Article

A web tool for generating user-interface interactive networks

WenJun Zhang

School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; International Academy of Ecology and Environmental Sciences, Hong Kong

E-mail: zhwj@mail.sysu.edu.cn, wjzhang@iaees.org

Received 9 June 2021; Accepted 10 September 2021; Published online 18 September 2021; Published 1 December 2021

Abstract

In the present study, an online web tool (http://www.iaees.org/publications/software/netJa/netGen.htm) for generating user-interface interactive networks was presented. In the network, the user can mouse-press any of the nodes to drag the network, examine network topology, evaluate node centrality, etc. It can be freely used and run on popular web browsers as Chrome, etc.

Keywords web tool; online application; user-interface; interactive networks; drawing.

Network Biology ISSN 2220-8879 URL: http://www.iaees.org/publications/journals/nb/online-version.asp RSS: http://www.iaees.org/publications/journals/nb/rss.xml E-mail: networkbiology@iaees.org Editor-in-Chief: WenJun Zhang Publisher: International Academy of Ecology and Environmental Sciences

1 Introduction

Network construction mainly comprises two parts, the determination of connection structure, and the graphic drawing of the network (Zhang, 2012b, 2016c, 2018). Many software have been developed to conduct network construction.

Pajek is a software platform for the network analysis of the large and complex networks with up to millions of nodes. It is a fast visualized tool for program operation. Pajek contains various methods/algorithms on analysis of topological properties (Kuang and Zhang, 2011; Huang and Zhang, 2012; Li and Zhang, 2013; Jiang and Zhang, 2015a, b; Jiang et al., 2015; Xin and Zhang, 2020; Zhang and Zhang, 2019).

NetLogo is a multi-agent programmable modeling environment, which provides frameworks of computer codes of models / algorithms, and suggestions for extending these models / algorithms. It provides an alternative platform for self-organization modeling (Zhang, 2016c, 2018).

GKIN is a simulator and a comprehensive graphical interface where one can draw the model specification of reactions between hypothesized molecular participants in a gene regulatory and biochemical reaction network (Arnold et al., 2012). Its graphical user interface is written in Java which can run as a standalone or WebStart application. The drawing capability for rendering a network significantly enhances the ease of use of other reaction network simulators as KINSOLVER and enforces a correct semantic specification of the network (Zhang, 2016c, 2018).

NetDraw is a program for drawing social networks (Borgatti, 2011). NetDraw can read 2-mode data and automatically create a bipartite representation of it. Using the VNA file format (the VNA data format allows the user to store not only network data but also attributes of the nodes, along with information about how to display them like color, size, etc.). The program can save a network along with its spatial configuration, node colors, shapes, etc (Zhang, 2012b, 2016c, 2018).

netGenerator is used to draw directed, undirected, cyclic and acyclic network graphs, which is developed based on JDK 1.1.8, in which several classes are included (Zhang, 2012b). It can be freely downloaded and run on Windows platforms.

Cytoscape is an open source software platform for visualizing complex networks and integrating them with attribute data. A lot of Apps are available for various kinds of problem domains, including bioinformatics, social network analysis, and semantic web (Zhang, 2012b, 2016c, 2018).

In the past years, we have made some achievements in network construction and concerned areas (Zhang, 2007, 2011, 2012a-c, 2021; Liu and Zhang, 2011; Zhang et al., 2014; Zhang and Qi, 2020).

So far, there are few software and tools for generating interactive networks (R, 2019). In the present study, an online web tool for generating user-interface interactive networks is presented. It can be freely used and run on popular web browsers as Chrome, etc.

2 Web Codes and Demonstration

The online tool (http://www.iaees.org/publications/software/netJa/netGen.htm) is developed to run on Javascript enabled web browsers (Chrome, Sogou, 360, etc.). The required user-interface interactive network will be generated in the webpage based on the user's settings of network conformation. The web codes of netGen Version 1.0 are as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8" /> <title>Web Tool for Generating User-Interface Interactive Networks</title> <script type="text/javascript"> <!-function netPage() { netWin=window.open(); netWin.document.write("<html>"); netWin.document.write("<head>"); netWin.document.write("<meta charset=\"utf-9\">"); netWin.document.write("<title>User-Interface Interactive Network</title>"); netWin.document.write("<script type=\"text/javascript\" src=\"http://www.iaees.org/publications/software/netJa/netJsrc1.js(">"); netWin.document.write("</script>"); netWin.document.write("<script type=\"text/javascript\" src=\"http://www.iaees.org/publications/software/netJa/netJsrc2.js\">"); netWin.document.write("</script>"); netWin.document.write("<script type=\"text/javascript\" src=\"http://www.iaees.org/publications/software/netJa/netJsrc3.js(">"); netWin.document.write("</script>"); netWin.document.write("</head>"); netWin.document.write("<body style=\"background-color:white;\">");

- $netWin.document.write("<\!div id=\"htmlwidget-50742ce3f4548458b168\" style=\"width:960px;height:500px;\"det baseline to the style of t$
- class = "forceNetwork html-widget"></div>");
- netWin.document.write("</div>");
- netWin.document.write("");
- netWin.document.write("<script type=\"application/json\" data-for=\"htmlwidget-50742ce3f4548458b168\">");
- netWin.document.write("{\"x\":");
- netWin.document.write("{\"links\":");
- $netWin.document.write("\{\"source\":["+(parent.document.netform.source.value).replace(/\n/g,"")+"],");$
- $netWin.document.write("\"target\":["+(parent.document.netform.target.value).replace(\n/g,"")+"],");$
- $netWin.document.write("\"value\":["+(parent.document.netform.value.value).replace((\n/g,"")+"],");$
- netWin.document.write("\"colour\":[\"#"+((parent.document.netform.colour.value).replace(/,/g,"\",\"#")).replace(/\n/g,"")+"\"]"); netWin.document.write(" },");
- netWin.document.write("\"nodes\":");
- $netWin.document.write("{\"name\":[\""+((parent.document.netform.name.value).replace(/,/g,"\",\"")).replace(/n/g,"")+"\"],");$
- $netWin.document.write("\"group\":["+(parent.document.netform.group.value).replace(/\n/g,"")+"]");$
- netWin.document.write("},");
- netWin.document.write("\"options\":{");
- netWin.document.write("\"colourScale\":\"d3.scaleOrdinal(d3.schemeCategory20);\",");
- netWin.document.write("\"NodeID\":\"name\",");
- netWin.document.write("\"Group\":\"group\",");
- netWin.document.write("\"arrows\":"+parent.document.netform.arrows.value+",");
- netWin.document.write(""fontSize":"+parent.document.netform.fontSize.value+",");
- netWin.document.write("\"fontFamily\":\""+parent.document.netform.fontFamily.value+"\",");
- netWin.document.write (""linkDistance":"+parent.document.netform.linkDistance.value+",");
- $netWin.document.write("\"linkWidth\":\"function(d) \{ return Math.sqrt(d.value) \} \"+",");$
- netWin.document.write(""charge":"+(-parent.document.netform.charge.value)+",");
- netWin.document.write("\"opacity\":"+parent.document.netform.opacity.value+",");
- netWin.document.write("\"opacityNoHover\":"+parent.document.netform.opacityNoHover.value+"}");
- netWin.document.write("},");
- netWin.document.write("\"evals\":[],");
- netWin.document.write("\"jsHooks\":[]");
- netWin.document.write("}");
- netWin.document.write("</script>");
- netWin.document.write("<script type=\"application/htmlwidget-sizing\" data-for=\"htmlwidget-50742ce3f4548458b168\">");
- netWin.document.write("{\"viewer\":{\"width\":450,\"height\":350,\"padding\":10,\"fill\":true},");
- $netWin.document.write("\"browser\":{\"width\":960,\"height\":500,\"padding\":10,\"fill\":true})");$
- netWin.document.write("</script>");
- netWin.document.write("");
- netWin.document.write("</body>");
- netWin.document.write("</html>");
- netWin.document.close();
- netWin.focus();
- } //-->

<body style="background-color:white;"></body>

<form name="netform" onsubmit="netPage()"></form>
Network Conformation
Network type:
<input checked="" name="arrows" type="radio" value="1"/> Directed network
<input name="arrows" type="radio" value="0"/> Undirected network
Network size: <input name="charge" size="5" type="text" value="30"/>
Link length: <input name="linkDistance" size="5" type="text" value="50"/>
Node name size: <input name="fontSize" size="5" type="text" value="15"/>
Node name font:
<input checked="" name="fontFamily" type="radio" value="Times New Roman"/> Times New Roman
<input name="fontFamily" type="radio" value="Sans Serif"/> Sans Serif
<input name="fontFamily" type="radio" value="Arial"/> Arial
Interactive node name visiblity:
<input checked="" name="opacityNoHover" type="radio" value="1"/> True
<input name="opacityNoHover" type="radio" value="0"/> False
Interactive opacity for links and node names (1, 2, 100, etc.): <input name="opacity" size="5" type="text" value="100"/>
<fort size="4">Network Data</fort>
Source node IDs of links (Replace demo data with your own data):
<textarea cols="100" name="source" rows="6" style="overflow-x:scroll;overflow-y:scroll"></textarea>
30,60,59,58,57,57,55,54,54,53,52,52,52,51,49,48,46,45,44,43,40,39,38,38,37,36,35,35,34,34,34,33,31,23,22,21,20,20,19,17,16,1
6,15,14,13,9,8,6,5,4,2,1,0,0,45,4,17,52,25,50,18,25,25,25,28,47,5,52,38,25,27,3,17,45,4,52,25,25,24,26,25,59
Target node IDs of links (Replace demo data with your own data):
<textarea cols="100" name="target" rows="6" style="overflow-x:scroll;overflow-y:scroll"></textarea>
31,10,28,45,58,39,41,36,55,55,23,32,56,44,2,21,3,29,38,53,46,37,4,17,13,49,59,60,36,43,47,34,54,22,13,6,11,12,52,29,42,41,9,4
4,8,7,20,15,38,29,27,3,1,50,57,57,57,57,57,57,53,52,51,50,48,45,43,39,38,36,35,33,33,31,30,30,28,24,23,18,16,14,5
Link widths (Replace demo data with your own data):
<textarea cols="100" name="value" rows="6" style="overflow-x:scroll;overflow-y:scroll"></textarea>
10,10,10,5,10,10,10,10,10,10,10,10,10,10,10,10,10,
10,10,10,10,10,10,10,10,10,10,10,10,10,1
tarea>
Link colours (100-999; Replace demo data with your own data):
<textarea cols="100" name="colour" rows="6" style="overflow-x:scroll;overflow-y:scroll"></textarea>
666,312,666,666,666,666,666,666,666,666,666,6
6,666,666,573,666,666,666,666,666,666,666,666,666,6
666,666,666,666,666,666,666,666,989,666,666

Node names (Replace demo data with your own data):
 <textarea name="name" rows=6 cols=100 style="overflow-x:scroll;overflow-y:scroll"> ACDC, adipoR, Akt, AMPK, AP-1, ASK1, ATF4, Bax, Bid, Bim, C/EBP-alpha, CASP3, CASP7, CASP8, Cdc42, CHOP, ChREBP, c-Jun, ACDC, adipoR, Akt, AMPK, AP-1, ASK1, ATF4, Bax, Bid, Bim, C/EBP-alpha, CASP3, CASP7, CASP8, Cdc42, CHOP, ChREBP, c-Jun, ACDC, adipoR, Akt, AMPK, AP-1, ASK1, ATF4, Bax, Bid, Bim, C/EBP-alpha, CASP3, CASP7, CASP8, Cdc42, CHOP, ChREBP, c-Jun, ACDC, adipoR, Akt, AMPK, AP-1, ASK1, ATF4, Bax, Bid, Bim, C/EBP-alpha, CASP3, CASP7, CASP8, Cdc42, CHOP, ChREBP, c-Jun, ACDC, adipoR, Astrophysical Astrophysica AsCxI/II/III/IV,CYP2E1,Cytc,elF2-alpha,Fas,FasL,Fatty Acyl-CoA,FFAs,Glucose,GSK-3,IKK-beta,IL1,IL6,IL6R,IL8,INS, INSR,IRE1-alpha,IRS1/2,ITCH,JNK1,JNK1/2,LEP,Lipogenic enzymes,L-PK,LXR-alpha,MLK3,NF-kappaB,ObR,Oxysterol, PERK,PI3K,PPAR-alpha,Rac1,ROS,RXR,SOCS3,SREBP-1c,TGF-beta1,TNF-alpha,TNFR1,TRAF2,XBP1</textarea>
 Node group IDs (Replace demo data with your own data):
 <textarea name="group" rows=6 cols=100 style="overflow-x:scroll;overflow-y:scroll">
 <input type="submit" value="OK"><input type="button" value="Manual" onClick="window.open('http://www.iaees.org/publications/journals/nb/articles/2021-11(4)/web-tool-for-generating-user-interfac e-interactive-networks.pdf')"> </form> </body>

</html>

In the web codes above, the Json codes, netJsrc1.js, netJsrc2.js, and netJsrc3.js, were compiled from networkD3 package in the free R software (R, 2019).

Using the demo data in Table 1 and default settings of network conformation, a user-interface interactive network was generated, as shown in Fig. 1 (user settings) and Fig. 2 (the user-interface interactive network). In the network, the user can mouse-press any of the nodes to drag the network, examine network topology, evaluate node centrality, etc (Zhang, 2012b, 2016c, 2018, 2021). The network with required conformation or appearance can be snapshot at any time by pressing the key "PrScrn" on the keyboard or using snapshot tools.

3 User's Settings

3.1 Network conformation

(1) Network type. Choice of directed network or undirected network can be made according to the type of network data. For the directed network, however, the choice of undirected network can also be made to generate an undirected network.

(2) Network size. A greater value of network size means the larger dimension of the network. Too greater values will make the network fall out the scope of web browser; however, the details of local topological structure of the network can be easily examined.

(3) Link length. The value denotes the length of each link in the network.

(3) Node name size. It denotes the size of node name beside the node.

(4) Node name font. The user can choose the required font style of node names.

(5) Interactive node name visibility. No node names appear if there is no mouse-pointing on nodes. However, only the name of the mouse-pointed node will appear.

(6) Interactive opacity for links and node names. The value determines that if the mouse-pointed node or (and) link and their adjacent nodes or (and) links are highlighted and the others in the network are weakly displayed.

3.2 Network data

There are six text areas for receiving different data:

(1) Source and target node IDs of links. Delete the demo data in the two text areas and enter (copy to) the user's data. The sequence of source and target node IDs for a link in the two text areas should be the same. Check demo data in Table 1 and Fig. 1 for details. If the network is an undirected one, anyone of the two nodes in a link can be placed in either source or target text areas.

(2) Link widths. The width of each link in the network. It can be used to set the highlighted links, paths, circuits, loops, trees, etc., and to set the weight and flux of each link (Zhang, 2012b, 2016a-b, 2017a-b, 2016c, 2018, 2021).

(3) Link colours. The colour of each link in the network. It can be used to set the highlighted links, paths, circuits, loops, trees, etc (Zhang, 2012b, 2016a-b, 2017a-b, 2016c, 2018, 2021).

(4) Node names. Node names, with multiple languages.

(5) Node group IDs. The group (cluster) that a node belongs to. The nodes with the same IDs belong to the same group (cluster). It can be used to set the different node clusters, etc (Zhang, 2012b, 2016c-d, 2018, 2021). All 1's if no categorical difference among nodes.

It should be noted that a node name should not contain comma, or else the comma inside the node name should be replaced with other symbols.

used in the web software (Znang and Feng, 2017).								
Source	Target	Link	Link	Node	N. J	Node		
node ID	node ID	width	color	ID	Node name	group		
30	31	10	666	0	ACDC	1		
60	10	10	312	1	adipoR	1		
59	28	10	666	2	Akt	1		
58	45	5	666	3	AMPK	1		
57	58	10	666	4	AP-1	1		
57	39	10	666	5	ASK1	1		
55	41	10	666	6	ATF4	1		
54	36	10	666	7	Bax	1		
54	55	10	666	8	Bid	1		
53	55	10	666	9	Bim	1		
52	23	10	666	10	C/EBP-alpha	1		
52	32	15	666	11	CASP3	2		
52	56	10	666	12	CASP7	1		
51	44	10	666	13	CASP8	1		
49	2	10	666	14	Cdc42	1		
48	21	10	666	15	CHOP	1		
46	3	10	108	16	ChREBP	1		
45	29	10	666	17	c-Jun	1		
44	38	10	666	18	CxI/II/III/IV	1		
43	53	10	666	19	CYP2E1	1		
40	46	10	666	20	Cytc	1		
39	37	10	666	21	elF2-alpha	1		
38	4	10	666	22	Fas	1		
38	17	10	666	23	FasL	1		
37	13	10	666	24	Fatty Acyl-CoA	1		
36	49	10	666	25	FFAs	1		
35	59	10	666	26	Glucose	1		
35	60	10	666	27	GSK-3	1		
34	36	10	666	28	IKK-beta	1		

Table 1 Demo data (Metabolic pathway of non-alcoholic fatty liver disease) used in the web software (Zhang and Feng. 2017).

34	43	10	666	29	IL1	1
34	47	10	666	30	IL6	1
33	34	10	666	31	IL6R	2
31	54	6	573	32	IL8	1
23	22	10	666	33	INS	1
22	13	10	666	34	INSR	1
21	6	10	666	35	IRE1-alpha	1
20	11	10	666	36	IRS1/2	1
20	12	10	666	37	ITCH	1
19	52	10	666	38	JNK1	1
17	29	10	666	39	JNK1/2	1
16	42	10	666	40	LEP	1
16	41	10	666	41	Lipogenic enzymes	1
15	9	10	666	42	L-PK	1
14	44	10	666	43	LXR-alpha	1
13	8	10	666	44	MLK3	1
9	7	10	432	45	NF-kappaB	1
8	20	10	666	46	ObR	1
6	15	10	666	47	Oxysterol	1
5	38	10	666	48	PERK	1
4	29	10	666	49	PI3K	1
2	27	10	666	50	PPAR-alpha	1
1	3	10	666	51	Racl	1
0	1	10	666	52	ROS	1
0	50	10	666	53	RXR	1
45	50	10	666	54	SOCS3	2
45	57	10	666	55	SPERP_1c	2 1
17	57	10	235	56	TGE-beta1	1
52	57	10	255	57	TME alpha	1
25	57	10	666	59	TNED 1	1
23 50	52	10	666	50		1
10	50	10	666	59		1
10	52	10	000	00	ADF1	1
25	51	10	000			
25	50	10	666			
25	48	10	666			
28	45	10	666			
47	43	18	666			
5	39	10	666			
52	38	10	989			
38	36	10	666			
25	35	10	666			
27	33	10	666			
3	33	10	666			
17	31	10	666			
45	30	10	666			
4	30	10	666			
52	28	10	666			
25	24	10	666			
25	23	10	666			
24	18	10	666			
26	16	10	168			
25	14	10	666			
59	5	10	666			

Buck Table for Computing X			8		X
seb looi for generatin x		0	A K	~	=
C Π www.faces.org/publications/software/netja/netwen.ntm/arrows-facharge-soa χ		=) (9 V	0 2	-
Network Conformation					
Network size: 30					
Link length: 50					
Node name size: 15					
Node name font: Times New Roman Sans Serif Arial					
Interactive node name visionly. If the V raise					
					- 11
Network Data					
Source node iD's of links (Replace demo data with your own data): 30, 60, 59, 58, 57, 57, 55, 54, 54, 53, 52, 52, 52, 51, 49, 48, 46, 45, 44, 43, 40, 39, 38, 38, 37, 36, 35, 35, 34, 34, 33, 31, 2					
3, 22, 21, 20, 20, 19, 17, 16, 16, 15, 14, 13, 9, 8, 6, 5, 4, 2, 1, 0, 0, 45, 4, 17, 52, 25, 50, 18, 25, 25, 25, 28, 47, 5, 52, 38, 25, 2					
1, 0, 11, 30, 3, 02, 20, 23, 20, 23, 00					
*					
4					
Target node IDs of links (Replace demo data with your own data):					
3, 61, 12, 52, 29, 42, 41, 9, 44, 8, 7, 20, 15, 38, 29, 27, 3, 1, 50, 57, 57, 57, 57, 57, 53, 52, 51, 50, 48, 45, 43, 39, 38, 36, 35					
, 33, 33, 31, 30, 30, 28, 24, 23, 18, 16, 14, 5					
*					
4					
Link widths (Replace demo data with your own data):					
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,					
0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1					
*		3	~ -		-
		l	8 6		x
The loop for the state of the s					
← → C ∩ □ www.laees.org/publications/software/netja/netGen.htm?arrows=1&charge=30&~?	24	I 7 () R	0 7	=
*					1
1 bile midthe (Perlage dame date with your own date):					
10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10					
, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10					
·					
4 * 2					
Link colours (100-999; Replace demo data with your own data):					
666, 666, 666, 666, 666, 666, 666, 565, 566, 566, 6					
666, 666, 666, 666, 168, 666, 666					
*					
4					
Node names (Replace demo data with your own data):					
ACDC, adipoR, Akt, AMPK, AP-1, ASK1, ATF4, Bax, Bid, Bim, C/EBP-alpha, CASP3, CASP3, CASP8, Cdc42, CHOP, ChKEBP, c- Jun, CxI/II/III/IV, CYP2E1, Cytc, elF2-alpha, Fas, FasL, Fatty Acyl-CoA, FFAs, Glucose, GSK-3, IKK-					
beta, IL1, IL6, IL6R, IL8, INS, INSR, IRE1-alpha, IRS1/2, ITCH, JNK1, JNK1/2, LEP, Lipogenic enzymes, L-PK, LXR- alpha, MLK3, NF-kappaB, ObR, Oxysterol, PERK, PI3K, PPAR-alpha, Rac1, ROS, RXR, SOCS3, SREBP-1c, TGF-beta1, TNF-					
alpha, INFR1, TRAF2, XBP1					
4					- 11
Node group IDs (Replace demo data with your own data):					- 11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
par partia na barbarba da 12 12 10					
*					
OK Manual					
				_	

Fig. 1 Web interface for setting the network conformation.

Fig. 2 The required user-interface interactive network.

4 Saving The User-Interface Interactive Network as An HTML File

In order to save the user-interface interactive network as an html file for future use, the following procedures can be implemented:

(1) When the web page of user-interface interactive network (Fig. 2) is the focus, press the key F12 on the keyboard, and the web code page will appear (Fig. 3a).

(2) Click the code line "<svg width...</svg>, and press the right mouse to "Delete element" (Fig. 3b).

(3) Click the code line "<html style=...", and press the right mouse to "Edit as HTML" (Fig. 3c), and the HTML codes will appear in a window (Fig. 3d).

(4) Press Ctrl+C to copy the HTML codes in the window and paste them into the word editor or notepad (Fig. 3e-f). In the word editor or notepad page, find and delete the "html-widget-static-bound" (Fig. 3e), and finally save the page as an HTML file with the file extension ".htm" (Fig. 3f).

By doing so, an HTML file for the user-interface interactive network is saved.

(a)

🔎 Tord Editor
File Edit Format Run Search Help
<pre>(html style="width: 100%; height: 100%; "><head><meta charset="utf-8"/><title>User-Interface Interactive Network</title> <script src="http://www.iaees.org/publications/software/netJa/netJsrc1.js" type="text/javascript"></script><script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc1.js"><script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc1.js"><script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc2.js"><script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"></script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"></script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"></script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"></script type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js">type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js">type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js">type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"type="text/javascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"</head></pre>
<pre>[10, 60, 65, 66, 67, 66, 64, 64, 65, 62, 62, 62, 62, 61, 49, 48, 46, 40, 44, 43, 40, 39, 38, 36, 36, 36, 36, 36, 36, 34, 34, 34, 33, 31, 23, 22, 21, 20, 20, 19, 1 7, 16, 16, 15, 14, 13, 9, 8, 6, 5, 4, 2, 1, 0, 0, 45, 4, 17, 52, 25, 50, 18, 25, 25, 28, 47, 5, 52, 38, 25, 27, 3, 17, 45, 4, 52, 25, 25, 24, 26, 25, 59], "ta rget": [31, 10, 28, 45, 58, 39, 41, 36, 55, 55, 23, 32, 56, 44, 2, 21, 3, 29, 38, 53, 46, 37, 4, 17, 13, 49, 59, 60, 36, 43, 47, 34, 54, 22, 13, 6, 11, 12, 52, 29, 42 , 41, 9, 44, 8, 7, 20, 15, 38, 29, 27, 3, 1, 50, 57, 57, 57, 57, 53, 52, 51, 50, 48, 45, 43, 39, 38, 36, 35, 33, 33, 31, 30, 30, 28, 24, 23, 18, 16, 14, 5], "value":</pre>
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
666"]}, "nodes": {"name": ["ACDC", "adipoR", "Akt", "AMPK", "AP-1", "ASK1", "ATF4", "Bax", "Bid", "Bim", "C/EBP- alpha", "CASP3", "CASP7", "CASP8", "Cdc42", "CHOP", "ChREBP", "c-Jun", "CxI/II/III/IV", "CYP2E1", "Cytc", "elF2- alpha", "Fas", "Fast", "Fatty Acyl-CoA", "FFAs", "Glucose", "GSK-3", "IKK-beta", "IL1", "IL6", "IL6", "IL6", "INS", "INSR", "IRE1- alpha", "IRS1/2", "ITCH", "JNK1", "JNK1/2", "LEP", "Lipogenic enzymes", "L-PK", "LXR-alpha", "MLK3", "NF- kappaB", "ObR", "Oxysterol", "PERK", "PI3K", "PPAR-alpha", "Rac1", "ROS", "RXR", "SOCS3", "SREBP-1c", "TGF-beta1", "TNF- alpha", "TNFR1", "TRAF2", "XBP1"], "group": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(e)

	and the second se
File Edit Format Run Search Help	
New Open	
Save dth: 100%; height: 100%; "> <head><meta charset="utf-8"/><title>User-Interface Interactive Network<td>itle> 🔺</td></title></head>	itle> 🔺
Save As script" src="http://www.iaees.org/publications/software/netJa/netJsrc1.js"> <script script" src="http://www.iaees.org/publications/software/netJa/netJsrc2.js"><script< td=""><td>t</td></script<></script 	t
Print ascript" src="http://www.iaees.org/publications/software/netJa/netJsrc3.js"> <body< td=""><td></td></body<>	
Exit Opx; padding: 10px; overflow: hidden; width: 100%; height: 100%; background-color: white:"> <div< td=""><td></td></div<>	
real newsraged container" style="position: absolute; top: 10px; right: 10px; bottom: 10px; left: 10px;"> <div< td=""><td></td></div<>	
id="htmlwidget-50742ce3f4548458b168" style="width: 100%; height: 100%;" class="forceNetwork html-widget "><	/div>
<pre><script data-for="htmlwidget-50742ce3f4548458b168" type="application/json"></script></pre>	

Fig. 3 The procedures for saving the user-interface interactive network as an HTML file.

5 Transform EXCEL Network Data to Comma Separated Text Network Data Used in Users' Settings

Suppose the network data are stored in Sheet 1 of Excel, as formatted in Table 1 (do not include title row). The following procedures are available (Fig. 4a-c):

(1) In Sheet 1, put mouse in an arbitrary cell of the data area, and press Ctrl+Shift+8 to select the data area, and finally press Ctrl+C to copy the selected data.

(2) In Sheet 2, press Ctrl+A to select all sheet area, and thereafter press Ctrl+Alt+V to paste specially. A window "Paste Special" appears, and select "Transpose", click the button OK. The transposed data were thus pasted (Fig. 4b).

(3) Save the data in Sheet 2 to a (comma separated) CSV file.

(4) In word editor or notepad, open the CSV file, and delete redundant comma beyond data area (Fig. 4c). The data are thus prepared for use.

By doing so, the user can paste required data into separate text areas in the web tool.

	J16		-	f	2 Sec				
	A	В	С	D	E	F	G	Η	I
1	30	31	10	666	0	ACDC	1		
2	60	10	10	312	1	adipoR	1		
3	59	28	10	666	2	Akt	1		
4	58	45	5	666	3	AMPK	1		
5	57	58	10	666	4	AP-1	1		
6	57	39	10	666	5	ASK1	1		
7	55	41	10	666	6	ATF4	1		
8	54	36	10	666	7	Bax	1		
9	54	55	10	666	8	Bid	1		
10	53	55	10	666	9	Bim	1		
11	52	23	10	666	10	C/EBP-alp	1		
12	52	32	15	666	11	CASP3	2		
13	52	56	10	666	12	CASP7	1		
14	51	44	10	666	13	CASP8	1		
15	49	2	10	666	14	Cdc42	1		
16	48	21	10	666	15	CHOP	1		
17	46	3	10	108	16	ChREBP	1		
18	45	29	10	666	17	c-Jun	1		
19	44	38	10	666	18	CxI/II/III/I	1		
20	43	53	10	666	19	CYP2E1	1		
21	40	46	10	666	20	Cyte	1		
22	39	37	10	666	21	elF2-alpha	1		
23	38	4	10	666	22	Fas	1		
24	38	17	10	666	23	FasL	1		
25	37	13	10	666	24	Fatty Acy	1		
26	36	49	10	666	25	FFAs	1		
27	35	59	10	666	26	Glucose	1		
28	35	60	10	666	27	GSK-3	1		
29	34	36	10	666	28	IKK-beta	1		
30	34	43	10	666	29	IL1	1		
31	34	47	10	666	30	IL6	1		
14 4	► ► She	et1/Sh	eet2	Sheet3	/2	7		1	

	G15	- (0	f_{x}							
	A	В	С	D	E	F	G	Н	I	J
1	30	60	59	58	57	57	55	54	54	53
2	31	10	28	45	58	39	41	36	55	55
3	10	10	10	5	10	10	10	10	10	10
4	666	312	666	666	666	666	666	666	666	66
5	0	1	2	3	4	5	6	7	8	9
6	ACDC	adipoR	Akt	AMPK	AP-1	ASK1	ATF4	Bax	Bid	Bim
7	1	1	1	1	1	1	1	1	1	1
8										

(b)

🖋 Tord Editor		×
File Edit Format Run Search Help		
🕒 🔒 🧶 隆 🗶	A 🔉 🖻 🖺 🗊 😤 🖳 ?	
30, 60, 59, 58, 57, 57, 55, 54, 54, 54, 53, 52, 52, 31, 10, 28, 45, 58, 39, 41, 36, 55, 55, 23, 32, 10, 10, 10, 5, 10, 10, 10, 10, 10, 10, 10, 15, 666, 312, 666, 666, 666, 666, 666, 666, 666, 6	52, 51, 49, 48, 46, 45, 44, 43, 40, 39, 38, 38, 37, 36, 35, 35, 34, 34, 34, 33, 31, 23, 22, 21, 20, 20, 19, 1 56, 44, 2, 21, 3, 29, 38, 53, 46, 37, 4, 17, 13, 49, 59, 60, 36, 43, 47, 34, 54, 22, 13, 6, 11, 12, 52, 29, 42, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	7, 1 (, 41, 10, : 6, 6(, 43, 92E: 1, 1
•		►
	(c)	

Fig. 4 Some of the procedures for transform EXCEL network data to text network data used in users' settings.

6 Discussion

The present online tool, netGen is the first version, i.e., netGen Version 1.0. In the future the higher versions with more or improved functionalities and with more applicable web browsers may be presented. Users are suggested for checking possible updates occasionally.

Acknowledgment

I am thankful to the support of The National Key Research and Development Program of China (2017YFD0201204), from China, and Discovery and Crucial Node Analysis of Important Biological and Social Networks (2015.6-2020.6), from Yangling Institute of Modern Agricultural Standardization, China.

References

Arnold J, Taha TR, Deligiannidis L. 2012. GKIN: a tool for drawing genetic networks. Network Biology, 2(1): 26-37

Borgatti S. 2011. NetDraw 2.099. Lexington, USA

- Huang JQ, Zhang WJ. 2012. Analysis on degree distribution of tumor signaling networks. Network Biology, 2(3): 95-109
- Jiang LQ, Zhang WJ. 2015a. Determination of keystone species in CSM food web: A topological analysis of network structure. Network Biology, 5(1): 13-33
- Jiang LQ, Zhang WJ. 2015b. Effects of parasitism on robustness of food webs. Selforganizology, 2(2): 21-34
- Jiang LQ, Zhang WJ, Li X. 2015. Some topological properties of arthropod food webs in paddy fields of South China. Network Biology, 5(3): 95-112
- Kuang WP, Zhang WJ. 2011. Some effects of parasitism on food web structure: a topological analysis. Network Biology, 1(3-4): 171-185
- Li JR, Zhang WJ. 2013. Identification of crucial metabolites/reactions in tumor signaling networks. Network Biology, 3(4): 121-132
- Liu GH, Zhang WJ. 2011. Computer generation of initial spatial distribution for cell automata. Computational Ecology and Software, 1(4): 244-248
- R. 2019. R software. https://cran.r-project.org/bin/windows/base/
- Xin SH, Zhang WJ. 2020. Construction and analysis of the protein–protein interaction network for the olfactory system of the silkworm *Bombyx mori*. Archives of Insect Biochemistry and Physiology, 105(3): e21737
- Zhang GL, Zhang WJ. 2019. Protein–protein interaction network analysis of insecticide resistance molecular mechanism in *Drosophila melanogaster*. Archives of Insect Biochemistry and Physiology, 100(1): e21523
- Zhang WJ. 2007. Computer inference of network of ecological interactions from sampling data. Environmental Monitoring and Assessment, 124: 253–261
- Zhang WJ. 2011. Constructing ecological interaction networks by correlation analysis: hints from community sampling. Network Biology, 1(2): 81-98
- Zhang WJ. 2012a. A Java software for drawing graphs. Network Biology, 2(1): 38-44
- Zhang WJ. 2012b. Computational Ecology: Graphs, Networks and Agent-based Modeling. World Scientific, Singapore
- Zhang WJ. 2012c. How to construct the statistic network? An association network of herbaceous plants constructed from field sampling. Network Biology, 2(2): 57-68
- Zhang WJ. 2016a. A Matlab program for finding shortest paths in the network: Application in the tumor pathway. Network Pharmacology, 1(1): 42-53
- Zhang WJ. 2016b. Finding trees in the network: Some Matlab programs and application in tumor pathways. Network Pharmacology, 1(2): 66-73
- Zhang WJ. 2016c. Selforganizology: The Science of Self-Organization. World Scientific, Singapore
- Zhang WJ. 2016d. A method for identifying hierarchical sub-networks / modules and weighting network links based on their similarity in sub-network / module affiliation. Network Pharmacology, 1(2): 54-65
- Zhang WJ. 2017a. Finding fundamental circuits in the network: A Matlab program and application in tumor pathway. Selforganizology, 4(1): 14-17
- Zhang WJ. 2017b. Finding the shortest tree in the network: A Matlab program and application in tumor pathway. Network Pharmacology, 2(1): 13-16
- Zhang WJ. 2018. Fundamentals of Network Biology. World Scientific, London, UK

- Zhang WJ. 2021. Construction and analysis of the word network based on the Random Reading Frame (RRF) method. Network Biology, 11(3): 154-193
- Zhang WJ, Feng YT. 2017. Metabolic pathway of non-alcoholic fatty liver disease: Network properties and robustness. Network Pharmacology, 2(1): 1-12
- Zhang WJ, Qi YH. 2020. Matlab algorithm to generate adjacency matrix from connection pairs that nodes are represented by strings. Selforganizology, 7(3-4): 8-14
- Zhang WJ, Wang R, Zhang DL, et al. 2014. Interspecific associations of weed species around rice fields in Pearl River Delta, China: A regional survey. Selforganizology, 1(3-4): 143-205