inactivation (US), 

temperature and pH for predicting microbial inactivation in food processes (Peleg and Corradini, 2011).    

Though the stress of environment and processing conditions on pathogens has intrigued attention of most of 

the researchers, however there is latent lag observed in technologies/models developed to predict the behavior. 

In this direction Baranyi and Roberts (1994) introduced a mechanistic parameter calling it ‘q0’ explaining the 

physiological state of cell but recently Peleg and Corradini (2011) argued its empirical nature. This brings back 

to the same deposition, where in owing to lack of knowledge on recovery and adaptation post to the US 

treatment. 

 

4 Application of Ultrasound and Microorganism Interaction 

4.1 Disinfection of fruits and vegetables using ultrasound devices  

Traditionally, chemical sanitizers are used as a common practice for washing fresh fruits and vegetables was 

considered. The possible reasons for such wider application despite developments in alternative less toxic 

disinfection processes are: (a) ready availability, (b) easy application, (c) less hassle, and (d) cost effectiveness. 

However, the inadequate efficiency due to adaptation of pathogens to such chemical agents (Ruiz-Cruz et al., 

2007) have necessitated the search for other new strategies. In this regard a very simple solution was evinced 

where, sonic waves were projected into a cleaning solution, which resulted in cavitation and carryout the 
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microbial inactivation for surface decontamination. This was achieved due to the pressure difference by 

cavitation a high shear force on the surface of vegetables and fresh fruits, thus micro-steaming removed the 

entrapped dirt and killed bacteria (Sagong et al., 2013). 

Sanitizers are often used along with surfactants for a higher efficacy on microbial reduction. However, 

chemical nature of such disinfection products and consequence in form of residues is a growing concern 

among consumers.  Therefore, the role of US pre-treatment followed by disinfection with and without 

surfactants/sanitizers to evaluate decontamination efficiency of fresh produce needs be investigated to 

understand influence on quality of fresh produce. In this regard Huang et al. (2018) published promising result 

illustrating that on the application of US alone, significant reduction in the rate of microbial growth was 

observed as compared to the surfactants. This treatment was performed using a bench top ultrasonic cleaner 

with ability to maintain constant frequency of 42 kHz and power load of 100 W (Huang et al., 2018).  

The effects and efficacy of ultraviolet light (UV 254 nm) and US, two non-thermal process of disinfection 

on the inactivation of bacteria and changes in color of lettuce and strawberry were investigated (Birmpa et al., 

2013). The results revealed that combination of UV and US was efficient in reducing the numbers of mixed 

microbial population on strawberries and lettuce, indicating that use of these treatments might be employed as 

a good alternative in comparison to the conventional methods such as chlorine and hydrogen peroxide 

solutions. The research concluded that UV and US can efficiently replace older methods as presented 

combination techniques are promising, cost effective and eco-friendly. In another study, on the strawberries, 

watercress and parsley effectiveness of the use of US combined with chemical sanitizers was evaluated, where 

a slight color change was observed (São José and Vanetti, 2015). A slight darkening was observed in 

watercress and parsley, particularly in samples where US was used in association with peracetic acid, while 

firmness reduction in strawberries. However, the combination of US and 40 mg/l peracetic acid resulted in the 

highest microbial reduction (São José and Vanetti, 2015). The findings of the study suggested that US 

treatment might be used an alternative to the vegetable sanitization step. 

Another example is of cherry tomatoes, exposing tomatoes to frequency of 45 kHz for 10 min followed by 

treating with hydrogen peroxide, sodium dichloroisocyanurate, chlorine dioxide and peracetic corrosive 

significantly improved reduction in microbiota. Among all sanitizers, US coupled with peracetic corrosive 

indicated the most noteworthy decrease and hence it is reasoned that US is an expected assistant procedure in 

the disinfection of cherry tomatoes (São José and Vanetti, 2012). 

Another added advantage of using US for surface decontamination is that it contributes to antimicrobial 

effect to the fresh produce. Duarte et al. (2018) confirmed that treating purple cabbage by US + sodium 

dichloroisocyanurate sanitizer, reduced almost 4 log cycles of S. typhimurium adhered to its surface, without 

altering any physicochemical and sensorial characteristics. A similar study was done by Rosario et al. (2018) 

wherein the synergistic effect between ultrasound and sodium hypochlorite (NaOCl) effectively reduced the 

mesophilic aerobic bacteria at 40 kHz, 500 W and 100 mg/l NaOCl for 5 min. Sonolysis was achieved using a 

20 kHz ultrasonic unit with an increase in the microbial inactivation on addition of antimicrobial, by means of 

hydroxyl radicals (Kadkhodaee and Povey, 2008). Recently, an industrial water treatment system has been 

developed, using high frequency US, patented as Sonoxide, which has shown promising results in microbial 

inactivation and decontamination purposes (Broekman et al., 2010).  

4.2 Food contact surface cleaning and sanitation 

The initial applications of US in surface cleaning were majorly associated with removing dirt and microbes 

from equipment and household appliances (Mason, 2016). Later on, the phenomenon of cavitation along with 

certain chemical treatments also began to be employed for surface cleaning in food industries as is used for 

cleaning of fresh vegetables and fruits as well as equipment (Bilek and Turantaş, 2013). The concept of use of 
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power US in combination with in situ generated heat has also been studied recently (Anese et al., 2015) which 

is unique step in the direction of effectiveness of such combination for water decontamination and recycling in 

the fresh-cut industry.  

Recently a study on chemical and physical effects of acoustic cavitation has been analyzed for the efficient 

ultrasonic cleaning applications. The study showed that the physical effect of US was useful in ultra-filtration 

process and for the inactivation of surface pathogens while chemical effects of cavitation were employed for 

the disintegration of organic pollutants (Yusof et al., 2016). Thus, overall cleaning and sanitization can be 

achieved efficiently. Another recent research on the novel concept of membrane cleaning via ultrasonically 

driven bubbles was investigated (Reuter et al., 2017). Here, the idea of damage-free ultrasonic cleaning was 

introduced, and the results showed that 130 kHz can be used as optimum frequency for carrying out effective 

cleaning (without compromising the product) at moderate driving powers (~50% of the total power).  

The principle of sanitation lies in collapse of cavitation bubbles created by US at solid-liquid interface 

which, on other hand, resulted in water spray jets and shear forces. The water spray jets and shear forces aided 

in the removal of dirt or bacteria from the surface. Mason (2016) illustrated this mechanism in a different way, 

and stated that there are two major factors responsible for the surface decontamination relating to cavitation in 

an aqueous medium via US in following order: (a) A cavitation bubble ruptures near to a surface, (b) resulting 

in a powerful jet stream which gusting towards the surface, (c) Detaching bacteria and dirt from the food 

surfaces. Alternatively, on occasions acoustic streaming occurs when ultrasonic waves displace the cleaning 

solution. Resulting, in exposure of surface and dirt particles to the liquid stream (increasing sheer force 

between surface and particles), finally reducing the adhesion force between surface and particle, and thereby 

providing complete cleaning.  

In addition to this, there are certain factors which influence the optimum cleaning by US which includes 

type of cleaning solution, the presence of acoustic standing wave, bath temperature, power of transducer and 

the frequency of US. In a study, decontamination efficiency of US for meat was determined which revealed 

that either alone or in combination with other processing and/or preservation techniques, US hold the capacity 

for improving the overall quality and ensuring clean and sanitized process equipment at the same time 

(Turantaş et al., 2015). Moreover, high intensity US can also be used as an effective surface decontamination 

technique in variety of fish species butas an initial processing step (Pedrós-Garrido et al., 2017). Recently, 

chemical and physical effects of acoustic cavitation for the prediction of efficiency of disintegration of organic 

pollutants in water were investigated (BermÚdez-Aguirre et al., 2009). 

A typical design of an ultrasonic cleaner consists of a chamber comprising cleaning solution, attached with 

a transducer which generates the US waves and carryout the phenomenon of cavitation to remove dirt particles 

(Azar, 2009). In a research continuous-flow ultrasonic washing system was studied to evaluate the effect of 

surface decontamination on fresh produce (Zhou et al., 2012). The result reveled that US in combination with 

chlorine, in the continuous-flow system showed enhanced log reductions and decreased total microbial count. 

Zips et al. (1990) studied ultrasonication for foul smell removal from food processing equipment in a diary 

industry. US gave reproducible results when applied for 10s for biofilm removal and was four times greater 

effective as compared to swabbing method. Furthermore, equipment used for food processing could be more 

effectively cleaned deep inside at holes, corners, rough surfaces or cavities.  

4.3 Detachment of bacteria from food matrices 

US has also found its application in the biofilm removal (Fig. 5) or bacterial detachment procedures. It 

removes different types of microorganisms like fungi, bacteria and viruses more efficiently in less time as 

compared to traditional heating methods (Chemat et al., 2011). Variations in US frequency and intensity and 

treatment time has different influence on bacteria. Zips et al. (1990) studied the effect of ultrasonic waves 
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amplification of lysed samples showed negligible PCR inhibition or other secondary effects (Vandeventer et 

al., 2011). 

Another potential of US is cell softening. This was examined using apple tissue subjected for 7.5, 15- and 

30-min US treatment while the cell wall stiffness was used as performance index, detected using an atomic 

force microscope (Pieczywek et al., 2017). In the experimental setup the tissue regions of interest were sliced 

and stained the subjected to a probe-type sonicator with frequency of 40 Hz and peak power capacity of 400 w 

with 20% of amplitude, pacing samples on slides/metal plates. The image analysis from atomic force 

microscope revealed a linear decrease in cell wall stiffness. This may have resulted primarily because of 

increased cell wall permeability, facilitating the transport of solute and water. Thus, it was concluded that US 

may be used as a cell softening treatment in fruits and vegetables. 

Strawberries were US (60 W, 33 kHz) treated to evaluate the effect of treatment on physico-chemical, 

microbial and nutraceutical quality for the storage period of 15 days at 4 0C (Gani et al., 2016). The result of 

the study showed that total soluble solid (TSS) content increased as cavitation via US treatment lead to 

disruption of cellular structure and formation of microscopic channels that increased dehydration (Fernandes et 

al., 2009). The increased total phenolic content (TPC) was attributed to greater disruption of cell wall material.  

The use of low frequency non-focused ultrasound (LFNFU) and high-frequency focused US (HFFU) in 

microalgal cell disruption was also investigated in a study (Wang et al., 2014). The result depicted that 

combining high and low frequency treatments is even more useful than single frequency treatment when 

processing time was kept constant (Wang et al., 2014). Thus, changing and combining frequency can be used 

in cell disruption. 

4.5 Cell separation 

The main aim of ultrasonic separation is to achieve efficient enhancement rate of separation processes without 

altering the chemical or physical integrity of the food product. In recent time, the use of high-power US has 

found application in cell separation from biomass. Cell separation by US caused clots in target cells that were 

separated from the system by physical manipulation, particularly by varying frequency (Coakley et al., 2000). 

The requirement of superior cell concentrations and low sample volumes as well as the lack of appropriate 

recovery efficiency data or less bacterial cell viability knowledge limited the application of ultrasonication in 

concentration and separation of cells. This process is called acoustophoresis where the separation of cell or 

particles is carried out when the sample is exposed to the fluid under the influence of ultrasonic waves. This 

can be achieved by standing US wave over the cross-section of a microfluidic channel (Gossett et al., 2010).  

Juliano et al. (2017) emphasized “the mechanism of separation technology centers around differential 

positioning of distinctive particles or droplets across US wave field spread within the reactor, whilst actual 

separation is catered by predisposition of rapidly agglomerating or coating particles”. This technology is being 

used by oil industry like olive oil, palm oil and coconut oil for oil recovery. High power US assisted cell 

separation is also used for separating milk fat and for fat globule fractionation (Terefe et al., 2016). A study 

has also utilized the application of US for transportation of micro-sized particles or cells from stream of one 

fluid to another, evaluating the separation of polystyrene microbeads of different sizes (3 μm and 10 μm) and 

waterborne parasites (Cryptosporidium parvum and Giardia lamblia) (Liu et al., 2012). In a study on red radish, 

use of US assisted freezing resulted in reduced cell separation and disruption of radish tissues (Xu et al., 2015). 

Several acoustic separation devices have been used in industry. The combination of dielectrophoresis (DEP) 

and ultrasonic waves causes a series of reactions in particles, i.e., trapping, sorting, concentration and 

separation with selectivity level up to 90% (Wiklund et al., 2006). Free flow acoustophoresis (FFA) may be 

used for continuous separation of heterogeneous solution by applying acoustic forces where separation is done 

on the basis of particles size and density.  
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Irrespective of the numerous contributions of ultrasonication in food industry, this technique for cell 

separation and manipulation via acoustic waves finds a much important role in the field of medical science. 

Acoustic based separation has been used in circulating tumor cells for cancer biology studies (Li et al., 2015), 

blood cells separation (Kapishnikov et al., 2006), evaluating the behavior of particles mimicking human cell 

(based on size) under the influence of ultrasonic acoustic field, using micro particle image velocimetry (PIV) 

measurement technique (Li and Kenny, 2004). 

 

5 Recent Developments and Future Perspective of US Technology 

US assisted washers, cleaners, sterilizers and handheld sanitizers have been developed. US treatment is 

introduced in the cleaning procedures of household items. Ultrasonic ozone vegetable fruit sterilizer- 

cleaner-washer (Samson multipurpose ultrasonic washer) is a commercially exploited design where the 

contaminating chemicals from the surface are removed by the action of US and reactive oxygen. The work of 

ozone is to eliminate odors while chlorine removes adhering microbes. Another equipment is Erngreener 

handheld ultrasonic fruit and vegetable cleaner which performs surface decontamination in few minutes. 

Simple, user-friendly, cheap, and being light weight are the added advantage of this US reactor designs. 

Many commercial brands of ultrasonic cleaners for domestic user are available like Ultra-waves across the 

UK, used for cleaning extrusion dies, grillers and choppers. TOVATECH® and OMEGASONICS® originated 

in U.S.A etc. are popular commercial sonication brands being used to homogenize liquids which extended its 

application for food contact surfaces or coatings. SONO TEK CORP patented in 2008 an ultrasonic atomic 

nozzle for spraying coating solutions on food surfaces or food packaging materials. The coating solution might 

include an anti-microbial solution, an anti-enzymatic browning solution, an edible oil, a liquid flavoring, a 

liquid spice, a nutraceutical, a protein solution, a peptide solution, a glaze, an anti-stick baking pan release 

solution, a sterilant, hydrogen peroxide, a food-grade acid, a food-grade propionic acid, alcohol, malic acid, 

adipic acid, lactic acid and ethanol. The advantage of ultrasonic cleaning over the conventional cleaning 

processes is that it may reach crevices that are not easily accessible. Also, variety of things can be cleaned via 

ultrasonic cleaning such as large food packaging crates, process equipment, delicate sensitive medical tools 

etc. 

These recent innovations in US technology undoubtedly brought down large sized industrial technology to 

small bench top models for wider user groups and application. However, there is still more to explore the true 

potential of US, which requires modification in instrument to accommodate variable sweeping frequency. The 

current models are constrained in this regard due to the restriction on the US emitter (horn type) where in 

mono-emitter operating on single frequency limits applicability of the US. Another challenge is the ohmic heat 

generated during US process, which increases the temperature of the product as a result may alter the product 

characteristics effects (Vandeventer et al., 2011). Conventionally it is regulated by introducing sample into 

temperature regulated water bath or immersing it in a bucket of crushed ice, which at certain times not so 

convenient and is limited to batch processes. In perspective of continuous process, the energy consumption 

increases requiring sample cooling and running of operation at lower temperatures. A possible solution is 

perhaps utilization of Peltier cooling systems for small scale bench top models. Hopefully, future US reactors 

will be able to overcome these limitations and provide substantial user-friendly bench top models for both 

commercial and domestic usage. 

Apart from the perspective of innovation in US technology and its application one an interesting area to 

further explore would be impact of US processing on microbial behaviors. Inherently all biological processes 

are complex and their generalized representation using mathematical relationship is already a challenge. 

Therefore, predicting microbial behaviors due to additional stress created by US treatment would be an 
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interesting area to explore. This will enable us for developing a better understanding on underlying adaptation 

mechanism of pathogens due to physiological stresses such as of US. 

 

6 Discussion and Concluding Remarks   

Undoubtedly ultrasonication is among the most promising novel method of processing and analysis serving the 

food. The most successful commercial application of the technology in food sector is probably ultrasonic 

cleaning and sanitizing devices for both food contact surfaces as well as for fresh vegetables and fruits. Large 

scale pasteurization is definitely one of the potential areas to replace traditional thermal technologies for better 

quality liquid food products. In the engineering side now, ultrasonic equipment manufacturers are 

manufacturing ultrasonic horns of 500 W to 16 kW capable of handling flow rates up to 50 cubic m/h. Current 

review observes most liquid food processing studies are done in lab scale using batch reactors so pilot level 

studies are required to scale-up the technology. For solid food products still, much emphasis should be given in 

ultrasonic bath reactor designs to improve process efficiency and economics to match industrial requirements. 

Similarly, the recent pandemics and food borne illnesses has resulted in increased demand of such 

non-chemical microbial inactivation technology. The futuristic development in US requires commercial 

production of 5-10 litre small scale US reactors for household use. Such bench top models would assist in 

prevention of food borne related outbreaks.  

Further work is also required in the segment of food microbiology, especially when it comes to the cell 

separation and cellular lysis. Often there is ambiguity in available literature regarding quantification of the 

extent of cell separation from food matrix. Perhaps more interdisciplinary approach is warranted; along with 

food scientists and microbiologists engineering principles are required to optimize the analytical process.  
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