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Abstract  

For a long time, confidence interval theory is the basis of statistics, and confidence interval has been regarded 

as an important content of statistical analysis. Almost all statistical textbooks and statistical analysis software 

contain the contents of confidence intervals, which are used to estimate statistical parameters or parameters of 

mathematical models, and are an important part of many methods such as interval estimation, analysis  of 

variance, and regression analysis, etc. They are recommended or required by the method guidelines of many 

reputable journals. So far, confidence interval theory and methods have been widely used in various scientific 

or engineering fields including life sciences, medicine, environmental science, chemistry, physics, and 

psychology. However, due to the fallacies or deficiencies of the confidence interval theory and methodology, it 

has caused a wide range of misuses, and has been criticized more and more in recent years. Some statisticians 

even suggest abandoning the confidence interval theory. To avoid the problems of classical confidence interval 

theory, one can use Bayesian credible intervals, use uncertainty methods, calculate confidence intervals by 

avoiding statistic significance tests, or use the Bootstrap credible interval method proposed by me, etc. In 

practice, for controlled experiments, multiple replicates or treatments should be designed; for observational 

experiments, multiple representative samples should be drawn, and even a single sample can be used if 

sufficient sample size is ensured. It is necessary to implement the whole process control for every procedures 

from sampling to statistical analysis. Cross-comparison and validation of confidence interval analysis results 

with other multi-source results should be conducted to obtain the most reliable conclusions. Finally, in addition 

to writing, publishing and adopting new statistical works and teaching materials as soon as possible, it is 

imperative to revise and distribute various statistical software in new editions based on new statistics for use. 
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1 Concepts of Confidence Intervals  

There are many types of interval estimates, and their principle basis and calculation methods are different, 

however all types or methods are estimates of parameters, including parameter estimates that allow sampling 
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uncertainty, that is, by calculating statistical parameters (population mean, median, variance, or any other 

unknown statistics) or parameters in mathematical models to generate a series of values to account for 

measurement or sampling uncertainty. 

   Interval estimation has long been regarded as a key aspect of statistical analysis. Of the types of interval 

estimation, the most popular and commonly used are confidence intervals, which are intervals that, on average, 

contain the true parameter value in some known proportion of repeated sampling (Morey et al., 2016). 

   The concept of confidence interval (CI) was first proposed by Neyman (1934, 1937), who believed that the 

X% confidence interval of the parameter θ was the interval (L, U) generated by the algorithm; for all possible θ 

values, in repeated sampling, there is an X% probability that the interval contains the true value of θ (Neyman, 

1937). On repeated sampling, the interval has a fixed probability that contains the parameter θ. If the algorithm 

generates an interval containing θ with a probability of 0.5, it is a 50% CI; similarly, the probability of a 99% 

CI is 0.99. The modern definition of a confidence interval allows a probability of at least X%, not exactly X%. 

   In his classic paper, Neyman (1937) laid the formal basis for confidence intervals. Assuming the researcher 

is interested in estimating the parameter θ, Neyman recommends that the researcher perform the following 

three steps: (1) Conduct an experiment and collect relevant data. (2) Calculate two values, L and U. The 

smaller L is, the larger U is; an interval (L, U) is formed according to the specified algorithm. (3) Prove that 

L<θ<U, that is, θ is in this interval. (L, U) is the confidence interval of the parameter θ. 

   The width of the confidence interval is considered an indicator of the accuracy of the estimate. Confidence 

intervals are considered to indicate which parameter values are reasonable; a confidence coefficient (e.g., 95%) 

is considered a reasonable indicator that the true parameter is included in the confidence interval. For example, 

Masson and Loftus (2003) stated that in the absence of any other information, the confidence interval obtained 

has a 95% probability of including the population mean. Cumming (2014) states that our interval can be 

guaranteed to include the parameter with 95% confidential degree (confidence coefficient), and the lower and 

upper bounds can be considered as possible lower and upper bounds of the parameter. The confidence 

coefficient for a confidence interval is derived from the algorithm that generated it. Therefore, it is helpful to 

distinguish an algorithm from a confidence interval: an X% confidence algorithm is any algorithm that 

generates an interval covering θ in X% of repeated sampling, and a confidence interval is a specific interval 

generated by such an algorithm. The confidence interval algorithm is a stochastic process for observing and 

fixing confidence intervals (Morey et al., 2016). 

   Confidence intervals and statistic significance tests, which have been infamously criticized in recent years 

(Benjamini et al., 2021; Bergstrom and West, 2021; Hahn and Meeker, 1993; Wasserstein and Lazar, 2016; 

Grenville, 2019; Hubbard et al., 2019; Tong, 2019; Wasserstein et al., 2019; Xie, 2022a, b; Zhang, 2022) have 

a strong relationship. All confidence intervals can be obtained by invertion of significance tests and vice versa. 

There is a one-to-one correspondence between confidence intervals and significance tests. However, 

significance tests and confidence intervals are not equivalent. For example, if the confidence interval for the 

difference between two means does not contain 0 but is close to 0, it indicates that the two means are not 

different in any practical sense (we know a priori that they are not absolutely equal, there is infinite decimal 

points). Confidence intervals are more informative than significance tests. If confidence intervals are not used 

as tests, it is widely believed that confidence intervals allow one to avoid the pitfalls of significance tests 

(Matloff, 2011, 2014). 

   At present, almost all statistical textbooks and statistical analysis software contain the content of 

confidence intervals (Fig. 1), which are used to estimate statistical parameters or paramters in mathematical 

models, etc. They are an important part of interval estimation, ANOVA, regression analysis, etc. Their use is 

recommended or required by the method guidelines of many reputable journals (Psychonomics Society, 2012; 
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Wilkinson, 1999; Morey et al., 2016). Clearly, confidence interval theory is the foundation of statistical 

methodology (Cumming, 2014; Loftus, 1996). 

 

 
 
Fig. 1 Confidence intervals of the parameters of a Matlab regression model (the upper) and the confidence intervals in the 
SPSS independent sample test (the lower). 
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2 Fallacies, Criticisms and Controversies 

2.1 Fallacies and criticism 

A deep understanding of what types of inferences are and are not allowed by confidence interval theory is 

critical in deciding how to conduct relevant scientific research in the future. 

   Confidence interval theory originated from the famous statistician Neyman, it is a methodology to avoid 

data reasoning problems by proposing dichotomous statements (Neyman, 1934, 1937, 1941), after widespread 

dissemination, it eventually became what many people think the best way to make inferences from data 

(Cumming and Finch, 2005; Cumming and Fidler, 2015) and an easy way to avoid dichotomous statements 

(Cumming, 2014; Hoekstra et al., 2006; Wilkinson, 1999). 

   Proponents of confidence intervals argue that confidence intervals have three desirable properties. First, a 

confidence coefficient can be considered as a measure of the uncertainty that a confidence interval contains a 

parameter should have. Second, the confidence interval is a measure of the uncertainty of the estimate. Third, 

confidence intervals contain "likely" or "reasonable" values for the parameter. These all involve reasoning 

about parameters from observed data, i.e., they are "post-data" reasoning methods (Morey et al., 2016). 

In the aforementioned three steps of Neyman's (1937) confidence interval theory for estimating the 

parameter θ, the result of step (3) is not a belief, a conclusion, or any inference from the data. Furthermore, it is 

not related to any degree of uncertainty about whether θ is actually in the interval. It's just a dichotomous 

statement, which means it has a certain probability of being true in the long run. The frequency assessment of 

the confidence interval algorithm is based on the so-called "power" of the algorithm, that is, the frequency with 

which wrong parameter values are excluded. On average, better intervals will be shorter and will exclude 

incorrect parameter values more frequently (Lehmann, 1959; Neyman, 1937; 1941; Welch, 1939). Considering 

a particular error parameter value θ=θ0, different confidence interval algorithms will exclude this error 

parameter value with different frequencies. If the confidence interval algorithm A excludes θ0 more frequently 

than the confidence interval algorithm B on average, then A is better than B in terms of that value. Sometimes 

we find that one algorithm excludes all wrong parameter values at a higher rate than the others, in which case 

the first algorithm is more powerful than the second. There might even be an "optimal" confidence interval 

algorithm that excludes every wrong value of θ with a higher frequency than any other possible confidence 

interval algorithm. This is similar to the strictest significance test. Although an optimal confidence interval 

algorithm does not always exist, we can always compare one algorithm to another to decide which is better 

(Neyman, 1952). Therefore, the confidence interval algorithm is closely related to hypothesis testing: the 

confidence interval algorithm controls the rate of inclusion of true values, while a better confidence interval 

algorithm has a greater ability to exclude false values. 

   It has been found, however, that confidence intervals are not without problems. Hacking (2016) points out 

that they are basically pre-trial rules. That is, before looking at the data, we set a rule for generating confidence 

intervals, and then calculate the confidence intervals from the data. This can lead to some weird situations. A 

classic example is a sample of size 2 drawn from a uniform distribution over (α-1, α+1). where the minimum 

and maximum values form a 50% confidence interval (they will include 50% of the computations regardless of 

the α value). But if the range > 1, the interval "must" contain α. Here we have a 50% confidence interval, 

which in some implementations includes the parameter with probability 1 (Matloff, 2014). According to Mayo 

(1981), the misunderstanding of confidence intervals seems to be rooted in people's desire for confidence 

intervals to provide something they cannot reasonably provide, namely a measure of the probability, belief, or 

degree of support that an unknown parameter value lies within a particular interval. Recent studies have shown 

that this misunderstanding is widespread among researchers (Hoekstra et al., 2014). 

   In fact, when Neyman first proposed the theory of confidence intervals in the 1930s, people were quick to 
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doubt the validity of confidence intervals. Almost at the same time, another statistical pioneer, Fisher, 

Neyman's academic rival, criticized the theory for potentially leading to conflicting inferences. Fisher argues 

that the confidence interval theory is a broad and very beautiful theory, but it was built at a considerable cost, 

and it may be worth considering the cost. The first thing to notice is the loss of uniqueness of results, and the 

danger of apparently contradictory inferences arising there from (Neyman, 1934; Fisher, 1935). Of course, as 

will be discussed later, these criticisms are valid, but in a broader sense they miss the point. Like proponents of 

confidence intervals, critics fail to understand that Neyman's goals differ from proponents: Neyman actually 

developed a theory of behavior aimed at controlling for error rates, rather than a theory of reasoning from data 

(Neyman, 1941). 

   Despite the criticism, confidence intervals subsequently grew in popularity, and the theory of confidence 

intervals became the mainstream paradigm through the multi-year spread of statistics textbooks as the most 

widely used interval estimator. Its alternatives, such as Bayesian credible intervals and Fisher benchmark 

intervals, have been ignored for a long time because people do not understand the differences between 

confidence intervals, Bayesian and benchmark theories, and the inability to interpret the resulting intervals in 

the same way. However, there are still occasional doubts and criticisms of it in the statistical community. In 

the most poignant recent example, Morey et al. (2016) elaborated on the pitfalls and limitations of confidence 

intervals, noting that confidence intervals are not used to infer unknown parameters, and advising the scientific 

community to abandon confidence interval theory (Huang, 2022a). 

   There are some common fallacies, both conceptually and in application, about confidence intervals. Morey 

et al. (2016) pointed out that there are several types of confidence interval fallacies that people often commit. 

(1) Fallacy 1: The Fundamental Confidence Fallacy. If the probability that a random interval contains the true 

value is X%, then the plausibility or probability that a particular observation interval contains the true value is 

also X%; alternatively, we have X% confidence that the observed interval contains the true value. 

   The reasoning behind The Fundamental Confidence Fallacy seems reasonable: from a given sample, we 

can get any possible confidence interval. If the 95% possible confidence interval contains the true value, then 

in the absence of any other information, it seems reasonable to say that we have obtained one of the confidence 

intervals that contains the true value with 95% confidential degree. This interpretation is implied by the name 

"confidence interval" itself: the word "confidence", in common usage, is closely related to the concepts of 

rationality and belief. The name "confidence interval", rather than the more accurate "coverage algorithm" etc., 

encourages the occurrence of The Fundamental Confidence Fallacy. 

    The key confusion behind The Fundamental Confidence Fallacy is the confusion between what is known 

before the data is observed - i.e. whatever the confidence interval is, there is a fixed chance of containing the 

true value - and what is known after the observed data. Frequentist confidence interval theory says nothing at 

all about the probability that a particular, observed confidence interval contains the true value; it is either 0 (if 

the interval does not contain the parameter) or 1 (if the interval does contain the true value). 

   Therefore, confidence intervals cannot be used to assess the certainty that a parameter is within a specific 

range. The following examples will illustrate that the known information before the calculation interval and the 

known information after the calculation interval may be different.  

(2) Fallacy 2: The Precision Fallacy. The width of the confidence interval indicates how precisely we know the 

parameter. Narrow confidence intervals correspond to precise knowledge, while wide confidence errors 

correspond to imprecise knowledge. 

   Proponents of confidence intervals argue that confidence intervals are useful for assessing the precision of 

estimable parameters. This is considered to be one of the main reasons why confidence procedures are applied 

to null hypothesis significance testing (Cumming and Finch, 2005; Cumming, 2014; Fidler and Loftus, 2009; 
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Loftus, 1993, 1996). For example, Cumming (2014) argues that wide confidence intervals will quickly let us 

know if our experiments are weak and can only give imprecise estimates. Young and Lewis (1997) noted that 

it is important to know how accurately point estimates represent true differences between groups. The width of 

the confidence interval gives us information about the accuracy of the point estimate of the parameter. 

    Steiger (2004) pointed out that the relationship between confidence interval width and precision is not 

perfect and in some cases it can be severely affected for a variety of reasons. Morey et al. (2016) have 

exemplified that, in fact, there is no necessary relationship between the point estimation accuracy and the 

width of the confidence interval. Analyze data from 50 participants in an experiment. Participants were 

randomly divided into two groups, A and B, of 25 people each, and half of the data sets could be analyzed 

separately. As a result, the 95% t confidence interval for group A was 52±2, and for group B it was 53±4. 

The two sets of results were generally consistent, and an equal-weighted average of 52.5 of the two individual 

point estimates could be used as an overall estimate of the true mean. However, Group A believes that the two 

methods should not be weighted equally: the CI of Group A is half the width of Group B, and thus Group A is 

considered to have a more accurate estimate and therefore should be weighted more heavily. However, this 

cannot be correct, as the estimate weighted for these two means is not the same as the estimate for analyzing 

the full dataset, which must be 52.5. The error in Group A is to assume that the CIs directly represent post-data 

precision. In fact, the width of the confidence interval and the uncertainty of the estimated parameter can be 

negatively correlated in one case and completely uncorrelated in another. 

(3) Fallacy 3: The Likelihood Fallacy. The confidence interval contains the possible values of the parameter. 

Values within the confidence interval are more likely to occur than values outside. 

   There is a third common interpretation of the confidence interval, for example, Loftus (1996) argues that it 

gives an indication of how well the observed pattern of the mean should be considered to reflect the underlying 

pattern of the population mean. This explanatory logic is used when confidence intervals are used to test a 

theory (Velicer et al., 2008) or to argue for an invalid or in fact invalid hypothesis (Loftus, 1996). In fact, we 

cannot interpret an observed confidence interval as containing the true value with some probability, nor can we 

interpret a confidence interval as the precision of an estimate. 

   Confidence interval algorithms may indeed have a fixed mean probability of containing the true value, but 

whether to contain a "reasonable" value on any given sample is a different question. Even a "good" confidence 

interval from the point of view of confidence interval theory can exclude almost all reasonable values, and can 

be an empty or infinitely narrow interval that excludes all possible values (Blaker and Spjøtvoll , 2000; Dufour, 

1997; Steiger, 2004). This is the outcome of our decisions, independent of "reasoning" or "conclusion" 

(Neyman, 1941). Mayo and Spanos (2006) also point out that just because a particular value is in an interval 

does not mean it is reasonable to accept it; they call it the "acceptance fallacy". This fallacy is akin to 

accepting the null hypothesis in a significance test simply because it was not rejected. 

2.2 The debate between pre-data theory and post-data theory 

Morey et al. (2016) compared five confidence interval algorithms with several examples and believed that 

among the five algorithms considered, the interval (credible interval) of the Bayesian algorithm is the only one 

that can be said to have a 50% probability containing the true value when observing the data. More importantly, 

the ability to interpret intervals in this way comes from Bayesian theory, not from confidence interval theory. 

Equally important, it is necessary to specify a prior to obtain the desired interval; the interval should be 

interpreted in accordance with the specified prior. Of the other four algorithms, none can be shown to provide 

"reasonable" inferences or conclusions from the data, and they have no prior distributions that might form 

these intervals. From this perspective, Neyman's refusal to draw "conclusions" and "inferences" from the data 

naturally stems from his theory, which after all does not support such an idea. Of the five algorithms, only the 
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Bayesian algorithm correctly tracks the estimation accuracy and covers the true value in the expected way, the 

other algorithms produce intervals that deterministically contain the true value by simple logic, but are still 

"50%" interval. However, Welch (1939) pointed out that the Bayesian algorithm is not the best way to 

construct confidence limits. 

The difference between frequentist and Bayesian theory stems from the different goals of the two theories. 

Frequentism is a pre-data theory. It looks to the future, designing algorithms with special averaging properties 

in repeated sampling (Neyman, 1937; Jaynes, 2003; Mayo, 1981; 1982). As mentioned above, the idea is 

clearly seen in Neyman's (1941) study: once the algorithm has been deduced, the inference is over. Confidence 

interval theory is attributed to the mean frequency of including or excluding correct and incorrect parameter 

values, respectively. Given the observed data, any given inference may (or may not) be plausible, but that is 

not Neyman's concern, and he denies any conclusions or beliefs based on the data. Bayesian theory, on the 

other hand, is a post-data theory: Bayesian analysis uses information from the data to determine what can be 

reasonably believed, based on model assumptions and prior information (Gelman, 2008; Wasserman, 2008). 

Morey et al. (2016) argue that post-data inferences using intervals demonstrated by pre-data theory may 

lead to unreasonable and potentially arbitrary inferences (Berger and Wolpert, 1988; Wagenmakers et al., 

2015). Any confidence interval algorithm that does not focus, at least in part, on the properties of the data 

behind it is incomplete at best. 

   One of the misconceptions about the relationship between Bayesian inference and frequentist inference is 

that they will lead to the same inference, so all confidence intervals can simply be interpreted in a Bayesian 

fashion. For example, in the case of normally distributed data, certain priors result in confidence intervals that 

are numerically identical to Bayesian confidence intervals computed using a Bayesian posterior (Jeffreys, 1998; 

Lindley, 1991). This may lead one to suspect that it doesn't matter whether a confidence interval algorithm or a 

Bayesian algorithm is used. However, Morey et al. (2016) showed that confidence intervals and credible 

intervals may differ significantly. The only way to be sure that a confidence interval is numerically the same as 

some credible interval is to prove it. 

   Because of the explicit use of priors, Bayesian credible intervals support the interpretation of probabilities 

in terms of likelihood. Bayesian algorithms provide the ability to calculate the reasonability of any given range 

of values. Because all of these inferences must be made from the posterior distribution, the inferences must 

remain consistent with each other (Lindley, 1991; Fisher, 1935). In most cases, there is no reason why 

likelihoods and posteriors cannot augment or even replace confidence intervals (Kruschke, 2010). The 

arbitrariness of confidence or confidence coefficients is completely avoided through likelihood or a posteriori. 

2.3 Other debates on confidence intervals 

M. Thomas argues that, just as rejecting a significance test because it reduces all results to a spurious 

dichotomy, it is unreasonable to reject a confidence interval because all results within the interval are 

considered equivalent, and vice versa. Significance tests are closely related to confidence intervals, both of 

which are highly condensed summaries of information about the likelihood function (or the posterior 

distribution if you are a Bayesian) with due regard to the sample space. We only have problems when we use 

these tools blindly and uncritically. Uncritical use of significance tests raises far more problems than uncritical 

use of confidence intervals, but it's probably just a sample size issue, and more work is over-relying on 

significance tests than confidence intervals. Arguments must be careful because none of our inference systems 

are fully satisfactory (Matloff, 2014). Frequentist confidence intervals and Bayesian (with "non-informative" 

priors) intervals are numerically consistent in the estimation of the mean of a normal distribution. 
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3 Solutions 

3.1 Using Bayesian credible intervals 

Bayesian credible intervals are derived from Bayesian theory, which is based on Bayesian rule. Bayesian rule 

expresses the interrelationship among the conditional probability distribution, marginal probability 

distribution, and joint probability distribution of random variables, and is defined as follows (Upton and Cook, 

2008; Pandey et al., 2022; Zhang, 2016, 2018, 2022 ): 

 

 

 

 

Where A and B are random variables, Pr(A) and Pr(B) are marginal probability distributions of A and B 

respectively, Pr(B|A) is the conditional probability distribution of B given A, Pr(A|B) is the conditional 

probability distribution of A given B, and Pr(A, B) is the joint probability distribution of A and B. Obviously, 

Bayesian rule is expressed in terms of conditional probability (Huang, 2022), and it can also be expressed as: 

posterior probability  prior probability × current probability. 

   Based primarily on the Bayesian credible interval method, Morey et al. (2016) provide clear guidelines for 

interpreting and reporting confidence intervals. Morey et al. argue that unless the interpretation of the interval 

can be justified by some other theory of reasoning, confidence intervals must remain uninterpreted to avoid 

making arbitrary inferences or inferences that contradict the data. This even holds for good confidence 

intervals constructed by inverse significance tests (Steiger, 2004). 

   The guideline argues that any author who chooses to use confidence intervals should ensure that the 

intervals numerically correspond to the confidence intervals under some reasonable prior. At this point the 

confidence interval should be called a credible interval. The guidelines recommend against using confidence 

interval algorithms with unknown Bayesian properties. As noted by Casella (1992), the post-data properties of 

algorithms are necessary to understand what can be inferred from intervals. Any algorithm that has not yet 

explored Bayesian properties may have properties that make it unsuitable for post-data inference. If the 

confidence algorithm does not correspond to a Bayesian algorithm, the user is cautioned not to interpret the 

confidence interval as containing a parameter with probability X%, i.e., not by the precision of the 

measurement, nor by saying that it contains a value that should be taken seriously: before sampling, the 

interval has an X% probability of containing the true value (Hoekstra et al., 2014). 

   The guideline further warns against reporting confidence intervals without paying attention to the 

algorithm and corresponding statistics. As described, there are many different ways to construct confidence 

intervals, and they have different properties. Some will have better frequentist properties than others; some 

correspond to credible intervals, while others will not. Unfortunately, authors often report confidence intervals 

without paying attention to how they are constructed. Not knowing which confidence interval algorithm was 

used can lead to absurd inferences. Also, enough information should be provided so that anyone can calculate 

different confidence intervals or credible intervals. 

   Moving from confidence intervals to credible intervals requires a mindset shift away from a test-centric 

view of intervals. While every confidence interval can be interpreted as a test, a credible interval cannot be 

interpreted as such. As Berger (2006) states, it is "completely wrong" to assess the Bayesian confidence of a 

particular parameter value by checking whether it is contained within the credible interval. When testing a 

particular value of interest (e.g., the null hypothesis), the particular value must be assigned a non-zero 

probability a priori. 

   Cumming (2014) proposed so-called "cat's eye" intervals, which correspond to Bayesian posteriors under 
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"non-informative" priors for normally distributed data. In recent years, researchers interested in learning more 

about applied Bayesian statistics have developed many excellent resources, including estimation of posterior 

distributions and credible intervals, such as works by Bolstad and Curran (2016), Lee and Wagenmakers 

(2013), Lynch (2007), and Jackman (2009) et al. 

3.2 Using Bootstrap credible intervals 

The main problem in the practical application of the classical confidence interval theory is the lack of 

sampling information caused by a single sample and (or) a small sample size. According to the Central Limit 

Theorem, random variables with arbitrary distribution will tend to be normally distributed when the sample 

size is large enough: from any population with mean μ, a random sample of size n is drawn. When n is large 

enough, the sampling distribution of X  approximately follows a normal distribution with mean μ. Based on 

the idea of the central limit theorem, I hereby propose to use the Bootstrap method to perform random 

resampling within the sample size of [1, n] (Zhang, 2007, 2011a-b, 2021a-c, 2022; Zhang and Schoenly, 

1999a-b), calculate the specified parameters (mean, variance, proportion, etc.) of the resampling; so randomly 

resampling s times (resampling sample size s=1000, 10000, etc.), the distribution of the calculated specified 

parameters tends to in a normal distribution. In this way, the following characteristics of the normal 

distribution can be used to define credible intervals: about 50% of the values are within 0.68 standard 

deviations of the mean; about 68% of the values are within 1 standard deviation of the mean; about 95% of 

the values are within 1.96 standard deviations of the mean; about 99% of the values are within 2.58 standard 

deviations of the mean. The credible interval obtained in this way is called the Bootstrap credible interval. 

The Bootstrap credible interval algorithm avoids or partially avoids the problems of a single sample and 

small sample size. Here I give the Matlab algorithm, bootRelInt, to calculate the Bootstrap credible interval 

for the population mean as follows: 

 

function [xbar,xstd]=bootRelInt(x,s)      

%x: a sample of size n.  

%s: number of bootstrap re-samplings, e.g., 10000, 20000, etc.   

%xbar,xstd: estimated mean and standard deviation of total population. 

n=max(size(x)); 

xs=zeros(1,s); 

for sim=1:s 

m=floor(rand*n+1); 

ran=randperm(n); 

for i=1:m 

xnew(i)=x(ran(i)); 

end 

xs(sim)=xs(sim)+mean(xnew); 

end 

xbar=mean(xs); 

xstd=std(xs); 

sprintf(['Estimated Mean and Standard Deviation of Total Population\n','Mean=',num2str(xbar),'; Standard 

deviation=',num2str(xstd),'\n\n','Credible intervals\n','About 50%% of means will be in the interval 

[',num2str(xbar-0.68*xstd),',',num2str(xbar+0.68*xstd),']\n','About 68%% of means will be in the interval 

[',num2str(xbar-xstd),',',num2str(xbar+xstd),']\n','About 95%% of means will be in the interval 

[',num2str(xbar-1.96*xstd),',',num2str(xbar+1.96*xstd),']\n','About 99%% of means will be in the interval 

[',num2str(xbar-2.58*xstd),',',num2str(xbar+2.58*xstd),']\n']) 
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Fig. 2 An example of the Bootstrap credible interval for the population mean. 

 

 

3.3 Using the uncertainty method 

In 1993, the International Organization for Standardization (ISO) and seven international organizations issued 

the Guidelines for the Representation of Uncertainty in Measurement. The release of Guidelines for the 

Representation of Uncertainty in Measurement marls that it officially replaces the traditional theory of 

measurement error with the theory of measurement uncertainty. The statistical basis of measurement 

uncertainty in Guide to the Representation of Measurement Uncertainty is Neyman's confidence interval 

theory and the small sample theory based on t distribution. If the population standard deviation is unknown, 

the confidence interval for a confidence level of p% obtained from n repeated measurements is: 

 

 

 

where   is the sample mean, s 为 is standard deciation of the sample, tp is the t-value of confidential level p%. 

When the sample size is large enough, the sample mean is approximately normally distributed. In the 2021 

International Standard ISO:24578:2021(E), the half-width of the above t-interval is not used as the expanded 

uncertainty, but an unbiased estimate of the expanded uncertainty is adopted (ISO, 2021; Huang, 2022) . 

Define the following half-width of confidence interval as the unbiased estimate Up of the expanded 

uncertainty: 
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where, zp is the z-value of confidential level p%, c4 is the correction factor of standard deviation for the sample: 

 

 

 

where, c4=0.7979, 0.9213, 0.9515, 0.9650 and 0.9727 correspond to n=2, 4, 6, 8 and 10 respectively。For 

example, the expanded uncertainty corresponding to the 99.9% confidence level is 

 

 

 

This result is much better than that (9.5) of the classical confidence interval. 

   In addition, we may use the unified theory of measurement error and uncertainty, proposed by Huang 

(2018). This unified theory is entirely based on frequentist statistics. It restores the traditional classification of 

random and systematic errors (primary classification) and retains the Type A and B classifications (secondary 

classification) of the “Guide to the Expression of Uncertainty in Measurement”. 

3.4 Calculating confidence intervals by avoiding significance tests or using other statistics 

Proponents of confidence intervals suggest calculating confidence intervals for many other statistics, for 

example, standardized effect sizes Cohen's d (Cumming and Finch, 2001; Zhang, 2022), medians (Bonett and 

Price, 2002; Olive, 2008), correlations (Zhang, 2015, 2016, 2018; Zhang and Li, 2015; Zou, 2007), ordinal 

associations (Spearman, 1904; Schoenly and Zhang, 1999; Woods, 2007; Zhang, 2015, 2016, 2018, 2021d), 

etc.  

   Steiger and Fouladi (1997) pointed out that the advantage of confidence intervals is that the width of the 

interval provides a ready indication of the measurement accuracy. Steiger (2004) introduced confidence 

intervals by emphasizing the desire to avoid significance tests and to focus more on the precision of the 

estimates. Steiger argues that scientists are more interested in knowing how big the difference between the 

two groups is (and how precisely it can be determined), rather than whether the difference between the two 

groups is zero. 

   Confidence interval algorithms based on significance tests, even a good, robust significance test, often do 

not provide reasonable inferences. Steiger provides a confidence interval algorithm for the effect size ω2 by 

inversing the significance test. ω2 is the proportion of variance in ANOVA. When there are more than two 

levels in a one-way design, the parameter ω2 is used as the effect size. Such confidence intervals were 

proposed by Steiger (2004) (see also Steiger and Fouladi, 1997), cited by Cumming (2014), implemented in 

software for social scientists (Kelley, 2007a, b), and evaluated only for their frequency properties (Finch and 

French, 2012). The issues discussed here are the same as for other relevant confidence intervals, such as 

confidence intervals for η2 (Zhang, 2022), partial η2, noncentrality parameters of the F distribution, 

signal-to-noise ratio f, RMSSE, and other issues discussed by Steiger (2004) . 

   To see how confidence intervals are constructed by inversing a significance test, consider a two-sided 

significance test of size α, which can be thought of as a combination of two one-sided tests of size α/2: one 

for each tail. When one of the one-tailed tests is rejected, the two-sided test is rejected. To establish a 68% 

confidence interval, we can use two one-sided tests of size (1-0.68)/2=0.16. Suppose we have a one-way 

design with three levels of 10 participants in each group. The effect size ω2 in this design indicates how large 

F is: larger values of ω2 tend to produce larger values of F. The F-distribution for a given effect size ω2 is 
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called the non-central F-distribution. When ω2=0 (i.e., no effect), the familiar central F-distribution is 

obtained. However, Steiger's confidence interval algorithm produces a "suspicious" confidence interval as 

long as the p-value of the corresponding F-test is p>α/2. For 95% confidence intervals (meaning p>0.025), 

both Steiger and Fouladi (1997) advise against using confidence intervals for the purposes they (and other 

confidence interval proponents) suggest. This is not just a theoretical question. In a cursory review of papers 

citing Steiger (2004), Morey et al. (2016) found that many papers obtained and reported dubious confidence 

intervals but did not state them (e.g., Cumming et al., 2012; Gilroy and Pearce, 2014; Hamerman and 

Morewedge, 2015; Lahiri et al., 2013; Hamerman and Morewedge, 2015; Winter et al., 2014). Others do not 

use confidence intervals, but rely on point estimates of effect sizes and p-values (e.g., Hollingdale and 

Greitemeyer, 2014). But from the p-values it can be inferred that if "good practice" is followed and such 

confidence intervals are calculated, they will obtain intervals that cannot be explained except by the inversed 

F test according to Steiger (2004). 

   Steiger and Fouladi (1997) concluded that the central problem with confidence intervals was that in order 

to maintain correct coverage probabilities, a pre-data concern of frequentism, they sacrificed what researchers 

wanted for confidence intervals: a measure of post-data indexing precision. If our goal is to stay away from 

significance tests, we should not use unexplainable methods other than inverse significance tests. 

3.5 Other suggestions 

Personally, I believe that confidence intervals can be retained, as long as the confidence intervals are not 

absoluteized using a significance test in the application. The sample size should be large enough, or preferably 

the multi-sample confidence intervals should be used. For a single sample, as mentioned above, the resampling 

method can be used to increase the amount of sampling information. Instead of using confidence intervals as 

the only interpretation, the confidence interval results should be cross-compared and validated with other 

multi-source results to obtain the most credible conclusions. 

 

4 Discussion 

In the century since its inception, statistics has been forging ahead amid doubts, criticisms and debates. 

Statistics do have serious problems (Matloff, 2014). It has even been argued that statistics is an outdated field, 

with most of its common core from an era when so many assumptions were required, that it would be absurd to 

teach anyone to use critical values. In view of the characteristics of statistics and many problems in theory, 

especially in practice, many professional statisticians also show lack of confidence. For example, M. Thomas 

argues that in his 40-year career as a professional statistician, he has never done a "correct" analysis, and 

everything is based on assumptions that are at best approximate (Matloff, 2011, 2014). Entering the era of big 

data, with the massive presentation of data information and the unprecedented improvement of computing 

power, more and more people are mining information based on overall analysis rather than classical statistics 

that based on sampling, coupled with the rapid progress of artificial intelligence technology, the sense of 

statistical frustration and powerlessness is likely to grow. 

   I don't think there is a substantial problem with statistics itself. Statistics are based on sample data, and its 

research objects and conclusions are naturally imprecise and uncertain. We cannot approach statistical theories 

and methods for uncertainty with deterministic expectations and mindsets, which are the subjective source of 

many problems in the application of statistics. For example, dichotomizing the continous p-value problem for 

for statistical significance tests, etc. The natural design of the human brain is more suitable for deterministic 

analysis than uncertainty analysis. When faced with uncertain problems, people will consciously or 

unconsciously tend to look for deterministic solutions. What we need to adjust is to return to the essence and 

apply statistical theories and methods with uncertain expectations and mentality. This requires that we cannot 
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make statistical conclusions certain and absolute. For controlled experiments, multiple replicates or treatments 

should be designed; for observational experiments, multiple representative samples should be drawn, and 

sufficient sample size should be ensured even if a single sample is used. More reasonable statistical methods 

should be used. It is necessary to implement the whole process control from sampling to statistical analysis. 

Statistical analysis results should be cross-compared and validated with other multi-source results to obtain the 

most reliable conclusions (Zhang, 2022). 

  Most of the problems discussed in statistics in recent years have a long history, and some solutions have 

already been proposed. The reason why these problems have received unprecedented attention and criticism in 

recent years is mainly due to the increasingly serious problems of reproducibility crisis in scientific research 

and academic misconducts. A paper published in 2005, "Why Most Published Research Findings Are False ", 

sparked the first widespread discussion about the reproducibility of scientific research (Ioannidis, 2005; Wu, 

2022; Zhang, 2022). In 2012, in an article published in Nature, the American biotechnology company repeated 

the experiments in 53 so-called landmark papers, but were only able to confirm the results of 11% of them, 

causing a shock in the scientific community. The excessive pursuit of positive results has made many new 

scientific research achievements and discoveries considered false positives and cannot be confirmed by 

repeated experiments. According to a survey sponsored by Nature, more than 70% of the researchers said they 

had been unable to replicate the experiments of other groups; more than 50% of the researchers said that they 

could not replicate their own experiments; 52% of the investigators believed that there were significant 

experimental reproducibility crisis. Most researchers indicated that they had failed repeated experiments 

(Baker, 2016a, b). The problems of reproducibility crisis in scientific research and academic misconducts are 

due in part to the misuse and abuse of statistical methods, as well as problems with experimental design and 

sampling design. 

  In 2021, Nature pointed out that researchers, research funders and publishers must take reproducibility more 

seriously (Nature Editorial, 2021). Consider the horrific sight that two-thirds or more of the scientific findings 

published in the past cannot be replicated. Errington proposed to elevate reproducibility to the same level as 

research novelty, reiterating that reproducibility is an important feature of scientific research (Errington et al., 

2021; Zhang, 2022). Strictly speaking, non-reproducible research results are false or spurious, or at least moot. 

Not only do they waste resources, they are not beneficial to science, but more importantly, they harm science 

by being cited and supported. We should not rest assured that we are not required to repeat the verification, but 

should face the reality and act consciously to change the scientific research paradigm. Therefore, attaching 

importance to experimental design and sampling design, as well as the correct application of statistical 

methods, etc., are urgent issues that the majority of researchers must face. In addition, in addition to writing, 

publishing and adopting new statistical works and teaching materials as soon as possible, it is imperative to 

revise and distribute various statistical software in new editions based on new statistics for use. 
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