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Abstract 

We analyzed the features of the COVID-19 outbreak with temporal delay and stochastic influence using the 

SIRS epidemic model in this study. We investigate the local stability of each equilibrium point in terms of 

basic reproduction numbers. Hopf bifurcation is detected in the system, and a time delay is inserted in the 

transmission terms to represent the virus's incubation period. The spread of the novel COVID-19 strain to 

humans is influenced by environmental conditions such as mugginess, precipitation, and temperature. To 

explore the impact of environmental oscillations on the coronavirus, we employ white noise perturbations in 

the system. Finally, we examine the mathematical reenactments using MATLAB. 
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1 Introduction 

COVID-19, a fast spreading coronavirus disease, has become a global emergency. This contagious disease is 

rapidly spreading, endangering the lives of many people. As a result, timely interventions and thorough 

examinations are likely to keep the disease at bay in networks (Hui et al., 2020). The COVID-19 pollution 

manifests itself as COVID-19. Hacking, fever, tiredness, loose bowels, and windedness are all symptoms. 

COVID-19 typically causes pneumonia and, in severe cases, death (WHO, 2020). COVID-19 has a hatching 

time of 3–14 days or longer, according to the essential investigations (WHO-China, 2020). Due to various 

applications of fractional calculus, stochastic modelling and bifurcation analysis (Xu et al., 2017, 2019; Xu et 

al., 2019a; Xu et al., 2020b; Abdon, 2017, 2018, 2020; Shah et al., 2020), several analysts analyzed this 

COVID-19 in many models in full and partial requests (Nesteruk, 2020; Okhuese, 2020; Zhou et al., 2020; 

Bogoch et al., 2020; Ji et al., 2020; Li et al., 2020; Yousaf et al., 2020; Ud Din et al., 2020; Cakan, 2020; 

Abdo et al., 2020; Khan et al., 2020; Zeb et al., 2020). A few creators considered stochastic models by giving 

repetitive noises for the more practical models (Tornatore et al., 2005). To be honest, stochastic nuisance 
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elements such as precipitation, total moisture, and temperature have a major impact on the contamination 

capacity of a wide range of infectious diseases in humans. Thinking about this allows us to bring irregularity 

into deterministic natural models in order to uncover the impact of ecological changeability, whether it's 

ecological vacillations in borders or arbitrary commotion in differential frameworks (Yang et al., 2013; 

Lahrouz et al., 2014; Liu et al., 2018; Zhao et al., 2019; Wei et al., 2020). Several authors (Bahar et al., 2004; 

Mao et al., 2003, 2005) have focused on stochastic population elements bothered by repeating sound in 

general (Brownian movement). 

Using a SIRS epidemic model, we analyzed the dynamics of COVID-19 infection among groups in this 

study. The incubation period of an infection is referred to as a time delay in the transmission terminology 

(Zhang et al., 2020). The effects of environmental variations and parameter variability are also shown using 

environmental variations and parameter variability. A synopsis of the paper is as follows: We present a 

stochastic SIRS model with a time delay in Section 1. Section 2 looked into the stability of each equilibrium 

point. In Section 3, the model's existence of Hopf bifurcation was investigated. We looked at the stochastic 

stability of the recommended model in Section 4. Several numerical examples are included in Section 5. 

Finally, there are some final remarks in Section 6. 

Let us assume that a human population is divided into three classes: Susceptible, Infected and Recovered 

(Zhang et al., 2020). The sizes of these groups are represented by S(t), I(t) and R(t) respectively. All 

recruitment is into the susceptible class, and occurs at a constant rate b. Let is natural death rate and d is 

disease induced death rate. Let us assume the susceptible is infected through virus and soon certain 

individuals became infected. Here, we use nonlinear satu-ration incidence rate SI a I   where I
measures the infection force of the disease and 1 a I  measures the inhabitation effect/crowding effect. 

a and are certain constants. Considering r  as recovery rate of infected human population through 

medication and quarantine and  as rate of transfer from Recovered to susceptible class we formulate the 

following model (Fig. 1): 

     ( )

( )

SI
S b S R

a I
SI

I r d I
a I

R rI R

  




 

   


  


  







                   (1) 

where      0 0, 0 0, 0 0S I R   . 

 

Fig. 1 Flow chart of SIRS model (1). 
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2 Equilibrium Points and Their Stability Analysis 

The equilibrium points of the system (1) are given by i) disease free equilibrium point or corona virus free 

equilibrium point  0 ,0,0bE   and ii) Endemic equilibrium point  * * *
0 , ,E S I R , where

  * *1
S r d a I


   ,  

   
   

*
b a r d

I
r d d

   
     

    
     

 and 
*rI

 
. Clearly endemic equilibrium point exist when 0 1R  , 

where the basic reproduction number
 0

b
R

a r d







.                  (2) 

The system (1)'s asymptotic stability is explored further down. 

2.1 At the disease-free equilibrium point, (1) is stable 

Theorem 1: The Disease free equilibrium is asymptotically stable if 0 1R  . 

Proof: The system's Jacobian matrix at disease-free equilibrium is defined as 

 

   

 

0 0 0

0

b

a

b
J r d

a

r

 





 

   
 
    
 

  
  

                            (3) 

The above matrix's characteristic equation is 

       0
b

r d
a

     


  
          

  
 

Thus the eigenvalues are    1 2 3, ,
b

r d
a

     


         

Here, first two eigenvalues are negative and third eigenvalue 3  is negative if 
 

1
b

a r d







i.e., 0 1R  . 

As a result, the asymptotically stable disease-free equilibrium point exists. 

2.2 Stability of (1) at endemic equilibrium point 

Theorem 2: The Endemic equilibrium is asymptotically stable if 0 1R  . 

Proof: At the disease-free equilibrium point, the Jacobian matrix of the system is defined as 
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 

 
 

* *

2* *

* * *

1 2* *
0

0

I a S

a I a I

I S I
J

a I a I

r

  
 

 
 

 

 
     
 
     
  
 
  

                   (4) 

The above matrix's characteristic equation is 

3 2
1 2 3 0L L L       

Where 
 

 
* *

1 2* *

I a S
L

a I a I

    
 

    
 

 

 
 

 
   

 
* * *2 * *2 2 * *

2 3 2 3** * *

2S I Ia S I a S I
L

a Ia I a I a I

        
  

 
     

  
 

 
     

* 2 * *2 * * 2 * *

3 3 2 3* * * *

r I S I S I a S I
L

a I a I a I a I

    
   

 
      
     

 

Clearly 1 2, 0L L   and simplifying 3L then 

 
      2* *

3 3*

1
L a I I r d d r d

a I
      


         

 

Therefore, 1 2 3 0, and 0if 1L L L R  . To show the stability of endemic equilibrium next we have to show 

that 1 2 3- 0L L L  . 

Where 

 

 
 

 
   

 

   
 

   

* *

1 2 3 2* *

* * *2 * *2 2 * *

3 2 3** * *

* * * *

2 * **

-

2

0

I a S
L L L

a I a I

S I Ia S I a S I

a Ia I a I a I

S I I r I

a I a Ia I

  
 

        
  

          
 

 
   
   

       
    

         
   

 

Therefore 1 2 3- 0L L L   if 0 1R  . Hence by Routh-Hurwitz criteria endemic equilibrium point is 

asymptotically stable if 0 1R  . 
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3 Stability Analysis with Time Delay  

To replicate the incubation period of 3–14 days, we use a discrete time delay in the SIRS model (Grifoni et al., 

2020). In transmission terms, time-delay 0   refers to the time between the commencement of the disease 

and the onset of the side effects, as well as the time between the onset of the disease and the onset of the side 

effects. According to current research, early verified COVID-19 cases have an incubation time of about 5.5 

days, which is similar to SARS-CoV. When time-delay is present in the model, intermittent setups are 

common for various time-delay values  (Bocharov et al., 2000). As a result, the following is a new 

formulation of the model: 

 

     

  

 
 

 
 

( )

( )

SI t
S b S R

a I t

SI t
I r d I

a I t

R rI R

 
 

 

 
 

 


   

 


  

 

  







                    (5) 

We now discuss Hopf bifurcation aspects into the system5. 

Theorem 3: Hopf bifurcation occurs in system (5) at the endemic equilibrium point when 0  . 

Proof: The above system's Jacobian matrix is                     

                                     

 

 
 

 

* *

2* *

* * *
*

2* *
0

0

I a S e

a I a I

I S I e
J r d

a I a I

r





  
 

 
 

 





 
     
 
       
  
 
  

 

The Jacobian matrix's characteristic equation is as follows: 

 3 2 2
1 2 3 1 2 3 0H H H e M M M                            (6) 

Where    
*

1 *

I
H r d

a I

   


     


 

            
* *

2 **

I I
H r d r d r d

a Ia I

        


          


 

       
* *

3 **

I I
H r d r d r

a Ia I

      


      


 

 
 

   
 

 
* ** *

1 2 32 2 2 2* * * *
, ,

a S a Sa S a S
M M M

a I a I a I a I

        

   

 
      

   
 

If a latent roots of the equation (6) crosses the imaginary axis then instability occurs for a critical value of 
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0  . We have from corollary 4 in (Ruan and Wei, 2003).  

Substituting i   into (6) gives   

 
  

2 2
1 3 3 1 2

3 2
2 2 1 3

cos sin

cos sin 0

H H M M M

i H M M M

    

     

    

                      (7) 

Comparing real and imaginary parts, we obtain 

 
 

2 2
3 1 2 1 3

2 3
2 3 1 2

cos sin

cos sin

M M M H H

M M M H

    

     

   

   
                   (8) 

Squaring and adding above two equations  

     6 2 2 4 2 2 2 2 2
1 2 1 2 1 3 1 3 2 3 32 2 2 0H H M H H H M M M H M                       (9) 

Let 2z  then (9) becomes 

3 2
1 2 3 0z C z C z C                           (10) 

Where 2 2 2 2 2 2
1 1 2 1 2 2 1 3 1 3 2 3 3 32 ; 2 2 ; ;C H H M C H H H M M M C H M          

Let   3 2
1 2 3z z C z C z C      and  lim

z
z


  , 3 0C  , equation (10) can have at least one positive 

root. Without loss of generality, assume that equation (10) has all roots as positive. Therefore, the three 

positive roots of (9) are given by 

1 1 2 2 3 3, ,z z z      

From (8) , we obtain 0 , which is the minimum of , 1, 2,3k k   and from this we get the roots ki  of 

the equation (6). 

The next step is to prove that at endemic equilibrium, the system (5) goes through Hopf bifurcation when 

0  . 

Differentiating (6) with respect to  , we get 

   
1 2 2

1 2 1 2
2 2

1 2 3 1 2 3

3 2 2H H M Md

d M M M e M M M

   
      





            
 

Substituting 0i   and from (8), we get 

 
0

4 2 2 2 2 21
0 2 1 1 0 2 2 1 3

2 2
1 2

3 2 2 2
Re

i

H H M H M M Md

d
 

 
  





          
 

Where    2 2 2 2
1 3 1 0 0 2 0 0 2 2 0 0 3 1 0 0sin cos ; sin cosM M M M M M                    

then    
0

1
2 2 2 2

2 1 1 2 2 1 3Re 0 2 3 2
i

d
if H H M H M M M

d
 








        
 
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Hence the system (5) go through the Hopf bifurcation at endemic equilibrium when 0   (Hale, 1977, and 

Kuang, 1993). 

 

4 Stochastic Analysis with External Driving Force  

In this part, we use white noise theory to present the system's external disturbances (1). At the positive 

equilibrium point, these findings are discussed. To discuss the stability of the stochastic system, we consider 

the linearized model with the perturbations 1 2 3, andx x x . The system's stochastic stability was determined 

using mean-square fluctuations. The stochastic perturbed system is given 

 1 1

( )
( )

dS t SI
b S R dt p t

dt a I

   


                             (11)

 

2 2

( )
( ) ( )

dI t SI
r d I dt p t

dt a I

 


      
 

  3 3

( )
( ) ( )

dR t
rI R dt p t

dt
       

Linearizing above system with the perturbations 1 2 3( ), ( ) ( )x t x t and x t   

i.e., using * * *
1 2 2, andS x S I x I R x R       we get 

 

*1
2 1 1

( )
( )

dx t
x S p t

dt a

   
                       (12)

 

 

*2
1 2 2

( )
( )

dx t
x I p t

dt a

    

3
3 2

( )
( )

dx t
p t

dt
  

Applying Fourier transforms both sides and we obtain, 

*
1 1 1 2( ) ( ) ( )p t i x S x

a

       

   *
2 2 1 2( )p t I x i x

a

        

 3 2 3( )p t i x     

The matrix form of above system is given by 

     M X                             

(13) 
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and denoting the elements of  M   are 11 12 13 21 22 23 31 32 33, , , , , , , &m m m m m m m m m (row wise) then                

 
11 12 13

21 22 23

31 32 33

m m m

M m m m

m m m


 
   
  

 where 

 
1 1

2 2

3 3

( )

( )

( )

p t

p t

p t


 


 
   
  

 
;  

1

2

3

( )

( )

( )

x

xX

x





 
   
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Here  M   is non-singular matrix then inverse of this matrix exist, therefore from (13) 

         1X M N                                    (14) 
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Now from the spectral density, we define 
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where  g t a random function with is mean zero and  gS   represents the variance of the elements of 

 g t  within the interval , d   . 

The inverse transform of  gS   is the auto covariance function is given by 
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and the variance function  g t
 

is given by 
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From (14), the mean value of the population is  
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The fluctuations of  1,2,3ix i   are given by 
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Therefore, from above variances and from system (11), we can find 
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The outcomes in (15) gives the variances of the system (11) populations x and y. For the most part, to discover 

these integrals it is troublesome. In this manner, by utilizing mathematical reenactments we can clarify these 

outcomes without any problem. Taking distinctive boundary esteems and for the some delay we can figure 

difference and this is little then the relating populace is steady, in any case unstable.  

 

5 Computer Simulation 

Using MATLAB, numerical simulations are given to validate our theoretical results. 

Example 1. For the model system (1) we explore that the disease free equilibrium exists and is asymptotically 

stable (left figure in Fig. 2) when the transmission rate 0.1   along with other parameters value:

1, 3, 1, 0.1, 0.9, 0.81, 0.01b a r d          and in this case the basic reproduction rate

0 0.41 1R   . If the transmission rate 0.9   and keeping all other parameter values remain same then 
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endemic equilibrium is exist and is asymptotically stable (right figure in Fig. 2). In this case the basic 

reproduction rate 0 3.66 1R   .  

 

Fig. 2 Phase portrait of the system (1) with transmission rate 0.1   (left figure) and 0.9  (right figure). 

 

Example 2. We observe that the endemic equilibrium is initially stable with small incubation period of virus 

whereas Hopf bifurcation occurs into the system through appearance of limit cycle i.e. endemic equilibrium is 

unstable for greater value of incubation period.  

 
Fig. 3 Phase portrait of the system (5) with time delay .8  (left figure) and .88  (right figure) with 

1; 0.9, 3; 1; 0.1; 0.9; 0.81; 0.01b a r d            

 

129



Network Biology, 2022, 12(3): 120-132 

 IAEES                                                                                     www.iaees.org  

Example 3. With the high intensities of white noise perturbations we observe that in the model system (11) the 

endemic equilibrium point ultimately becomes stable although oscillates initially with high amplitude for the 

parameter values: 1, 3, 1, 0.1, 0.9, 0.81, 0.01b a r d         . This indicates that the disease is 

under controlled with the long run in spite of environmental fluctuations.   

  

Fig. 4 Phase portrait of the system (11) with transmission rate 0.9   and white noises 
1 2 30.4, 0.7, 0.9     . 

 

 

6 Discussion with Concluding Remarks   

We propose a SIRS epidemic model to represent the COVID-19 pandemic in this paper, and we investigate the 

dynamics of the corona virus under time delay and stochasticity. The model has two equilibrium points: 

disease free equilibrium and endemic equilibrium, we observe that disease free equilibrium is locally 

asymptotically stable if 0 1R   while endemic equilibrium is locally asymptotically stable if 0 1R  (Fig. 2).    

The presence of Hopf bifurcation was studied by including a time delay in the transmission terms to represent 

the virus's incubation period. According to the numerical simulations in Fig. 3, as the virus's incubation period 

lengthens, periodic outbreaks develop in the system, implying that re-disease and intermittent episodes can 

occur in the presence of time-delay. Furthermore, by integrating white noise perturbations into the system, we 

examine the stochastic stability of the system, and our findings reveal that with large white noise intensities, 

the populations give birth to radically intractable oscillations (Fig. 4). This suggests that white noise is vital in 

preventing the sickness from spreading. 

In summary, the stochastic SIRS model is an attempt to appreciate the epidemiological properties of 

COVID-19 in this article, and the model analysis provides a few new perspectives into epidemiological 

situations when natural commotion and time-delay are taken into account. 
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