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Abstract 

The genetic code is a series of codons that stores genetic information about protein molecule formation. The 

identity graph of a group ܩ is a graph in which the vertex set is the set of all elements of the group and two 

vertices in ܩ are adjacent if ܽ. ܾ ൌ ݁, where ݁ is the group's identity element. Let ܪ be a subgroup of ܩ 

then the identity graph drawn for the subgroup ܪ is known as the identity special subgraph of ܩ (special 

identity subgraph of ܩ). In this study, we looked at the special identity graph in the genetic code algebra. 

Different measures of centrality have been thoroughly discussed in our current study. Aside from this 

investigation, research is being conducted on the correlation coefficients between different measures of 

centrality, as well as the clustering coefficient, degree of distribution, and skewness.   

 

Keywords amino acid; centrality measure; correlation coefficient; clustering coefficient; degree of 

distribution; genetic code; identity subgraph. 

 

 

 

 

 

 

 

 

 

1 Introduction 

Biological science is one of the important areas in which mathematics have been successfully applied for long 

time. This area may be referred as mathematical biology or biomathematics. Various mathematical formulae 

and method of working are used in biology. Genetics is one of the important branches of biology. Every 

organism is constituted by the cells. Chromosomes can be thought of as being made up of strings of genes. 

The DNA is found in the cells of all living organisms and is situated in the nucleus, organized into 

chromosomes. Other than the nucleus, a very small amount of DNA is also found in the mitochondria. The 

genetic code is the set of rules that guide the translation of DNA into 20 amino acids, which constitute the 

fundamental units of protein in living cells (Fig. 1). A codon is a sequence of three bases of DNA from the 4 

bases: Adenine ሺܣሻ, Cytosine ሺܥሻ, Guanine ሺܩሻ, and Thymine ሺܶሻ which specifies one amino acid. As 

there are four bases so we have total 64 codons. The codons ܷܩܣܷ ,ܣܩܷ ,ܣܣ signal the end of the 

polypeptide chain during translation which are known as stop codons. The codon ܩܷܣ  initiates the 

translation process which is known as start codon. Mathematically, for a sequence of DNA, four letters: ܣ, 

Network Biology     
ISSN 2220­8879   
URL: http://www.iaees.org/publications/journals/nb/online­version.asp 
RSS: http://www.iaees.org/publications/journals/nb/rss.xml 
E­mail: networkbiology@iaees.org 
Editor­in­Chief: WenJun Zhang 
Publisher: International Academy of Ecology and Environmental Sciences 



 IAEES  

an ,ܥ ,ܩ

As a resu

types of m

Gene

20 amino

degenera

ܩ ,ܣܷܩ
rigorousl

 

 

 

We h

bases ܣ
(pyrimid

dependin

hydropho

the secon

second c

recent tim

research 

            

nd ܶ are tak

ult, this chang

mutation exis

etic codes can

o acids along 

acy more tha

codes a ܩܷܩ

ly studied. 

have observed

 and ܩ ,ܥ ,

dine ሼܣ, ሽ aܩ

ng on its posi

obicity as we

nd codon bas

odon base an

mes study o

topics. At p

            

ken. Any chan

ges the protei

st: point muta

n be understoo

with the stop

an one codon

amino acid v

d that the ser

ܷ such as 

and purine ሼ
ition on the c

ell as hydroph

se. The hydro

nd in case of 

of Genetic Co

present the st

Network

            

nge to the gen

in that is prod

ation, framesh

od as a many

p codon (Boru

n is coded fo

aline. Over th

F

ries of codon

number of 

ሼܥ, ܷሽ). Thre

odon. In a co

hilicity of an a

ophobic amin

hydrophilic a

ode with som

tructure of th

k Biology, 2022

            

ne sequence 

duced. These

hift mutation

y one function

uah and Ali,

or some amin

he years, the

Fig. 1 Genetic co

ns are strongl

hydrogen bo

ee bases form

odon the mos

amino acid is

no acids are a

amino acids t

me Mathema

he genetic co

, 12(2): 45-63

            

may change 

e phenomena 

, deletion, ins

n between the

2022). Clearl

no acids. For

 biological im

odes. 

ly linked to th

onds (ܣ ൌ ܷ
m a codon, an

t biologically

s also associa

associated wi

the codons ha

atical Structu

ode is quite f

            

the informati

are referred 

sertion, inver

e sets: the 64 

ly this mappi

r example, th

mplications o

he physicoch

ܷ and ܩ ؠ
nd the signifi

y significant b

ated with the m

ith the codon

ave Adenine 

ures has beco

familiar. For 

           w

ion that is enc

to as mutatio

rsion. 

potential cod

ing is degene

he codons ܷܩ
of degeneracy

hemical prope

and chem (ܥ

icance of the 

base is secon

most importa

ns having Ura

ሺܣሻ as seco

ome one of 

the developm

www.iaees.org

coded by it. 

ons. Various 

dons and the 

rate. Due to 

 ,ܥܷܩ ,ܷܷ

y have been 

 

erties of the 

mical types 

base varies 

nd base. The 

ant base, i.e., 

acil ሺܷሻ as 

ond base. In 

the popular 

ment of the 

 

46



Network Biology, 2022, 12(2): 45-63 

 IAEES                                                                                     www.iaees.org  

genetic code the algebraic pattern is first proposed by Hornos & Hornos (In 1993). In the survey of the 

genetic code the group theoretical pattern is established by them. Due to symmetry breaking process they 

could interpret the degeneracy of amino acids. In 2007, Al-Zaharani et al. explained by using analytical way 

of a group the degeneracy of series of codons in better way. Osawa et al. (1992) discussed that the basic 

knowledge of the source and evolution of the genetic code should completely rely on the information about 

the relation between the molecular biochemistry of amino acid synthesis, and repossession from the nucleic 

acid of the proteins stored design information. But on the other hand, Lacey and Mullinsin (1983) stated that 

though nature of an evolutionary biochemical structure should reflect its portions, properties from the 

information of prebiotic origins, but it’s not relevant to contemporary systems. To know the correlation of 

synonymous codon usage and protein structure in Homo sapiens and E. Coli, Gu et al. had tried too. Jungck 

(1978) discussed that chemistry between amino acids and their corresponding anti-codon dinucleotides acted 

strongly on the measure of hydrophobicity/ hydrophilicity or of molecular volume/polarity. The application 

of graph theory in genetics, as analysis of pedigrees, determination of inbreeding coefficients systematization 

of the properties of the genetic code (Bertman and Jungck, 1979; Jungck, 1978); protein and sequencing of 

nucleic acid (Jungck et al., 1982); Also, Gilmore and Hoffman (1964) explained the solution to the Benzer 

problem which was again explained by another two texts on graph theory namely (Roberts, 1976; Busacker 

and Saaty, 1965). Recently Ali and Phukan (2012) discussed algebraic and topological structures of 

molecular biology. They have established some relationship between algebraic and biological aspect of 

genetic code, e.g., all hydrophilic amino acids characterize zero divisors and inverse of it gives hydrophobic/ 

stop codons and stop codons form a basis of the whole set of codons which is coded by amino acids and only 

two codons are either both zero divisor or both non-zero divisors. Different authors have discussed ways of 

generating graphs from algebraic structures. In a finite group, the power graph is introduced by Cameron and 

Ghosh (2009), where every vertex are the elements of a group and two vertices are joined if one is a power of 

the other. Bertholf et al. (1976) identified graphs of finite abelian groups whose vertices are injective with the 

non- identity subgroups of G, and an edge is connected by two vertices iff the corresponding subgroups 

intersect. In a commutative ring the total graph and a few sub-graphs were established and explored by 

Anderson and Badawi in 2008. Also, examined subgraphs (induced) specially  ( ( ))Nil R , ( ( )),Z R  & 

ܴ݁݃ ( ( ))R  of ( ( ))T R , with vertices ݈ܰ݅ሺܴሻ, ܼሺܴሻ & ܴ݁݃ሺܴሻ, respectively, where ݈ܰ݅ሺܴሻ is 

the ideal of nilpotent elements of ܴ, and ܴ݁݃ሺܴሻ is the set of regular elements of ܴ. The lattice structure 

of the genetic code with some relations & physicochemical properties of amino acids is discussed by Gohain, 

Ali and Akhtar (2015). Akhtar and Gohain (2015) studied properties of the amino acids and established 

amino acid network. Also, discussed different centrality measures, correlation coefficient, clustering 

coefficient and degree of distribution for networks. Akhtar et al. (2015) discussed graph structure in gene 

algebra. Sanchez et al. (2005) have shown that the set of 64 codons can be equipped with a ring structure 

isomorphic to the ring of integers modulo 64, ܼ଺ସ. From this algebraic structure they have constructed total 

graph in genetic code. They have shown that some specific types of mutations in the codon set. The identity 

graph of a group ܩ is a graph in which the vertex set is the set of all elements of the group and two vertices 

in ܩ are adjacent if ܽ. ܾ ൌ ݁, where ݁ is the group's identity element. Let ܪ be a subgroup of ܩ then the 

identity graph drawn for the subgroup ܪ is known as the identity special subgraph of ܩ (special identity 

subgraph of ܩ). 

We attempted to investigate the relationship between Identity graph and genetic code in this paper. The 

following is the sequence of the paper: In section 2, we go through the graph's basic concept. Section 3 
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discusses the identity graph derived from the codons, followed by an examination of several centrality 

measures. In addition, we discuss the bivariate correlation in centrality measures. We go over a few network 

parameters in Section 4. In section 5, we've highlighted the most important findings from our current study.    

 

2 Preliminary Concepts of Graph 

A graph is an ordered triple ܩ ൌ ሺܸሺܩሻ, ,ሻܩሺܧ ܫீ ሻ , where ܸሺܩሻ is a nonempty set, ܧሺܩሻ is a set 

disjoint from ܸሺܩሻ, and ீܫ  is an “incidence” relation that associates with each element of ܧሺܩሻ an unordered 

pair of elements (same or distinct) of ܸሺܩሻ. Elements of ܸሺܩሻ are called the vertices (or nodes or points) of ܩ, 

and elements of ܧሺܩሻ are called the edges (or lines) of ܩ. ܸሺܩሻ and ܧሺܩሻ are the vertex set and edge set of 

ܫீ ,ܩ respectively. If for the edge ݁ of ,ܩ ሺ݁ሻ ൌ ሼݑ, ܫீ ሽ, we writeݒ ሺ݁ሻ ൌ ܫீ  If .ݒݑ ሺ݁ሻ ൌ ሼݑ,  ሽ, then theݒ

vertices ݑ and ݒ are called the end vertices or ends of the edge ݁. Each edge is said to join its ends & we say 

that ݁ is incident with each one of its ends. Also, the vertices ݒ & ݑ are then incident with  ݁. A vertex ݑ is 

a neighbor of ݒ in ܩ if ݒݑ is an edge of ܩ and ݑ is not equal to ݒ. A walk in a graph ܩ is an alternating 

sequence ܹ: ݒ଴ ݁ଵ ݒଵ ݁ଶ ݒଶ  ………݁௣ ݒ௣  of vertices and edges beginning and ending with vertices in which 

௜ݒ ௜ିଵ  andݒ  are the ends of ݁௜ . A walk is called a trail if all the edges appearing in the walk are distinct. It is 

called a path if all the vertices are distinct. Two vertices ݑ and ݒ of ܩ are said to be connected if there is a  

ݑ െ ݒ  path in ܩ , otherwise it is disconnected. Let ܩ  be a graph of order ݊  with vertex set ܸ ൌ
ሼݒଵ ,   … … … .  ,      ݒ௡ሽ. The adjacency matrix of ܩ is the ݊ ൈ ݊ matrix ܣ ൌ ሺܽ௜௝ሻ , where ܽ௜௝ ൌ 1 if there is 

an edge from vertex ݒ௜  to vertex ݒ௝ and ܽ௜௝ ൌ 0 otherwise. 

In graph theory, centrality measure of a vertex represents its relative importance within the graph ܩ . It is a 

real valued function ݂: ܸ ՜ ܴ , where ܸ is the vertex set of the graph  ܩ. 

2.1 Degree centrality 

Degree centrality of a node ݑ, denoted by ܥௗሺݑሻ, is the number of nodes to which ݑ is directly connected 

(Shams and Khansari, 2014; Xin and Zhang, 2021; Zhang, 2016).  

2.2 Eigenvector centrality 

The eigenvector of the greatest eigenvalue of the adjacency matrix of the corresponding graph is the eigenvector 

centrality (Bonacich, 1972). 

2.3 Betweenness centrality 

Betweenness centrality (Watts and Strogatz, 1998; Zhang, 2016) of a node ݒ is defined as  

 

ሻݒ௕௧௪ሺܥ                                 ൌ  ∑ ∑ ఙ೘೙ሺ௩ሻ

ఙ೘೙
௡ஷ௩א௏௠ஷ௩א௏  

where, ߪ௠௡  and  ߪ௠௡ሺݒሻ are the number of shortest paths from vertex ݉ to ݊ and the number of shortest 

paths from ݉ to ݊  that pass through ݒ.  

2.4 Closeness centrality 

Closeness centrality (Shams and Khansari, 2014; Xin and Zhang, 2021; Zhang, 2016) is defined as follows  

 

ሻݑ௖௟ሺܥ ൌ
ሺ݊ െ 1ሻ

∑ ݀ሺݑ, ௏אሻ௩ݒ
 

 

where, ݊ and ݀ሺݑ,  and ݑ ሻ are the total number of nodes of the network and shortest path distance betweenݒ

  .ݒ
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3 Graph on Genetic Code 

Two different orderings of the RNA bases were introduced by Sanchez et al. (2005). They obtained two ordering 

of base sets ሼܣ, ,ܥ ,ܩ ܷሽ and ሼܷ, ,ܩ ,ܥ  ሽ . A sum operation (Table 1) is defined on these two base sets suchܣ

that the two sets are isomorphic to the cyclic group ܼସ (group ܼସ of integer module 4). Ali and Phukan (2013) 

defined a product operation (Table 2) on the base set ܻ ൌ ሼܣ, ,ܥ ,ܩ ܷሽ, such that Y forms a commutative ring 

structure. In the ring ሺܻ, ൅, ·ሻ ; ܣ,  .represents additive identity and multiplicative identity respectively ܥ

Sanchez also defined an addition operation on the set of 64 codons. These addition operations on the set of 

codons form a group which is isomorphic to the group ሺܼ଺ସ , ൅ሻ as shown in Table 3. Akhter et al. (2015) 

discussed total graph on the group of codons. We have identity graph on the same group structure of codons. 

From this we have discussed special identity subgraph (identity subgraph) on the same group structure of 

codons. 

 
 
 

Table 1 Sum operation on ሼܣ, ,ܥ ,ܩ ܷሽ & ሼܷ, ,ܩ ,ܥ  .ሽܣ

  
 
 
 

 

 

 

 

 

 

 

Table 2 Product operation on ሼܣ, ,ܥ ,ܩ ܷሽ. 

 
 
 
 
 
 
 
 
 
 
 
 

+ A C G U 

A A C G U 

C C G U A 

G G U A C 

U U A C G 

+ U G C A 

U U G C A 

G G C A U 

C C A U G 

A A U G C 

. A C G U 

A A A A A 

C A C G U 

G A G A G 

U A U G C 
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Table 3 The genetic code table of 64 codons. 

 

 

 

The subgroups of the above codon group are 

 

ଵܪ ൌ൏ ܩܣܣ ൐ 
ൌ ሼܩܣܣ, ,ܩܷܷ ,ܣܣܥ ,ܣܷܷ ,ܩܣܥ ,ܩܷܩ ,ܣܣܩ ,ܣܷܩ ,ܩܷܣ ,ܩܣܷ ,ܣܷܥ ,ܣܣܷ ,ܩܷܥ  ,ܩܣܩ

,ܣܥܣ ,ܣܥܷ,ܣܷܣ ,ܣܩܥ ,ܩܩܷ ,ܩܥܣ ,ܩܩܩ ,ܩܥܥ ,ܣܩܩ ,ܣܥܩ ,ܩܥܩ ,ܩܩܥ ,ܣܥܥ ,ܣܩܷ ,ܩܩܣ ,ܩܥܷ ,ܣܣܣ  ሽܣܩܣ
ଶܪ ൌ ൏ ܣܣܥ ൐ 
ൌ ሼܣܣܥ, ,ܣܷܷ ,ܣܣܣ ,ܣܣܩ ,ܣܷܩ ,ܣܣܷ ,ܣܷܥ ,ܣܥܣ ,ܣܷܣ ,ܣܥܩ ,ܣܩܩ ,ܣܥܥ ,ܣܩܷ ,ܣܩܥ ,ܣܥܷ  ሽܣܩܣ

ଷܪ ൌ ൏ ܣܣܩ ൐ ൌ ሼܣܣܩ, ,ܣܷܩ ,ܣܣܣ ,ܣܥܣ ,ܣܷܣ ,ܣܥܩ ,ܣܩܩ  ሽܣܩܣ
ସܪ ൌ ൏ ܣܥܣ ൐ ൌ ሼܣܥܣ, ,ܣܷܣ ,ܣܣܣ  ሽܣܩܣ

ହܪ ൌ ൏ ܣܩܣ ൐ ൌ ሼܣܣܣ,  ሽܣܩܣ
 

The corresponding special identity subgraphs are shown in Fig. 2. 
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A    0        AAA           K  

      1        AAC           N 

      2        AAG           K 

      3        AAU           N      

16         ACA         T 

17         ACC         T 

18         ACG         T 

19         ACU         T 

32       AGA       R  
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34       AGG       R 
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48         AUA       I  

49         AUC       I 
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C    4         CAA          Q  

      5        CAC           H 

      6        CAG           Q 
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      10       GAG           E 

      11       GAU           D      
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25         GCC         A 
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27         GCU        A
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57         GUC        V 
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U

U    12        UAA           -  

      13        UAC          Y 

      14        UAG          - 
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28         UCA         S 

29         UCC         S 

30         UCG         S 

31         UCU         S 

44        UGA       -  

45        UGC      C 

46        UGG      W 
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61         UUC        F 
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63         UUU        F     
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0.516667 2 ܣܩܥ 0 0.147292 

0.516667 2 ܩܩܷ 0 0.147292 

0.516667 2 ܩܥܣ 0 0.147292 

0.516667 2 ܩܩܩ 0 0.147292 

0.516667 2 ܩܥܥ 0 0.147292 

0.516667 2 ܣܩܩ 0 0.147292 

0.516667 2 ܣܥܩ 0 0.147292 

0.516667 2 ܩܥܩ 0 0.147292 

0.516667 2 ܩܩܥ 0 0.147292 

0.516667 2 ܣܥܥ 0 0.147292 

0.516667 2 ܣܩܷ 0 0.147292 

0.516667 2 ܩܩܣ 0 0.147292 

0.516667 2 ܩܥܷ 0 0.147292 

 1 450 1 31 ܣܣܣ

0.508197 1 ܣܩܣ 0 0.114938 

 

 

 

Table 5 Centrality values of codons for ܪଶ. 

Vertex 

Degree 

Centrality 

     ሺܥௗሻ 

Closeness 

Centrality  

 ௖௟ܥ

Betweenness 

Centrality 

 ௕௪௧ܥ

Eigenvector 

Centrality 

 ఒܥ

0.535714 2 ܣܣܥ 0 0.256468 

0.535714 2 ܣܷܷ 0 0.256468 

 1 98 1 15 ܣܣܣ

0.535714 2 ܣܣܩ 0 0.256468 

0.535714 2 ܣܷܩ 0 0.256468 

0.535714 2 ܣܣܷ 0 0.256468 

0.535714 2 ܣܷܥ 0 0.256468 

0.535714 2 ܣܥܣ 0 0.256468 

0.535714 2 ܣܷܣ 0 0.256468 

0.535714 2 ܣܥܩ 0 0.256468 

0.535714 2 ܣܩܩ 0 0.256468 

0.535714 2 ܣܥܥ 0 0.256468 

0.535714 2 ܣܩܷ 0 0.256468 

0.535714 2 ܣܩܥ 0 0.256468 

0.535714 2 ܣܥܷ 0 0.256468 

0.517241 1 ܣܩܣ 0 0.189126 
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Table 6 Centrality values of codons for ܪଷ. 

Vertex 

Degree 

Centrality 

    ሺܥௗሻ 

Closeness 

Centrality 

ሺܥ௖௟ሻ 

Betweenness 

Centrality 

ሺܥ௕௪௧ሻ 

Eigenvector 

Centrality 

ሺܥఒሻ 

0.583333 2 ܣܣܩ 0 0.443242 

0.583333 2 ܣܷܩ 0 0.443242 

 1 18 1 7 ܣܣܣ

0.583333 2 ܣܥܣ 0 0.443242 

0.583333 2 ܣܷܣ 0 0.443242 

0.583333 2 ܣܥܩ 0 0.443242 

0.583333 2 ܣܩܩ 0 0.443242 

0.538462 1 ܣܩܣ 0 0.295473 

 

 

Table 7 Centrality values of codons for ܪସ.  

Vertex 

Degree 

Centrality 

    ሺܥௗሻ 

Closeness 

Centrality 

ሺܥ௖௟ሻ 

Betweenness 

Centrality 

ሺܥ௕௪௧ሻ 

Eigenvector 

Centrality 

ሺܥఒሻ 

 0.837194 0 0.75 2 ܣܥܣ

 0.837194 0 0.75 2 ܣܷܣ

 1 2 1 3 ܣܣܣ

 0.459951 0 0.6 1 ܣܩܣ

 

 

Table 8 Centrality values of codons for ܪହ.  

Vertex 

Degree 

Centrality 

     ሺܥௗሻ 

Closeness 

Centrality 

ሺܥ௖௟ሻ 

Betweenness 

Centrality 

ሺܥ௕௪௧ሻ 

Eigenvector 

Centrality 

ሺܥఒሻ 

 1 0 1 1 ܣܣܣ

 1 0 1 1 ܣܩܣ

 

 

All other codons can easily interact with a codon with a high closeness centrality value. As a result, the 

evolutionary process uses it to communicate quickly with the remaining codons. The closeness centrality value 

of the codon ܣܣܣ is 1, according to Tables 4, 5, 6, and 7. As a result, we can assume that the flow of 

evolutionary information continues at a similar rate through ܣܣܣ. The betweenness centrality assesses the 

codon's contribution to expressing the evolutionary mechanism. A codon with a high betweenness centrality 

value represents the identification of codons responsible for the majority of the network's information flow. 

For example, the betweenness centralities for the codon ܣܣܣ  are 450, 98, 18, and 2, whereas the 

betweenness centralities for other codons are 0 (Table 4, Table 5, Table 6 and Table 7). Thus, ܣܣܣ is related 

to more pairs of codons through the evolutionary mechanism than other codons, i.e., codon ܣܣܣ appears as 

an intermediate between more pairs of codons than others. In a network, eigenvector centrality appears to be 

more active and prominent than degree centrality. A node is considered large if it has a large number of 

neighbours and/or important neighbours. Because the sum of the codon ܣܣܣ's direct and indirect links is the 
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greatest, the codon ܣܣܣ has the greatest eigenvector centrality (Table 4, Table 5, Table 6 and Table 7). With 

the exception of the codon’s ܣܣܣ and ܣܩܣ, the eigenvector centrality of the other codons is equal in 

magnitude because these codons share the same neighbours (Table 4, Table 5, Table 6 and Table 7). As a 

result, these codons have a greater evolutionary contribution (Chakrabarty and Parekh, 2014). The codons with 

the highest eigenvector centrality are said to play an important role in the evolutionary process. 

3.2 Correlation of different centralities 

In this section, we looked at the correlation coefficients between different measures of centrality in special 

identity subgraph networks. Correlation analysis is possible when there is at least one relationship between two 

variables. The term correlation refers to the relationship between two variables in which when the values of 

one variable change, the values of the other variable change as well. The Karl Pearson coefficient of 

correlation is defined as ݎ ൌ
∑ ሺ௑೔ି௑തሻሺ௒೔ି௒തሻ
೙
೔సభ

௡ఙೣఙ೤ 
 where ߪ௫ and ߪ௬ are the standard deviations of the ܺ and ܻ 

series, respectively. The value of ݎ ranges from ൅1 and െ1. Correlation is the most important feature to 

investigate in assortative or disassortative networks. If the correlation value is greater than zero ሺݎ ൐ 0ሻ, the 

network is assortative; if the correlation value is less than zero ሺݎ ൏ 0ሻ, the network is disassortative (Newman, 

2002). Tables 9, 10, 11, 12, and 13 show the correlation coefficients between the centrality measures of the 

special identity subgraphs ܪଵ, ܪଶ, ܪଷ, ܪସ, and ܪହ. Pearson's method is used to compute all correlation 

coefficients.  

 

 

 

Table 9 Correlation coefficients of the centrality measures for ܪଵ.  

 ఒܥ ௕௪௧ܥ ௖௟ܥ ௗܥ 

 ௗ 1 0.999857 0.999408 0.999994ܥ

 ௖௟ 0.999857 1 0.999847 0.999793ܥ

 ௕௪௧ 0.999408 0.999847 1 0.999283ܥ

 ఒ 0.999994 0.999793 0.999283 1ܥ

 

 

Table 10 Correlation coefficients of the centrality measures for ܪଶ. 

 ఒܥ ௕௪௧ܥ ௖௟ܥ ௗܥ 

 ௗ 1 0.999329 0.997097 0.999911ܥ

 ௖௟ 0.999329 1 0.999217 0.99875ܥ

 ௕௪௧ 0.997097236 0.999217061 1 0.995989847ܥ

 ఒ 0.999910574 0.998749643 0.995989847 1ܥ
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Table 11 Correlation coefficients of the centrality measures for ܪଷ. 

 ఒܥ ௕௪௧ܥ ௖௟ܥ ௗܥ 

 ௗ 1 0.996344 0.981981 0.998332ܥ

 ௖௟ 0.996344 1 0.994536 0.98975ܥ

 ௕௪௧ 0.981981 0.994536 1 0.969433ܥ

 ఒ 0.998332 0.98975 0.969433 1ܥ

 

 

Table 12 Correlation coefficients of the centrality measures for ܪସ. 

 ఒܥ ௕௪௧ܥ ௖௟ܥ ௗܥ 

 ௗ 1 0.984732 0.816497 0.962771ܥ

 ௖௟ 0.984732 1 0.904534 0.901015ܥ

 ௕௪௧ 0.816497 0.999966 1 0.630031ܥ

 ఒ 0.962771 0.901015 0.630031 1ܥ

 

 

Table 13 Correlation coefficients of the centrality measures for ܪହ. 

 ఒܥ ௕௪௧ܥ ௖௟ܥ ௗܥ 

 ௗ 0 0 0 0ܥ

 ௖௟ 0 0 0 0ܥ

 ௕௪௧ 0 0 0 0ܥ

 ఒ 0 0 0 0ܥ

 

 

Tables 9, 10, 11, and 12 show that all of the centrality measures for all of the special identity subgraph 

networks are highly correlated. As a result, these centrality measures, which represent various centrality 

features, are closely related in these networks. As a result, using any measure is equivalent to using any other. 

It is well known that information can be transferred more easily through an assortative network than through a 

disassortative network (Newman, 2002). Furthermore, we can see from the above correlation coefficient that 

all three networks are assortative types ሺݎ ൐ 0ሻ, implying that evolutionary information flow will be simple. 

 

4 Network Parameters  

In biological networks, various network parameters are used. We've talked about the clustering coefficient, the 

degree of distribution, and Pearson's skewness in this section. 
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4.1 Clustering coefficient 

Clustering coefficient is defined as the capacity of a graph to be divided into clusters (Zhang, 2018). Clusters 

are a subset of the set that includes edges that connect vertices to vertices. The clustering coefficient ܥ௜  of a 

specific node  Ԣ݅Ԣ  is defined as the ratio of the total number of links  ݁௜   of neighbours to its nearest 

neighbours. The average clustering coefficient for the entire network is ܥ௜  ሺܥ௜  ൌ
ଶ௘೔

௄೔ ሺ௄೔ିଵሻ
ሻ, where ܭ௜ is the 

degree of node Ԣ݅Ԣ ). The relationships between neighbouring nodes become stronger as the value of the 

clustering coefficient increases. As a result, it slows the spread of information (Sengupta and Kundu, 2012).  

Clustering coefficients for ܪଵ ଶܪ , ଷܪ , ସܪ , , and ܪହ  are given in Tables 14, 15, 16, 17 and 18, 

respectively.  
 
 

Table 14 Clustering coefficient of the codons for ܪଵ. 

ܩܣܣ 1

ܩܷܷ 1

ܣܣܥ 1

ܣܷܷ 1

ܩܣܥ 1

ܩܷܩ 1

ܣܣܩ 1

ܣܷܩ 1

ܩܷܣ 1

ܩܣܷ 1

ܣܷܥ 1

ܣܣܷ 1

ܩܷܥ 1

ܩܣܩ 1

ܣܥܣ 1

ܣܷܣ 1

ܣܥܷ 1

ܣܩܥ 1

ܩܩܷ 1

ܩܥܣ 1

ܩܩܩ 1

ܩܥܥ 1

ܣܩܩ 1

ܣܥܩ 1

ܩܥܩ 1

ܩܩܥ 1

ܣܥܥ 1

ܣܩܷ 1

ܩܩܣ 1

ܩܥܷ 1

ܣܣܣ 0.032258

ܣܩܣ 0
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Table 15 Clustering coefficient of the codons for ܪଶ. 

ܣܣܥ 1

ܣܷܷ 1

ܣܣܣ 0.066667

ܣܣܩ 1

ܣܷܩ 1

ܣܣܷ 1

ܣܷܥ 1

ܣܥܣ 1

ܣܷܣ 1

ܣܥܩ 1

ܣܩܩ 1

ܣܥܥ 1

ܣܩܷ 1

ܣܩܥ 1

ܣܥܷ 1

ܣܩܣ 0

 

 

Table 16 Clustering coefficient of the codons for ܪଷ. 

ܣܣܩ 1

ܣܷܩ 1

ܣܣܣ 0.142857

ܣܥܣ 1

ܣܷܣ 1

ܣܥܩ 1

ܣܩܩ 1

ܣܩܣ 0

 

Table 17 Clustering coefficient of the codons for ܪସ. 

ܣܥܣ 1

ܣܷܣ 1

ܣܣܣ 0.333333

ܣܩܣ 0

 

 

Table 18 Clustering coefficient of the codons for ܪହ. 

 0 ܣܣܣ

 0 ܣܩܣ

 

 

An amino acid's clustering coefficient is determined by the degree of the amino acids as well as the number 

of direct connections between two neighbouring amino acids. Tables 14, 15, 16 and 17 show that, with the 
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exception of the codon’s ܣܣܣ and ܣܩܣ, all other codons have degree 2. Furthermore, the number of links 

between neighbouring codons is one, implying that, with the exception of ܣܣܣ and ܣܩܣ, all codons have a 

high clustering coefficient, i.e., 1. The clustering coefficients for the entire special identity subgraphs ܪଵ, ܪଶ, 

ଷܪ  and ܪସ  are 0.938508125 , 0.879166875 , 0.767857125  and 0.58333325 , respectively. 

Thus, after examining the clustering coefficients of the special identity subgraphs and the clustering 

coefficients of the codons, we discovered that, with the exception of ܣܣܣ  and ܣܩܣ , the flow of 

evolutionary process in the neighbourhood of other codons is comparatively slow when compared to the entire 

special identity subgraph. 

4.2 Degree of distribution and skewness 

The degree of distribution and Pearson's skewness of the codons will be discussed in this section. The degree 

distribution ܲሺ݇ሻ  is actually the fraction of nodes with degree ݇. If we have ݊ nodes with ݊௞ number of 

nodes having degree ݇, then ܲሺ݇ሻ ൌ ௡ೖ
௡

. In general, the degree distribution represents the probability that a 

chosen node will have accurately ݇ links. Skewness is another crucial statistical characteristic. The measure 

of the distribution's symmetry or asymmetry is used to determine skewness. Karl Pearson first proposed the 

skewness concept in 1895. It's abbreviated as ܵ௞. Skewness can be positive or negative, depending on the 

mean and median. We employed the Karl Pearson's skewness coefficient, defined as  

S୩  ൌ
3ሺMean െMedianሻ
Standard deviation

 , െ3 ൑ S୩ ൑ 3 

in our research. 

In the case of symmetrical (i.e., normal) distribution ܵ௞ ൌ 0. If ܵ௞ ൐ 0, the distribution is positively 

skewed. If ܵ௞ ൏ 0, we consider the distribution to be negatively skewed.  

We have shown the degree of distribution values of all the codons for special identity subgraphs ܪଵ, ܪଶ, 

 .ହ in Tables 19, 20, 21, 22, and 23ܪ ସ, andܪ ,ଷܪ

 

Table 19 Degree of distribution of the codons for ܪଵ. 

 0.9375 ܩܣܣ

 0.9375 ܩܷܷ

 0.9375 ܣܣܥ

 0.9375 ܣܷܷ

 0.9375 ܩܣܥ

 0.9375 ܩܷܩ

 0.9375 ܣܣܩ

 0.9375 ܣܷܩ

 0.9375 ܩܷܣ

 0.9375 ܩܣܷ

 0.9375 ܣܷܥ

 0.9375 ܣܣܷ

 0.9375 ܩܷܥ

 0.9375 ܩܣܩ

 0.9375 ܣܥܣ

 0.9375 ܣܷܣ

 0.9375 ܣܥܷ

 0.9375 ܣܩܥ
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 0.9375 ܩܩܷ

 0.9375 ܩܥܣ

 0.9375 ܩܩܩ

 0.9375 ܩܥܥ

 0.9375 ܣܩܩ

 0.9375 ܣܥܩ

 0.9375 ܩܥܩ

 0.9375 ܩܩܥ

 0.9375 ܣܥܥ

 0.9375 ܣܩܷ

 0.9375 ܩܩܣ

 0.9375 ܩܥܷ

0.03125 ܣܣܣ

0.03125 ܣܩܣ

 

 

Table 20 Degree of distribution of the codons for ܪଶ. 

 0.875 ܣܣܥ

 0.875 ܣܷܷ

 0.0625 ܣܣܣ

 0.875 ܣܣܩ

 0.875 ܣܷܩ

 0.875 ܣܣܷ

 0.875 ܣܷܥ

 0.875 ܣܥܣ

 0.875 ܣܷܣ

 0.875 ܣܥܩ

 0.875 ܣܩܩ

 0.875 ܣܥܥ

 0.875 ܣܩܷ

 0.875 ܣܩܥ

 0.875 ܣܥܷ

 0.0625 ܣܩܣ

 

 

Table 21 Degree of distribution of the codons for ܪଷ. 

 0.75 ܣܣܩ

 0.75 ܣܷܩ

 0.125 ܣܣܣ

 0.75 ܣܥܣ

 0.75 ܣܷܣ

 0.75 ܣܥܩ

 0.75 ܣܩܩ

 0.125 ܣܩܣ
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Table 22 Degree of distribution of the codons for ܪସ. 

 0.5 ܣܥܣ

 0.5 ܣܷܣ

 0.25 ܣܣܣ

 0.25 ܣܩܣ

 

 

Table 23 Degree of distribution of the codons for ܪହ. 

 1 ܣܣܣ

 1 ܣܩܣ

 

 

Pearson's coefficients of skewness for ܪଵ ଶܪ , ଷܪ , ସܪ ,  and ܪହ  are െ0.7624 , െ1.09789 , 

െ1.62019,  and  respectively, based on the above degree of distributions. We can conclude that the 

codon networks in ܪଵ, ܪଶ, and ܪଷ have a negatively skewed distribution, whereas the codon networks in 

 .ହ have a symmetrical distributionܪ ସ andܪ

 

5 Conclusion 

We attempted to decipher the genetic code's special identity subgraph structure. To investigate the impact of 

each codon, various centrality measures were used as a graph theoretic tool to delve deep into the subject. 

Following a discussion of several centrality measures, it is discovered that Codon ܣܣܣ has the highest 

centrality value of all centrality measures (Table 4, Table 5, Table 6 and Table 7). As a result, we have 

concluded that codon ܣܣܣ play an important role in the evolution of amino acids. Furthermore, we 

examined the correlation coefficients of various codon centrality measures. All centrality measures were found 

to be highly correlated. Again, the correlation coefficient reveals that the network is assortative, implying that 

evolutionary information flow will be simple (Table 9, Table 10, Table 11 and Table 12). When the clustering 

value of the codons is examined, it is clear that, with the exception of codons ܣܣܣ and ܣܩܣ, all of the 

codons have a high clustering coefficient. As a result, with the exception of ܣܣܣ and ܣܩܣ in the vicinity 

of other codons, the evolutionary process is quite slow when compared to the entire network (Table 14, Table 

15, Table 16 and Table 17).  
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