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Abstract

Glycolysis model has been considered by Caputo fractional derivative. We give the topological classifications
of fixed points of this model. Then, we show analytically that under certain parametric conditions fractional
order glycolysis model underlies a Neimark-Sacker (NS) bifurcation and Flip bifurctaion. By using central
manifold and bifurcation theory, we confirm the existence and direction of both NS and Flip bifurcations. To
reinforce our analytical findings, we perform numerical simulations that include bifurcations, phase portraits,
periodic orbits, invariant closed cycles, abrupt emergence of chaos and abrupt elimination of chaos. At the
end, OGY method is applied to eliminate chaotic trajectories of the system.
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1 Introduction

Fractional calculus is a 17th century mathematical concept. However, it may be deemed a novel study topic.
In fact, the model has fractional derivatives, which has made significant progress in the study of mathematical
modeling with memory effect. Fractional-order differential equations can be successfully described in a
variety of domains, including science, engineering, finance, economics, and epidemiology (Magin et al,. 2011;
Huang et al., 2017, 2018). The order of differentiation in the transition of an integer-order model to a
fractional-order model must be precise, and a little modification in order of differentiation « could have a
significant impact on the ultimate outcome (Bagley and Calico, 1991). There are numerous techniques when
attempting to apply the concept of differentiation to arbitrary order. The most popular definitions are those of
Riemann-Liouville, Caputo, and Griinwald-Letnikov (Podlubny, 1999).

In addition to these definitions, several more strategies are being investigated by applied mathematicians.
Researchers are looking for the most effective technique including some numerical methods (Jafari and
Daftardar-Gejji, 2006; Ameen and Novati, 2017; Momani and Odibat, 2007) while building or modifying their
models. The bifurcation of a system in a fractional differential equation has drawn the attention of many
scholars, who have thoroughly examined this phenomenon (Elsadany and Matouk, 2015; Balci et al., 2019,
2021; Abdelaziz et al., 2018).

TIAEES www.iaees.org



Network Biology, 2022, 12(4): 142-159 143

In many discrete systems, the bifurcations (Neimark-Sacker and flip) and stable orbits as well as chaotic
attractors attract a great interest, these phenomena can be determined either numerically or by normal form and
center manifold theory (Khan and Khalique, 2020; Rana, 2020; Khan et al., 2022).

The metabolic process of converting glucose to pyruvate is known as glycolysis, and during this process,
two molecules of pyruvate are normally produced for every molecule of glucose. Glycolysis is a biological
activity that occurs in living cells and allows them to obtain energy from glucose and the following
differential system can be used to simulate this biological process (Selkov, 1968) and the non-dimensional
form of hypothetical glycolysis model is given below.

X =ay—x+x%y
y=b—ay—x% (1)

where x and y are the amounts of adenosine diphosphate (ADP) and fructose-6-phospate (in dimensionless
forms), and a and b are kinetics parameter. The requirements for both forms of instabilities are described,
and the occurrence of a temporal structure containing limit cycle behavior is numerically determined as a
function of the system's essential factors (Goldbeter and Lefever, 1972). The more detailed analysis of
glycolysis model was discussed in (Goldbeter and Lefever, 1972; Decroly and Goldbeter, 1982; Wolf et al.,
2000; Wei et al., 2015).

The fractional order glycolysis model is given as follows

D% (t) = ay(t) — x(t) + x*(®)y(t)
D*y(t) = b — ay(t) — x*(t)y(t) (2)

where t > 0, and «a is the fractional order which satisfy a € (0,1]. There are a lot of approaches for
discretizesuch kind of system. One of these is the piecewise constant approximation. The model is discretized
by using this method. The process is given as follows:

Let the initial conditions of system (1) are x(0) = x,,y(0) = y,. The discretized version of system (2)
is given as

pex(t) = ay([7]0) - x([7] o) + >0 E10)
py() = b—ay ([Z] p) - (10 (]p) 3)

First, lett € [0, p), so% € [0,1). Thus, we obtain
Dx(t) = ays — xo + %o Yo
Dy (t) = b — ayo — %°o “)
The solution of (4) is reduced to
x1 () = xo +J%(ayo — %o + %0%Y0) = %o + a;—(l)(a% — X + %0%¥0)

ta

y1(8) = yo +J%(b — ayo — x%o°¥o) = Yo + @ (b — ayo — x0*¥0) )

Second, let t € [p, 2p), so % € [1,2). Then
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D% (t) = ay; — x1 + %1%y,
D% (t) = b — ay; — %1%y, (6)

which have the following solution

x,(t) = x,(p) +]S‘ (ay, — x1 + x:%y1)

= x,(p) + ar(a) (alh X1+ x1ZJ’1)
y2(t) = y1(p) +J§ (b — ay; — x1%y1)

% (b — ay; — x1%y,) 7

f (t — 1) 1dr, @ > 0. Repeat the discretization process n times, we obtain

=x1(p) +

where |4 P =T

X1 (6) = 20 (m0) + S (ayn (np) — 0 (1p) + X (m0)y (m0))

(t-np)“
al'(a)

where t € [np,(n + 1)p). For t - (n + 1)p, system (8) reduced to

Yni1(0) = ya(mp) + —2— (b — ay,(np) — x,2(np)yn(np)) (8)

o<
Xpy1 = Xp T m(ayn —Xp + anYn)

a

Yne1 = Y+ # (b = ay, = xn’yn) )

The remaining part of this paper is organized as follows: The topological divisions of fixed points are
examined in Sect. 2. In Sect.3, we demonstrate analytically that the system (9) experiences a Flip or NS
bifurcation under a certain parametric condition. In Sect.4, to support our analytical conclusions, we exhibit
system dynamics quantitatively, including bifurcation diagrams, phase portraits, MLEs and FDs. In Sect.5,
we implement a OGY method to calm the turbulence of the unmanaged system. In Sect.6, we give a succinct
discussion.

2 Stability Analysis

which always exist for all

The system (9) has a unique fixed point E(x*,y*), where x* = b and y* = asz

permissible parameter values.

The Jacobian matrix of system (9) evaluated at E(x*,y*) are

(1+ (=1+2x'y *) Py (k' a)2

. r(1+ r(1+

JG',y) = (e Lo (10)

—2xy" F(1+a) - (" +a) I‘(1+a)
Now the Jacobian matrix at E (b, #) is given by
(-a+b*) p“ 2y P%
a+b? T(1+a) (a ) F(1+a)
Jp = o ; (11)
T a+b?T(1+a) (1-(a+b%) 1"(1+a))

The characteristic polynomial of the Jacobian matrix can be written as

F(A) =22 =Tr(Jg)A+ Det(Jg) =0 (12)
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where Tr(Jg) isthe trace and Det( Jg) is the determinant of the Jacobian matrix Jg, and is given by

p
a+ bz)) 'i+a

a

Tr(Jg) = 2+<—1—a—|—b2(—1+

2

20 (2 2nh2—gah?_ph) PE 2 2, 4
a+b*+(—a*-2ab“-a+b“—-b )Fu+u)+(a +2ab“+b )(

a+b?

Det(Jy) = ) (13)

Tr(Je) (1) -aDet )
> :
Jury Criterion: The stability condition for the equilibrium point E(x*,y*) is given as follows F(1) >

0,F(-1)>0,F(0)—-1<0.

The eigenvalues of (12) can be written as A, , =

1
A +VI\a _
A—1) —pi,LZO.

Let, PDg =1{(a,b,p,a):p = (F(l + a).
where,
A, = a? + 2ab? + b*
A, = a+a?—b%+ 2ab? + b*
As = 4a + 4b?
L=A%—A; %A,

Then the system (9) experience a flip bifurcation at E when parameters (a, b, p, @) vary in a small
vicinity of PDy.

Also let

1

Ao\«
NSg = {(a, b,p,a):p = <F(1 + a)'A_2> = pns, L < O}
1

Then the system (9) experiences a NS bifurcation at £ when parameters (a, b, p, @) change around the
set NSg.

We give the following Lemma for the stability condition of the fixed point E.
Lemma 1. For any choice of parameter values, the fixed point E is a

- sinkif (i) L =0,p < p_(stable node),

(i) L <0,p < pys(stable focus),
- source (i) L =0,p < p,(unstable node),
(i) L <0,p > pys(unstable focus),
- non-hyperbolic (i) L = 0,p = p_ or p = p,(saddle with flip),
(ii) L <0,p = pys( focus),
- saddle: otherwise

3 Bifurcation Analysis

In this section, we will discuss the existence, direction and stability analysis of flip and NS bifurcations near
the fixed point E by using center-manifold and bifurcation theory (Kuznetsov, 2013; Wen, 2005; Yao, 2012).
We consider p as the bifurcation parameter, otherwise stated.

3.1 Flip bifurcation

We choose the parameters (a, b, p, @) arbitrarily locate in PDg. Consider the system (9) at the equilibrium

point E(x*,y*). Assume the parameters lie in PDg.
1

A,—VL\a

= ) =pL20.

Let, p = (F(l + a).
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And the eigenvalues of J; are given as
Ay =-1and 1, =3+ A4,p_
In order for |A,| # 1 implies A,p_ # —2,—4 (14)
Next, we use the transformation £ = x —x*,9 =y —y*and set A(p_) = J(x* v*). We shift the fixed
point of system (9) to the origin. So the system (9) can be written as
x X Fi(%,9,p-
(5)= 40 () + (e 5p0) (>
where X = (£,9)7 and

1 1
R(®9.p) = 7 29(4; = VD) + 222b(d V) + 74295 (4; - V)|

17 1
A leraE
Fy3,9,p.) = == 29(4, — VL) + [ 22%b(4, — V) - - 429b(4, - V)| a6

The system (15) can be expressed as
1 1
Xn+1 = AXn + EB(XTUXTL) + EC(anXn:Xn) + 0(||Xn||4)

Bi(x,y)

C ) ) . . . .
where B(x,y) = < ) and C(x,y,v) = ( 106y v)) are symmetric multi-linear vector functions

B,(x,y C(x,y,v)
of x,y,v € R? and defined as follows:
2
85%F; (g, p) 1
Bi(x,y) = ' W XYk = mZb(xz}ﬁ(a +b2) +x,(y; + ya(a+ bz)))(Az - \/Z)
1K= e=0
2\ S2F (g, p) 1
B,(x,y) = 62—’ XjVi = — 7553 2b(xy1(a + b?) + x;(y1 + y2(a + bz)))(Az - \/Z)
. gbey (a+b?)
Jk=1 e=0
and

62F1 (E, p) 1
Ci(x,y,v) = Z W XYV = mz(z‘lz — VL) (vox1y1 + V121 + V1X1Y3)
Jk,1=1 _
£=0
62F1 (E, p) 1
C(x,y,v) = | W XYV = —mz(z‘lz — VL) (vox1y1 + V121 + V1X1Y3)
Jk,1=1 £=0
Let, q;,q, € R? be two eigenvectors of A and AT for eigenvalue A,(p_) = —1 such that A(p_)q, =

—q, and A" (p_)q; = — 4.
Then by direct calculation we get,

(A;(a — a? + 3b%? — 2ab? — b* + VL))

41 = (2b2(4, — VL)) = (qil)
1
(A;(a — a? + 3b? — 2ab? — b* + 1)) .
Q@ = (2b2(4, — VL)) = ( il)
1

In order to get, < qy,q, > 1, where < qy,q, > = q11921 + q12922, We have to use the normalized

1
14411921

vector q, = Yr(qy, With yp =
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To obtain the direction of the flip bifurcation, we have to check the sign of I;(p_), the coefficient of
critical normal form (Kuzenetsov, 1998) and is given by

1 1 _
Li(p-) = 5 <42 C(q1,91,q1) > —5 < 42, B(q2, (A—D7'B(q1,q1)) > (17)

According to above discussion, the direction and stability of Flip bifurcation can be presented in the
following theorem

Theorem 1. Suppose (14) holds and [;(p_) # 0, then Flip bifurcation at fixed point E(x*,y*) for
system (9)

if the p changes its value in small neighbourhood of PDg. Moreover, if 1;(p_) < 0 (resp. I;(p_) > 0),
then

there exists attracting (resp. repelling) smooth closed invariant curve bifurcate from E(x* y*) and the
bifurcationis sub-critical (resp. super-critical).
3.2 Neimark-Sacker bifurcation
When L < 0 and the parameters (a, b, p, @) € NSg, then the eigenvalues of system (12) are given by

ﬂ,/i _ TrUp)ty 4D€2f(]E)—TT(]E)2

(18)

Let, p = pys = (F(l + 0().:;12);

Moreover, the transversality and non-resonance conditions yield
d|2;(p)] _ 24,

3 %0

p=pPNs 3
443
—(TrUe)lp=pys 0=

A143

* 2,3 (19)

Using the transformation £ = x —x*,§ =y —y*tand set A(p) = J(x*,y*). We shift the fixed point
of system (9) to the origin. So the system (9) can be written as

X =A()X +F (20)
where X = (£,9)T and F = (F,F,)T are given by

A Ay, 1 1 2 1
Fi&9,pns) = 32229+ 5| g 220 (4a) + - 429b(40)|

N Ay ann 1 1 “ 1 .
F,(X,9,pns) = —A_szy - 5[(a+b2)3 szb(Az) +A—14xyb(A2)] (2D

The system (20) can be expressed as
1 1
Xn+1 = AXn + EB(XTU Xn) + g C(an an Xn) + 0(||Xn||4)

Ci(x,y,v)
C(x,y,v)

By (x,y) _
L?lz(x,y) and C(x,y,v) —(

of x,y,v € R? and defined as follows:

where B(x,y) = < ) are symmetric multi-linear vector functions

2
85%F; (g, p) 1
Bl = ) goma| = @y pmp b0 (@t b)) 100+ yala + b)) (Ay)
Jk=1 =0
2\ S2F (g, p) 1
Bo) = ) S5 = — gy 2@t b 5 0n + (et DA
Jk=1 =0
and

TIAEES Www.iaees.org



148 Network Biology, 2022, 12(4): 142-159

62F1(gi p) 1
Ci(x,y,v) = | W XjYxVy = mz(/lz)(vzxﬂﬁ + V1X2Y1 + V1X1Y7)
Jk1=1 £=0
62F1(gi p) 1
C(x,y,v) = ;lw XjYxVy = —mz(z‘lz)(vzxﬂﬁ + V1X2Y1 + V1X1Y32)
JRt= =0

Suppose, q;,q, € C? be two eigenvectors of A and AT for eigenvalue A(pys), A(pys) such that

A(pns)q1 = AMpns)q1, Alpns)qr = Z(pws)ﬁ
AT(PNS)QZ = /T(pNS)CIZ' AT(pNS)% = AMpns)q2 (22)

Then by direct calculation, we get

2+ b?%+b* -1+ 2b?) —+/L .
. _a?+b?+b* +a(=1+2b*) —VL =(771+1772)
1 4b? 1
1
_ a?+b*+b*+a(-1+2b?) _ —/-L
where 7, = 4D2 M2 =73
a?+ b2+ b*+a(-1+2b%) ++L .
_ _ (Y91 + 10,
92 = 24, - ( 1 )
1
2 2 _ 2 /=
where 9, = a?+b2+b*+a(-1+2b ); 9, = V=L
244 244

For < q4,q, > 1, where < qq,q; > = 11921 + q12922,We have to use the normalized vector g, =

1
1=(91+i92) (M1 —in2)’

YnsQz, With yyg =

So the eigenvectors are computed as follows:
_ (M tin
q1 = ( 1 )
9, + 09,

1= + i) (01 — i)
q2 1

1= +0)(n1 — inz)
We decompose X € R? as X = zq, + Zq; by considering p vary near to pys and for z € C. The

explicit formula of z is z = (g,, X). So, the system (9) transformed to the following system for |p| close to

Pns:
z- Ap)z+ §(z2p) (23)
where A(p) = (1 + ¢(p))e'®? with p(pys) =0 and §(z,Z, p)is a smooth complex-valued function.

After Taylor expression of g with respectto (z,z), we obtain

A= 1 _ oy~
9(z,z,p) = Zk+122mgkl(p)zk2 Y, with gi € Gk, 1 =01, ..

According to multilinear symmetric vector functions, the coefficients gy; are

G20(pns) = a2, B(q1,91)), 911 (pns) = (a2, B(q1,q1))

TIAEES Www.iaees.org



Network Biology, 2022, 12(4): 142-159 149

9oz(pns) = (q2,B(q1,q1)), 921(pns) = (42, C(q1, 41, G1)) (24)
The sign of first Lyapunov coefficient [,(pys) determines the direction of NS bifurcation and is defined

by

L (pns) = Re (B22) — Re (A2 Tl _ 1 g2 2 | g 2 (25)

We give the following theorem regarding the direction and stability of the Neimark-Sacker bifurcation in
light of the aforementioned study.

Theorem 2. Suppose (19) holds and 1, (pys) # 0, then NS bifurcation at fixed point E(x*,y*) for system
)

if the p changes its value in small neighbourhood of NSg. Moreover, if 1,(pys) < 0 (resp. I,(pys) >
0), then there exists attracting (resp. repelling) smooth closed invariant curve bifurcate from E(x*,y*) and
the bifurcation is sub-critical (resp. super-critical).

4 Numerical Simulations
We will use numerical simulations to support our theoretical conclusions for system (9) in this part, which
will include diagrams of bifurcation, phase portraits, MLEs and FDs.

Example 1: We choose the values of the parameters as a = 2.05,b = 1.61,a = 0.5896 and ,p varies
in the range 0.38 < p < 0.78. We find a fixed point E(x* y*) = (1.61,0.346826) and the bifurcation
point for the system (9) is pr = 0.4255. The eigenvalues are A4, , = —1,—0.0641301. The corresponding
eigenvectors are

q1~(—0.834056,0.551679)Tand q,~(0.341808,0.93977)T

For < q4,q, > = 1, then we can take the normalized factor y; = 4.28515.

From (17), we get l;(p_) = 0.579167 > 0. Therefore, the Flip bifurcation is sub-critical and the
requirements of Theorem 1 is fulfilled.

We can observe from Fig. 1(a-b) that fixed point stability occurs for p < pg, loses its stability at p = pp,
and a period doubling phenomenon leads to chaos for p > pp. Fig. 1(c-d) shown MLEs and FD related to
Fig. 1(a-b). We note the occurrence of the period -2, -4, -8, and -16 orbits and chaotic set for different values
of p. The status of stable, periodic, or chaotic dynamics are compatible with sign in Fig. 1 (c-d), as defined
by the Maximum Lyapunov Exponent. The phase portrait of bifurcations diagrams corresponding to Fig. 1
for different values of p € [0.38,0.78] depicted in Fig. 2.

(a) (b)
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Fig. 1 Flip Bifurcation diagram with a = 2.05,b = 1.61,a = 0.4255,p € [0.38,0.78 ] (xo, o) = (1.61,0.346826) in (a)
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(m) (n) (0) (p)

Fig. 2 Phase portrait for different values of p corresponding to Fig. 1. Red * indicates the fixed point.

Example 2: We choose the values of the parameters as a = 0.2,b = 0.9,a = 0.5896 and ,p varies in
the range 0.13 < p < 0.378. We see an NS bifurcation at the fixed point E(x*, y*) = (0.9,0.891089) and
the critical value of the bifurcation point for the system (9) is pys = 0.1758. The eigenvalues are 1,1 =
0.91837 £+ 0.395752i.

And,
d|A; 24
| é(p)l =22 -0.20302#0
p P=PNS 3
443
~(TrUeNlp=pys # 0= 7—— = 0163236 # 2,3

143
The corresponding eigenvectors are

q1~(—0.394109 — 0.480692i,0.783335)Tand q,~(0.78335,—0.394109 + 0.480692i)7

For < qq,q, > = 1, then we can take the normalized factor yy¢ = —0.132787i.

Also,

J20 = 0.461251 — 0.0844134i
J11 = 0.108504 — 0.0878579i
Jo» = 0.178502 — 0.433607i
J21 = —0.390766 — 0.277891i

From(25) we get l,(pys) = —0.215105 < 0. Therefore, the NS bifurcation is super-critical and the
requirements of Theorem 2 are fulfilled.

We can observe from the bifurcation diagrams in Fig. 3(a-b) that fixed point stability occurs for p < pys,
loses its stability at p = pys, and an attracting invariant curve appears for p > pys. The MLEs and FD
shown in Fig 3(c-d) corresponding to Fig. 3(a-b), which substantiate the existence of chaos and the period-10,
-11, and -22 as p varies. The phase portrait of bifurcation diagrams corresponding to Fig. 3 for different
values of p € [0.13,0.37] depicted in Fig. 4, which demonstrates the smooth invariant curve's behavior in
detail, showing how it splits from the stable fixed point and grows in radius.

IAEES WwWw.iaees.org



152 Network Biology, 2022, 12(4): 142-159

175

125

075k

0sH
013 X . . . } X 013 016 019 022 025 028 03 0.34 0.37
»
(a) (b)
0.04 ! 178
Il
o.01 . | llI, ] 15k
i A7 e f.ar"‘l,r.J.l
[ |,||'.
g0z | {1 4 125+ Y il
|
| ]
5 v " | | |
005} 4 3 1 3 L e ‘
| g ‘
g 3
008 Foms i
0.1 ]
05 1
0.14 1 ‘ ‘ |
f 025 J
r‘
017
- - - - - Il i 1 i ! 1
013 016 0.13 0.22 025 028 031 034 037 13 0.16 018 022 025 028 03 034 037
L3 ]

© (d)

Fig. 3 NS Bifurcation diagram with a = 0.2,b = 0.9,a = 0.5896,p € [0.13,0.37 ] (x0,¥) = (0.9,0.891) in (a)
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153

®

i

W)

(k)

Fig. 4 Phase portrait for different values of p corresponding to Fig. (7). Red * indicates the fixed point.

Example 3: The Neimark-Sacker bifurcation diagram may show more dynamical behaviour for the

glycolysis system as other parameter values vary (e.g. parameter a). A new Neimark-Sacker bifurcation

diagram is created as shown in Fig. 5(a-b) when the parameter values are set as in Example 2 with p =
0.1758 and a ranging between 0.02 < a < 0.3. At a = ays~0.0808, a Neimark-Sacker bifurcation occurs
in the system.It is calculated and presented in Fig. 5(c) that the maximum Lyapunov exponent that corresponds

to Fig. 5(a-b) which confirms the existence of chaos and the period window as varying parametera.The smooth

invariant curve's behavior is demonstrated in detail in the phase portrait of bifurcation diagrams for various

values of a in Fig. 6. This figure shows how the smooth invariant curve splits from the stable fixed point and

increases in radius. Additionally, periodic windows with attracting chaotic sets and periods of —17 and —34

are discovered on the route to chaos.
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Fig. 5 NS Bifurcation diagram with b = 0.9,a = 0.5896,p = 0.1758, a € [0.02,0.3] (xo, o) = (0.9,0.891) in (a) (a,x)

plane (b) (a,y) plane (c,d) MLEs and FD.
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Fig. 6 Phase portrait for different values of a corresponding to Fig. 5. The fixed point is marked with a red *.

A system's chaotic attractors are identified by the fractal dimensions (FD), which are defined in

(Cartwright, 1999):
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k
FL = k + j=1 j
ISj4+4
where k is the largest integer such that Zf ;= 0 and ZkHs < 0 and s;’s are Lyapunov exponents.
The fractal dimensions now have the form for the system (9):
S1+s
F=24+2"2
|s3]

Increasing the value of the parameter p results in an unstable system dynamics for the fractional order
glycolysis model because the chaotic dynamics of the system (9) (see Fig. 4) are quantized with the sign of the
FD (see Fig. 3(d)).

5 Chaos Control

Controlling chaos is a challenging issue. For controlling chaos in fractional order glycolysis model we
introduce OGY control strategy, taking a as a control parameter. We reformat system (9) as follows in order
to use the OGY approach first described by Edward et al. (1990):

p“ ~
Xn+1 = Xp + m(ayn —Xp t+ xnzyn) =Zz1(x,y,a)
p®
Yn+1 = Yn + Ta+a) (b — ay, — xn%yn) = 5(x,y, @) (26)

where a stands for a parameter used to regulate chaos. Additionally, a is constrained to exist in a certain
narrow interval |a — ag| <9 with 9 > 0 and a, denotes the nominal value associated with the chaotic
zone. To direct the trajectory towards the intended orbit, we use the stabilizing feedback control approach.
Consider the possibility that the system's (9) unstable fixed point (x*,y*) is located in an area of chaos
brought on by the appearance of a Neimark-Sacker bifurcation, then the system (29) can be approximated
by the following linear map in the vicinity of the unstable fixed point (x*,y*):

[x”+1 ] A[xn—x ]+B[a—a0]

Yn+1 —
0Z1(x,y,a) 0Z1(x,y,a) 1 +( a+b2)r(1+u) (a+b2)
h A= 0x ay _ a+b? r(1+a)
where, T lomrya 0mGy.a) _l L J
F) F) I'(1+a 2
* ¢ a+b? (a +b )F(1+a)
and
L
07 (x,y,) |[bm+a)1
B = da _| a+b?
0Z,(x,y,a) _p_Pt
 a I'(1+a)
a + b?

The subsequent matrix is calculated to determine if the system (26) is controllable:

p% 2 a
[br(1+a) p P (_ P a- F(1+zz)+b( F(1+a))> ]

5 . a+b? r(1+a) r(1+a) (a+b?)2
C [ AB] | p% a p% :
p
| —2b r(1+a) r(1+a)<a2r(1+ @) ( 1+2b2r(1+ ))+b2( 1+(- 2+b2)r(1+a))>|
l a+b? (a+b2)2
. .o =[x, —x* = .
At positive fixed point, C has rank 2. Assume that [a —ay] = —K o — ] where K = [6] d3], then
=
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system (26) can be written as [xn+1 ] [4 - BK] [ ]
Yn+1 — Y7 Yn—y*
The appropriate controlled system of (9) is also provided by
ot . iy
Xn+1 = F(l + ) ((ao 01 (xn - x+) ) (Yn - y+))Yn —Xpt an}’n)
p<

Yn+1 = Yn + m(b —(ag = 61(xp —x7) = G — YNV — x°yn)  (27)

Furthermore, the system's fixed point (x*,y*) is locally asymptotically stable if the modulus of the matrix's
(A - BK ) eigenvalues is smaller than 1. The regulated system’s (27) Jacobian matrix (A — BK) can be
expressed as follows:

a

p .. p% ..
14(-14+ 2b? pr bF(1+a) 91 (@+b?) p* bF(1+a) 92
A—BR = a+b2)T(1+a) a + b? F(1+a) a + b?
2 pe p% .. p% ..
B 2" rra 4 _Ta+a) 01 1+ (—a - b?) p* 4 _Ta+a 92
l a+ b? a + b? F(1+a) a + b?

The characteristic equation of the Jacobian matrix A — BK is given by

p sz pa br(fj_l )0'1 bl—(fja)o-z . 1
2 =2+ (-a-bH)— +(—1+ ) -4 /1+a+b2<a+b2—(a+a2—

r(l1+a) a+b?) I'(1+a) a+b? a+b?

b2 + 2ab? + b*) L p® + (a? +2ab2+b4)(r(1+a))2—b p% d"l—b(—l‘l‘ pa) p* d")=0

C(1+a) I(1+a) T(1+a)/ T(1+a) 2
(28)
Assume A; and A, be the roots of the equation (28), then
p* . p* .
— p2? _ 2b? p* brma®t | Prisa®?
}Ll + /12 =2+(-a )r(1+ a) t ( 1+ a+b2) r(1+a) a+b2 + a+b? 29)

2

- 1 p* p?
- = 2 _ 2_p2 4 2ah? + b4 —tr— 2 4 20h% + bt (_)
A4, a+b2<a+b (a+ a* —b* + 2ab b)F(1+ )+(a + 2ab* + b*) i+
pr ( p® ) p® >
— - — _1
braro P\ ra o) T s o) 2 (30)

The lines of minimal stability for the appropriate controlled system are then obtained by taking /11 = +1 and
1,1, = 1. Additionally, these limitations guarantee that A; and A, are inside the open unit disk. Consider
that 1,4, = 1, then (30) gives

1 p* 2 2 2 4 2 2 4 p* -
Kl —mm(—((l+a —b“+2ab*+b )—I—(a + 2ab“+b )m—bgl
(b- P_> ;)
(b "Tata) %
Using the assumption that A; = 1, (29) and (30) result in:
2

- 2 _ _op2 2 4y_P" 2 4 _
K, = - (4a +4b? — (2a + 2a? — 2b? + 4ab? + 2b )r(1 + (a® + 2ab®> + b )(r(1+a))

p% .. _ _ p% p% ..
2b 6 b( 2 +F(1+a)) r(i+a) 02)

Taking A; = —1 as the final step, we have from Egs. (29) and (30)

) ((a + b2)? — bdy)
a+ b?

K3 — (F(1+a)
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Then, for specific parametric values, stable eigenvalues are found in the triangle in the ¢% 6, — plane enclosed
by the straight lines K3, K, and K.

Example 4: To talk about the OGY feedback control technique for systems (9), we choose a, =
0.0808,b = 0.9, = 0.5896 and p = 0.1758. In this instance, the unstable system (9) contains a single
positive fixed point (x*,y*) = (0.9, 1.01033). Following that, a matching controlled system is provided by

Xp+1 = Xn + 0.4002 ((0.0808 — 6 (x, — 0.9) — 65 (y, — 1.01033))y,, — x,, + %, %)

Vi1 = Y + 0.4002(0.9 — (0.0808 — &, (x,, — 0.9) — &, (y, — 1.01033))3,, — %, 2¥,) 31)
T . . » _[1.3276 0.356498] 5 _ [ 0.404333
where K = [d7 J,] be the gain matrix. We get, A = _07278 0.643502)° B = [_0’404333 and

¢ = [ 0.404333 0.392649
—0.808666 —0.554463

the system (31) can be controlled. Afterward, the controlled system's (31) Jacobian matrix is provided by

i_BR = 1.3276 — 0.40433347; 0.356498 — 0.404333(’7’2]
~ |—-0.7278 + 0.4043334; 0.643502 + 0.4043334,

]. It is then simple to verify that the rank of the matrix C is 2. Consequently,

Furthermore, the marginal stability's lines K;, K, and Ksare given by:
K; = 0.113772 — 0.4043336; + 0.2425196, = 0
K, = 4.08487 — 0.8086664; + 0.64685264, = 0
and
K3 = —0.142671 + 0.1618146, = 0
The stable triangular region for the controlled system (33) is then depicted in Fig. 7 and is bounded by the

marginal lines K;, K, and K.

(@ (b)

|||||

(c) (d)

Fig. 7 Control of system (27) aberrant trajectories. (a) The &6, — plane stability zone, (b-c) the time series for the states x

andy, respectively, (d) Phase diagram of system (27).
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6 Discussion

This study discusses a novel fractional order glycolysis model. From the Caputo fractional derivative notion,
such a fractional order model is derived. By using the center manifold theorem and bifurcation theory, we
demonstrate that if p fluctuates around the sets PDy or NSg, the system (9) can undergo a bifurcation (flip
or NS) at a certain positive fixed pointE.The model shows a number of complex dynamical behaviors as p
and @ are changed, such as the appearance of flip and N-S bifurcations, period-2, 4, 8, 10, 11, 14 and 16
orbits, quasi-periodic orbits, attracting invariant circle and chaotic sets. Through the calculation of maximal
Lyapunov exponents and fractal dimension, we are able to affirm the presence of chaos. Additionally, we can
observe that selecting the right value of p helps stabilize the dynamical system (9). The two bifurcations
lead the system to abruptly transition from steady state to chaotic dynamical behavior via periodic and
quasi-periodic states and open pathways to chaos; in other words, chaotic dynamics occur or vanish
simultaneously with the formation of bifurcations. Finally, in order to remove unstable system trajectories,
we employ a OGY control method. Exploring multiple parameter bifurcation in the system is still a difficult
topic, though. Future research on this topic is anticipated to yield additional analytical findings.
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