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Abstract

The genetic code is a series of codons that stores genetic information about protein molecule formation. The
identity graph of a group G is a graph in which the vertex set is the set of all elements of the group and two
vertices in G are adjacent if a.b = e, where e is the group's identity element. Let H be a subgroup of G
then the identity graph drawn for the subgroup H is known as the identity special subgraph of G (special
identity subgraph of G). In this study, we looked at the special identity graph in the genetic code algebra.
Different measures of centrality have been thoroughly discussed in our current study. Aside from this
investigation, research is being conducted on the correlation coefficients between different measures of
centrality, as well as the clustering coefficient, degree of distribution, and skewness.

Keywords amino acid; centrality measure; correlation coefficient; clustering coefficient; degree of
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1 Introduction

Biological science is one of the important areas in which mathematics have been successfully applied for long
time. This area may be referred as mathematical biology or biomathematics. Various mathematical formulae
and method of working are used in biology. Genetics is one of the important branches of biology. Every
organism is constituted by the cells. Chromosomes can be thought of as being made up of strings of genes.
The DNA is found in the cells of all living organisms and is situated in the nucleus, organized into
chromosomes. Other than the nucleus, a very small amount of DNA is also found in the mitochondria. The
genetic code is the set of rules that guide the translation of DNA into 20 amino acids, which constitute the
fundamental units of protein in living cells (Fig. 1). A codon is a sequence of three bases of DNA from the 4
bases: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) which specifies one amino acid. As
there are four bases so we have total 64 codons. The codons UAA, UGA, UAG signal the end of the
polypeptide chain during translation which are known as stop codons. The codon AUG initiates the
translation process which is known as start codon. Mathematically, for a sequence of DNA, four letters: A,
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G, C,and T are taken. Any change to the gene sequence may change the information that is encoded by it.
As a result, this changes the protein that is produced. These phenomena are referred to as mutations. Various
types of mutation exist: point mutation, frameshift mutation, deletion, insertion, inversion.

Genetic codes can be understood as a many one function between the sets: the 64 potential codons and the
20 amino acids along with the stop codon (Boruah and Ali, 2022). Clearly this mapping is degenerate. Due to
degeneracy more than one codon is coded for some amino acids. For example, the codons GUU, GUC,
GUA, GUG codes amino acid valine. Over the years, the biological implications of degeneracy have been
rigorously studied.
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Fig. 1 Genetic codes.

We have observed that the series of codons are strongly linked to the physicochemical properties of the
bases A, C, G and U such as number of hydrogen bonds (A = U and G = C) and chemical types
(pyrimidine {A, G} and purine {C, U}). Three bases form a codon, and the significance of the base varies
depending on its position on the codon. In a codon the most biologically significant base is second base. The
hydrophobicity as well as hydrophilicity of an amino acid is also associated with the most important base, i.e.,
the second codon base. The hydrophobic amino acids are associated with the codons having Uracil (U) as
second codon base and in case of hydrophilic amino acids the codons have Adenine (A4) as second base. In
recent times study of Genetic Code with some Mathematical Structures has become one of the popular
research topics. At present the structure of the genetic code is quite familiar. For the development of the
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genetic code the algebraic pattern is first proposed by Hornos & Hornos (In 1993). In the survey of the
genetic code the group theoretical pattern is established by them. Due to symmetry breaking process they
could interpret the degeneracy of amino acids. In 2007, Al-Zaharani et al. explained by using analytical way
of a group the degeneracy of series of codons in better way. Osawa et al. (1992) discussed that the basic
knowledge of the source and evolution of the genetic code should completely rely on the information about
the relation between the molecular biochemistry of amino acid synthesis, and repossession from the nucleic
acid of the proteins stored design information. But on the other hand, Lacey and Mullinsin (1983) stated that
though nature of an evolutionary biochemical structure should reflect its portions, properties from the
information of prebiotic origins, but it’s not relevant to contemporary systems. To know the correlation of
synonymous codon usage and protein structure in Homo sapiens and E. Coli, Gu et al. had tried too. Jungck
(1978) discussed that chemistry between amino acids and their corresponding anti-codon dinucleotides acted
strongly on the measure of hydrophobicity/ hydrophilicity or of molecular volume/polarity. The application
of graph theory in genetics, as analysis of pedigrees, determination of inbreeding coefficients systematization
of the properties of the genetic code (Bertman and Jungck, 1979; Jungck, 1978); protein and sequencing of
nucleic acid (Jungck et al., 1982); Also, Gilmore and Hoffman (1964) explained the solution to the Benzer
problem which was again explained by another two texts on graph theory namely (Roberts, 1976; Busacker
and Saaty, 1965). Recently Ali and Phukan (2012) discussed algebraic and topological structures of
molecular biology. They have established some relationship between algebraic and biological aspect of
genetic code, e.g., all hydrophilic amino acids characterize zero divisors and inverse of it gives hydrophobic/
stop codons and stop codons form a basis of the whole set of codons which is coded by amino acids and only
two codons are either both zero divisor or both non-zero divisors. Different authors have discussed ways of
generating graphs from algebraic structures. In a finite group, the power graph is introduced by Cameron and
Ghosh (2009), where every vertex are the elements of a group and two vertices are joined if one is a power of
the other. Bertholf et al. (1976) identified graphs of finite abelian groups whose vertices are injective with the
non- identity subgroups of G, and an edge is connected by two vertices iff the corresponding subgroups
intersect. In a commutative ring the total graph and a few sub-graphs were established and explored by

Anderson and Badawi in 2008. Also, examined subgraphs (induced) specially Nil(I'(R)), Z(T'(R)), &

Reg (I'(R)) of T(I'(R)), with vertices Nil(R), Z(R) & Reg(R), respectively, where Nil(R) is

the ideal of nilpotent elements of R, and Reg(R) is the set of regular elements of R. The lattice structure
of the genetic code with some relations & physicochemical properties of amino acids is discussed by Gohain,
Ali and Akhtar (2015). Akhtar and Gohain (2015) studied properties of the amino acids and established
amino acid network. Also, discussed different centrality measures, correlation coefficient, clustering
coefficient and degree of distribution for networks. Akhtar et al. (2015) discussed graph structure in gene
algebra. Sanchez et al. (2005) have shown that the set of 64 codons can be equipped with a ring structure
isomorphic to the ring of integers modulo 64, Z,. From this algebraic structure they have constructed total
graph in genetic code. They have shown that some specific types of mutations in the codon set. The identity
graph of a group G is a graph in which the vertex set is the set of all elements of the group and two vertices
in G are adjacent if a.b = e, where e is the group's identity element. Let H be a subgroup of G then the
identity graph drawn for the subgroup H is known as the identity special subgraph of G (special identity
subgraph of G).

We attempted to investigate the relationship between Identity graph and genetic code in this paper. The
following is the sequence of the paper: In section 2, we go through the graph's basic concept. Section 3
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discusses the identity graph derived from the codons, followed by an examination of several centrality
measures. In addition, we discuss the bivariate correlation in centrality measures. We go over a few network
parameters in Section 4. In section 5, we've highlighted the most important findings from our current study.

2 Preliminary Concepts of Graph
A graph is an ordered triple G = (V(G), E(G), I;) , where V(G) is a nonempty set, E(G) is a set
disjoint from V(G), and I; isan “incidence” relation that associates with each element of E(G) an unordered
pair of elements (same or distinct) of V(G ). Elements of V(G) are called the vertices (or nodes or points) of G,
and elements of E'(G) are called the edges (or lines) of G. V(G) and E(G) are the vertex set and edge set of
G, respectively. If for the edge e of G, I;(e) = {u, v}, wewrite I;(e) = uv.If I;(e) = {u, v}, thenthe
vertices © and v are called the end vertices or ends of the edge e. Each edge is said to join its ends & we say
that e is incident with each one of its ends. Also, the vertices u & v are then incident with e. A vertex u is
a neighbor of v in G if uv is an edge of G and u is not equal to v. A walk in a graph G is an alternating
sequence W:vye; vi e 0, ... ... ... e, v, of vertices and edges beginning and ending with vertices in which
V;_1 and v; are the ends of e; . A walk is called a trail if all the edges appearing in the walk are distinct. It is
called a path if all the vertices are distinct. Two vertices u and v of G are said to be connected if there is a
u — v path in G, otherwise it is disconnected. Let G be a graph of order n with vertex set V =
{v1, ..., Vn} Theadjacency matrix of G isthe n X n matrix A = (a;;) , where a;; = 1 ifthere is
an edge from vertex v; to vertex v; and a;; = O otherwise.

In graph theory, centrality measure of a vertex represents its relative importance within the graph G . Itisa
real valued function f:V — R , where V is the vertex set of the graph G.
2.1 Degree centrality
Degree centrality of a node u, denoted by C; (1), is the number of nodes to which u is directly connected
(Shams and Khansari, 2014; Xin and Zhang, 2021; Zhang, 2016).
2.2 Eigenvector centrality
The eigenvector of the greatest eigenvalue of the adjacency matrix of the corresponding graph is the eigenvector
centrality (Bonacich, 1972).
2.3 Betweenness centrality
Betweenness centrality (Watts and Strogatz, 1998; Zhang, 2016) of a node v is defined as

Imn(V)

Omn

Cbtw(v) = Zm;ﬁvev Zn;tvEV

where, 0, and 0., (V) are the number of shortest paths from vertex m to n and the number of shortest
paths from m to n that pass through v.

2.4 Closeness centrality

Closeness centrality (Shams and Khansari, 2014; Xin and Zhang, 2021; Zhang, 2016) is defined as follows

(n-1)

CalW) =5 Tt

where, n and d(u, v) are the total number of nodes of the network and shortest path distance between u and
V.
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3 Graph on Genetic Code

Two different orderings of the RNA bases were introduced by Sanchez et al. (2005). They obtained two ordering
of base sets {4, C,G,U} and {U, G, C, A} . A sum operation (Table 1) is defined on these two base sets such
that the two sets are isomorphic to the cyclic group Z, (group Z, of integer module 4). Ali and Phukan (2013)
defined a product operation (Table 2) on the base set Y = {4, C, G, U}, such that Y forms a commutative ring
structure. In the ring (Y, 4+, -) ; A, C represents additive identity and multiplicative identity respectively.
Sanchez also defined an addition operation on the set of 64 codons. These addition operations on the set of
codons form a group which is isomorphic to the group (Zg4 ,+) as shown in Table 3. Akhter et al. (2015)
discussed total graph on the group of codons. We have identity graph on the same group structure of codons.
From this we have discussed special identity subgraph (identity subgraph) on the same group structure of
codons.

Table 1 Sum operationon {4,C,G,U} & {U,G,C, A}.

+ A Cc G U
A A C G U
C C G U A
G G U A C
U U A C G
+ U G Cc A
U U G Cc A
G G Cc A U
C C A U G
A A U G C
Table 2 Product operation on {4,C, G, U}.

A C G U
A A A A A
C A C G U
G A G A G
U A U G C
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Table 3 The genetic code table of 64 codons.

A C G u
No Codon Amino [No Codon Amino No  Codon Amino No Codon Amino
Acid Acid Acid Acid
0 AAA K 16 ACA T 32 AGA R 48 AUA | A
1 AAC N 17 ACC T 33 AGC S 49 AUC | Cc
2 AAG K 18 ACG T 34 AGG R 50 AUG M G
3 AAU N 19 ACU T 35 AGU S 51 AUU I u
4 CAA Q 20 CCA P 36 CGA R 52 CUA L A
5 CAC H 21 CccC P 37 CGC R 53 cuc L C
6 CAG Q 22 CCG P 38 CGG R 54 CUG L G
7 CAU H 23 CCu P 39 CGU R 55 Ccuu L u
8 GAA E 24 GCA A 40 GGA G 56 GUA \% A
9 GAC D 25 GCC A 41 GGC G 57 GuC \% C
10 GAG E 26 GCG A 42 GGG G 58 GUG \% G
11 GAU D 27 GCU A 43 GGU G 59 GUU \% u
12 UAA - 28 UCA S 44 UGA - 60 UUA L A
13 UAC Y 29 ucc S 45 UGC C 61 uucC F C
14 UAG - 30 UCG S 46 UGG w 62 UuG L G
15 UAU Y 31 ucu S 47 uGU Cc 63 uUuu F U

The subgroups of the above codon group are

H, =< AAG >
= {AAG,UUG,CAA,UUA, CAG,GUG, GAA, GUA, AUG, UAG, CUA, UAA, CUG, GAG,

ACA,AUA,UCA, CGA, UGG, ACG, GGG, CCG,GGA, GCA, GCG, CGG,CCA, UGA, AGG, UCG, AAA, AGA}

H, = < CAA >

= {CAA,UUA, AAA, GAA, GUA, UAA, CUA, ACA, AUA, GCA, GGA, CCA, UGA, CGA, UCA, AGA}

Hs = < GAA > = {GAA, GUA, AAA, ACA, AUA, GCA, GGA, AGA}
H, = < ACA > = {ACA, AUA, AAA, AGA}
Hs = < AGA > = {AAA, AGA}

The corresponding special identity subgraphs are shown in Fig. 2.
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Hs

Fig. 2 Special identity subgraph of Z64.

3.1 Centralities in special identity subgraph
Here, we have computed different centrality measures to analyze the special identity subgraphs Hy, H,, Hs,
H, and Hg (Fig. 2) and displayed all values in Table 4, Table 5, Table 6, Table 7 and Table 8.

Table 4 Centrality values of codons for H;.

Degree Closeness  Betweenness Eigenvector
Centrality  Centrality  Centrality Centrality

Vertex (Ca) (™) (Cowe) ()]
AAG 2 0.516667 0 0.147292
uuG 2 0.516667 0 0.147292
CAA 2 0.516667 0 0.147292
UUA 2 0.516667 0 0.147292
CAG 2 0.516667 0 0.147292
GUG 2 0.516667 0 0.147292
GAA 2 0.516667 0 0.147292
GUA 2 0.516667 0 0.147292
AUG 2 0.516667 0 0.147292
UAG 2 0.516667 0 0.147292
CUA 2 0.516667 0 0.147292
UAA 2 0.516667 0 0.147292
cUG 2 0.516667 0 0.147292
GAG 2 0.516667 0 0.147292
ACA 2 0.516667 0 0.147292
AUA 2 0.516667 0 0.147292
UCA 2 0.516667 0 0.147292
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CGA 2 0.516667 0 0.147292
uGeG 2 0.516667 0 0.147292
ACG 2 0.516667 0 0.147292
GGG 2 0.516667 0 0.147292
CcCaG 2 0.516667 0 0.147292
GGA 2 0.516667 0 0.147292
GCA 2 0.516667 0 0.147292
GCG 2 0.516667 0 0.147292
CcGG 2 0.516667 0 0.147292
CCA 2 0.516667 0 0.147292
UGA 2 0.516667 0 0.147292
AGG 2 0.516667 0 0.147292
uce 2 0.516667 0 0.147292
AAA 31 1 450 1
AGA 1 0.508197 0 0.114938
Table 5 Centrality values of codons for H,.
Degree Closeness  Betweenness Eigenvector
Centrality  Centrality  Centrality Centrality
Vertex (") Cy Cywe C;
CAA 2 0.535714 0 0.256468
UUA 2 0.535714 0 0.256468
AAA 15 1 98 1
GAA 2 0.535714 0 0.256468
GUA 2 0.535714 0 0.256468
UAA 2 0.535714 0 0.256468
CUA 2 0.535714 0 0.256468
ACA 2 0.535714 0 0.256468
AUA 2 0.535714 0 0.256468
GCA 2 0.535714 0 0.256468
GGA 2 0.535714 0 0.256468
CCA 2 0.535714 0 0.256468
UGA 2 0.535714 0 0.256468
CGA 2 0.535714 0 0.256468
UCA 2 0.535714 0 0.256468
AGA 1 0.517241 0 0.189126
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Table 6 Centrality values of codons for H;.

Degree Closeness  Betweenness  Eigenvector

Centrality  Centrality  Centrality Centrality

Vertex () () (Cowe) €
GAA 2 0.583333 0 0.443242
GUA 2 0.583333 0 0.443242
AAA 7 1 18 1
ACA 2 0.583333 0 0.443242
AUA 2 0.583333 0 0.443242
GCA 2 0.583333 0 0.443242
GGA 2 0.583333 0 0.443242
AGA 1 0.538462 0 0.295473

Table 7 Centrality values of codons for H,.

Degree Closeness  Betweenness Eigenvector
Centrality  Centrality — Centrality Centrality

Vertex (Ca) (Ca) (Cow) ()
AcA 2 0.75 0 0.837194
AUA 2 0.75 0 0.837194
AAA 3 1 2 1
AGA 1 0.6 0 0.459951

Table 8 Centrality values of codons for Hs.

Degree Closeness  Betweenness  Eigenvector
Centrality Centrality  Centrality Centrality

Vertex (Ca) (&) (Cowe) (D
AAA 1 1 0 1
AGA 1 1 0 1

All other codons can easily interact with a codon with a high closeness centrality value. As a result, the
evolutionary process uses it to communicate quickly with the remaining codons. The closeness centrality value
of the codon AAA is 1, according to Tables 4, 5, 6, and 7. As a result, we can assume that the flow of
evolutionary information continues at a similar rate through AAA. The betweenness centrality assesses the
codon's contribution to expressing the evolutionary mechanism. A codon with a high betweenness centrality
value represents the identification of codons responsible for the majority of the network's information flow.
For example, the betweenness centralities for the codon AAA are 450, 98, 18, and 2, whereas the
betweenness centralities for other codons are 0 (Table 4, Table 5, Table 6 and Table 7). Thus, AAA is related
to more pairs of codons through the evolutionary mechanism than other codons, i.e., codon AAA appears as
an intermediate between more pairs of codons than others. In a network, eigenvector centrality appears to be
more active and prominent than degree centrality. A node is considered large if it has a large number of
neighbours and/or important neighbours. Because the sum of the codon AAA's direct and indirect links is the
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greatest, the codon AAA has the greatest eigenvector centrality (Table 4, Table 5, Table 6 and Table 7). With
the exception of the codon’s AAA and AGA, the eigenvector centrality of the other codons is equal in
magnitude because these codons share the same neighbours (Table 4, Table 5, Table 6 and Table 7). As a
result, these codons have a greater evolutionary contribution (Chakrabarty and Parekh, 2014). The codons with
the highest eigenvector centrality are said to play an important role in the evolutionary process.

3.2 Correlation of different centralities

In this section, we looked at the correlation coefficients between different measures of centrality in special
identity subgraph networks. Correlation analysis is possible when there is at least one relationship between two
variables. The term correlation refers to the relationship between two variables in which when the values of
one variable change, the values of the other variable change as well. The Karl Pearson coefficient of
i Xi=X)(¥-7)

Nnoyoy

correlation is defined as r = where g, and g, are the standard deviations of the X and Y

series, respectively. The value of r ranges from +1 and —1. Correlation is the most important feature to
investigate in assortative or disassortative networks. If the correlation value is greater than zero (r > 0), the
network is assortative; if the correlation value is less than zero (r < 0), the network is disassortative (Newman,
2002). Tables 9, 10, 11, 12, and 13 show the correlation coefficients between the centrality measures of the
special identity subgraphs H;, H,, H3, H,, and Hs. Pearson's method is used to compute all correlation
coefficients.

Table 9 Correlation coefficients of the centrality measures for H;.

Cq Ca Cowe G
Cy 1 0.999857 0.999408 0.999994
Ca 0.999857 1 0.999847 0.999793
Cowt 0.999408 0.999847 1 0.999283
C 0.999994 0.999793 0.999283 1
Table 10 Correlation coefficients of the centrality measures for H,.
Cy Ca Cowe G
Cy 1 0.999329 0.997097 0.999911
Ca 0.999329 1 0.999217 0.99875
Cowt 0.997097236 0.999217061 1 0.995989847
Cy 0.999910574 0.998749643 0.995989847 1
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Table 11 Correlation coefficients of the centrality measures for Hj.

Ca Cel Cowe G
Cy 1 0.996344 0.981981 0.998332
Cu 0.996344 1 0.994536 0.98975
Cowt 0.981981 0.994536 1 0.969433
C 0.998332 0.98975 0.969433 1
Table 12 Correlation coefficients of the centrality measures for H,.
Cy Ca Cowe G
Cy 1 0.984732 0.816497 0.962771
Ca 0.984732 1 0.904534 0.901015
Cowt 0.816497 0.999966 1 0.630031
C 0.962771 0.901015 0.630031 1
Table 13 Correlation coefficients of the centrality measures for Hs.
Cy Ca Cowe G
Cy 0 0 0 0
Cer 0 0 0 0
Cowe 0 0 0 0
G 0 0 0 0

Tables 9, 10, 11, and 12 show that all of the centrality measures for all of the special identity subgraph
networks are highly correlated. As a result, these centrality measures, which represent various centrality
features, are closely related in these networks. As a result, using any measure is equivalent to using any other.
It is well known that information can be transferred more easily through an assortative network than through a
disassortative network (Newman, 2002). Furthermore, we can see from the above correlation coefficient that
all three networks are assortative types (r > 0), implying that evolutionary information flow will be simple.

4 Network Parameters
In biological networks, various network parameters are used. We've talked about the clustering coefficient, the
degree of distribution, and Pearson's skewness in this section.
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4.1 Clustering coefficient
Clustering coefficient is defined as the capacity of a graph to be divided into clusters (Zhang, 2018). Clusters
are a subset of the set that includes edges that connect vertices to vertices. The clustering coefficient C; of a
specific node ‘i’ is defined as the ratio of the total number of links e; of neighbours to its nearest
2e;

neighbours. The average clustering coefficient for the entire network is C; (C; = KD
i i~

), where K; is the

I-r

degree of node i’ ). The relationships between neighbouring nodes become stronger as the value of the
clustering coefficient increases. As a result, it slows the spread of information (Sengupta and Kundu, 2012).

Clustering coefficients for H,, H,, H3, H,, and Hg are given in Tables 14, 15, 16, 17 and 18,
respectively.

Table 14 Clustering coefficient of the codons for Hj.
AAG 1
uuG
CAA
UUA
CAG
GUG
GAA
GUA
AUG
UAG
CUA
UAA
cuG
GAG
ACA
AUA
UucA
CGA
uGa
ACG
GGG
ccaq
GGA
GCA
GCG
CcGG
CCA
UGA
AGG
uca 1
AAA 0.032258
AGA 0

T e e T = T S e e e S e e S N T T S e N = = e T = T = W = SE GRSy
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Table 15 Clustering coefficient of the codons for H,.
CAA 1
UUA 1
AAA 0.066667
GAA 1
GUA
UAA
CUA
ACA
AUA
GCA
GGA
CCA
UGA
CGA
UucA
AGA

(=T N N = T = = T = T = S SN

Table 16 Clustering coefficient of the codons for Hs.

GAA 1
GUA 1
AAA 0.142857
ACA 1
AUA 1
GCA 1
GGA 1
AGA 0

Table 17 Clustering coefficient of the codons for H,.

ACA 1
AUA 1
AAA 0.333333
AGA 0

Table 18 Clustering coefficient of the codons for Hs.
AAA 0
AGA 0

An amino acid's clustering coefficient is determined by the degree of the amino acids as well as the number
of direct connections between two neighbouring amino acids. Tables 14, 15, 16 and 17 show that, with the

IAEES Wwww.iaees.org



60 Network Biology, 2022, 12(2): 45-63

exception of the codon’s AAA and AGA, all other codons have degree 2. Furthermore, the number of links
between neighbouring codons is one, implying that, with the exception of AAA and AGA, all codons have a
high clustering coefficient, i.e., 1. The clustering coefficients for the entire special identity subgraphs H;, Ho,
H; and H, are 0.938508125, 0.879166875, 0.767857125 and 0.58333325, respectively.
Thus, after examining the clustering coefficients of the special identity subgraphs and the clustering
coefficients of the codons, we discovered that, with the exception of AAA and AGA, the flow of
evolutionary process in the neighbourhood of other codons is comparatively slow when compared to the entire
special identity subgraph.

4.2 Degree of distribution and skewness

The degree of distribution and Pearson's skewness of the codons will be discussed in this section. The degree
distribution P (k) is actually the fraction of nodes with degree k. If we have n nodes with n; number of

nodes having degree k, then P(k) = % In general, the degree distribution represents the probability that a

chosen node will have accurately k links. Skewness is another crucial statistical characteristic. The measure
of the distribution's symmetry or asymmetry is used to determine skewness. Karl Pearson first proposed the
skewness concept in 1895. It's abbreviated as Sj. Skewness can be positive or negative, depending on the
mean and median. We employed the Karl Pearson's skewness coefficient, defined as

_ 3(Mean — Median)
~ Standard deviation ’

Sk —3<S,<3

in our research.

In the case of symmetrical (i.e., normal) distribution S = 0. If S > 0, the distribution is positively
skewed. If S, < 0, we consider the distribution to be negatively skewed.

We have shown the degree of distribution values of all the codons for special identity subgraphs H;, H,
Hj, Hy, and Hg in Tables 19, 20, 21, 22, and 23.

Table 19 Degree of distribution of the codons for H;.

AAG 0.9375
uuaG 0.9375
CAA 0.9375
UUA 0.9375
CAG 0.9375
GUG 0.9375
GAA 0.9375
GUA 0.9375
AUG 0.9375
UAG 0.9375
CUA 0.9375
UAA 0.9375
cuG 0.9375
GAG 0.9375
ACA 0.9375
AUA 0.9375
UCA 0.9375
CGA 0.9375
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uGa 0.9375
ACG 0.9375
GGG 0.9375
cca 0.9375
GGA 0.9375
GCA 0.9375
GCG 0.9375
CGG 0.9375
CCA 0.9375
UGA 0.9375
AGG 0.9375
uca 0.9375

AAA 0.03125
AGA 0.03125

Table 20 Degree of distribution of the codons for H,.

CAA 0.875
UUA 0.875
AAA 0.0625
GAA 0.875
GUA 0.875
UAA 0.875
CUA 0.875
ACA 0.875
AUA 0.875
GCA 0.875
GGA 0.875
CCA 0.875
UGA 0.875
CGA 0.875
UCA 0.875
AGA 0.0625

Table 21 Degree of distribution of the codons for H;.

GAA 0.75
GUA 0.75
AAA 0.125
ACA 0.75
AUA 0.75
GCA 0.75
GGA 0.75
AGA 0.125
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Table 22 Degree of distribution of the codons for H,.

ACA 0.5
AUA 0.5
AAA 0.25
AGA 0.25

Table 23 Degree of distribution of the codons for Hs.
AAA 1
AGA 1

Pearson's coefficients of skewness for H;, H,, H;, H, and Hg are —0.7624, —1.09789,
—1.62019, 0 and 0O respectively, based on the above degree of distributions. We can conclude that the

codon networks in Hy, H,, and H3; have a negatively skewed distribution, whereas the codon networks in
H, and Hg have a symmetrical distribution.

5 Conclusion

We attempted to decipher the genetic code's special identity subgraph structure. To investigate the impact of
each codon, various centrality measures were used as a graph theoretic tool to delve deep into the subject.
Following a discussion of several centrality measures, it is discovered that Codon AAA has the highest
centrality value of all centrality measures (Table 4, Table 5, Table 6 and Table 7). As a result, we have
concluded that codon AAA play an important role in the evolution of amino acids. Furthermore, we
examined the correlation coefficients of various codon centrality measures. All centrality measures were found
to be highly correlated. Again, the correlation coefficient reveals that the network is assortative, implying that
evolutionary information flow will be simple (Table 9, Table 10, Table 11 and Table 12). When the clustering
value of the codons is examined, it is clear that, with the exception of codons AAA and AGA, all of the
codons have a high clustering coefficient. As a result, with the exception of AAA and AGA in the vicinity
of other codons, the evolutionary process is quite slow when compared to the entire network (Table 14, Table
15, Table 16 and Table 17).
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