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Abstract 

Glycolysis model has been considered by Caputo fractional derivative. We give the topological classifications 

of fixed points of this model. Then, we show analytically that under certain parametric conditions fractional 

order glycolysis model underlies a Neimark-Sacker (NS) bifurcation and Flip bifurctaion. By using central 

manifold and bifurcation theory, we confirm the existence and direction of both NS and Flip bifurcations. To 

reinforce our analytical findings, we perform numerical simulations that include bifurcations, phase portraits, 

periodic orbits, invariant closed cycles, abrupt emergence of chaos and abrupt elimination of chaos. At the 

end, OGY method is applied to eliminate chaotic trajectories of the system. 

 

Keywords fractional order glycolysis model; Flip and Neimark-Sacker (NS) bifurcations; Maximum 

Lyapunov Exponents (MLEs); Fractal Dimensions (FDs); chaos control. 

 

 

 

 

 

 

 
 
1 Introduction 

Fractional calculus is a 17th century mathematical concept. However, it may be deemed a novel study topic. 

In fact, the model has fractional derivatives, which has made significant progress in the study of mathematical 

modeling with memory effect. Fractional-order differential equations can be successfully described in a 

variety of domains, including science, engineering, finance, economics, and epidemiology (Magin et al,. 2011; 

Huang et al., 2017, 2018). The order of differentiation in the transition of an integer-order model to a 

fractional-order model must be precise, and a little modification in order of differentiation  ߙ could have a 

significant impact on the ultimate outcome (Bagley and Calico, 1991). There are numerous techniques when 

attempting to apply the concept of differentiation to arbitrary order. The most popular definitions are those of 

Riemann-Liouville, Caputo, and Grünwald-Letnikov (Podlubny, 1999).  

In addition to these definitions, several more strategies are being investigated by applied mathematicians. 

Researchers are looking for the most effective technique including some numerical methods (Jafari and 

Daftardar-Gejji, 2006; Ameen and Novati, 2017; Momani and Odibat, 2007) while building or modifying their 

models. The bifurcation of a system in a fractional differential equation has drawn the attention of many 

scholars, who have thoroughly examined this phenomenon (Elsadany and Matouk, 2015; Balci et al., 2019, 

2021; Abdelaziz et al., 2018). 
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In many discrete systems, the bifurcations (Neimark-Sacker and flip) and stable orbits as well as chaotic 

attractors attract a great interest, these phenomena can be determined either numerically or by normal form and 

center manifold theory (Khan and Khalique, 2020; Rana, 2020; Khan et al., 2022). 

The metabolic process of converting glucose to pyruvate is known as glycolysis, and during this process, 

two molecules of pyruvate are normally produced for every molecule of glucose. Glycolysis is a biological 

activity that occurs in living cells and allows them to obtain energy from glucose and the following 

differential system can be used to simulate this biological process (Selkov, 1968) and the non-dimensional 

form of hypothetical glycolysis model is given below. 

 

ሶݔ  ൌ ݕܽ െ ݔ ൅                                          ݕଶݔ

ሶݕ ൌ ܾ െ ݕܽ െ  (1)                       ݕଶݔ

 

where ݔ and ݕ are the amounts of adenosine diphosphate (ADP) and fructose-6-phospate (in dimensionless 

forms), and ܽ and ܾ are kinetics parameter. The requirements for both forms of instabilities are described, 

and the occurrence of a temporal structure containing limit cycle behavior is numerically determined as a 

function of the system's essential factors (Goldbeter and Lefever, 1972). The more detailed analysis of 

glycolysis model was discussed in (Goldbeter and Lefever, 1972; Decroly and Goldbeter, 1982; Wolf et al., 

2000; Wei et al., 2015). 

The fractional order glycolysis model is given as follows 

 

ሻݐሺݔఈܦ ൌ ሻݐሺݕܽ െ ሻݐሺݔ ൅                   ሻݐሺݕሻݐଶሺݔ

ሻݐሺݕఈܦ ൌ ܾ െ ሻݐሺݕܽ െ  ሻ        (2)ݐሺݕሻݐଶሺݔ

 

where ݐ ൐ 0, and ߙ is the fractional order which satisfy ߙ א ሺ0, 1ሿ. There are a lot of approaches for 

discretizesuch kind of system. One of these is the piecewise constant approximation. The model is discretized 

by using this method. The process is given as follows: 

Let the initial conditions of system ሺ1ሻ  are ݔሺ0ሻ ൌ ,଴ݔ ሺ0ሻݕ ൌ  ଴. The discretized version of system ሺ2ሻݕ

is given as 

 

ሻݐሺݔఈܦ ൌ ݕܽ ൬൤
ݐ
ߩ
൨ ൰ߩ െ ݔ ൬൤

ݐ
ߩ
൨ ൰ߩ ൅ ଶሺሾݔ

ݐ
ߩ
ሿߩሻݕሺሾ

ݐ
ߩ
ሿߩሻ 

ሻݐሺݕఈܦ ൌ ܾ െ ݕܽ ቀቂ
௧

ఘ
ቃ ቁߩ െ ଶሺሾݔ

௧

ఘ
ሿߩሻݕሺሾ

௧

ఘ
ሿߩሻ                               (3) 

First, let ݐ א ሾ0, ሻ, soߩ
௧

ఘ
א ሾ0, 1ሻ. Thus, we obtain 

ሻݐሺݔఈܦ ൌ ଴ݕܽ െ ଴ݔ ൅                                       ଴ݕ଴ଶݔ

ሻݐሺݕఈܦ ൌ ܾ െ ଴ݕܽ െ  ଴                                         (4)ݕ଴ଶݔ

 

The solution of (4) is reduced to 

ሻݐଵሺݔ ൌ ଴ݔ ൅ ଴ݕఈሺܽܬ െ ଴ݔ ൅ ଴ሻݕ଴ଶݔ ൌ ଴ݔ ൅
௧ഀ

ఈ୻ሺఈሻ
ሺܽݕ଴ െ ଴ݔ ൅ ଴ሻݕ଴ଶݔ            

ሻݐଵሺݕ ൌ ଴ݕ ൅ ఈሺܾܬ െ ଴ݕܽ െ ଴ሻݕ଴ଶݔ ൌ ଴ݕ ൅
௧ഀ

ఈΓሺఈሻ
ሺܾ െ ଴ݕܽ െ  ଴ሻ                         ሺ5ሻݕ଴ଶݔ

Second, let ݐ א ሾߩ,  ሻ, soߩ2
௧

ఘ
א ሾ1, 2ሻ. Then 
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ሻݐሺݔఈܦ          ൌ ଵݕܽ െ ଵݔ ൅                                   ଵݕଵଶݔ

ሻݐሺݕఈܦ     ൌ ܾ െ ଵݕܽ െ  ଵ                                       (6)ݕଵଶݔ

 

which have the following solution 

 

ሻݐଶሺݔ ൌ ሻߩଵሺݔ ൅ ଵݕఘఈ ሺܽܬ െ ଵݔ ൅  ଵሻݕଵଶݔ

ൌ ሻߩଵሺݔ ൅
ሺ௧ିఘሻഀ

ఈ୻ሺఈሻ
ሺܽݕଵ െ ଵݔ ൅                       ଵሻݕଵଶݔ

ሻݐଶሺݕ ൌ ሻߩଵሺݕ ൅ ఘఈ ሺܾܬ െ ଵݕܽ െ  ଵሻݕଵଶݔ

       ൌ ሻߩଵሺݔ ൅
ሺݐ െ ሻఈߩ

ሻߙΓሺߙ
ሺܾ െ ଵݕܽ െ  ଵሻ                                                                            ሺ7ሻݕଵଶݔ

where ܬఘఈ ൌ
ଵ

୻ሺఈሻ
׬ ሺݐ െ ߬ሻఈିଵ݀߬, ߙ ൐ 0.
௧
ఘ  Repeat the discretization process ݊ times, we obtain 

ሻݐ௡ାଵሺݔ ൌ ሻߩ௡ሺ݊ݔ ൅
ሺ௧ି௡ఘሻഀ

ఈ୻ሺఈሻ
൫ܽݕ௡ሺ݊ߩሻ െ ሻߩ௡ሺ݊ݔ ൅              ሻ൯ߩ௡ሺ݊ݕሻߩ௡ଶሺ݊ݔ

ሻݐ௡ାଵሺݕ ൌ ሻߩ௡ሺ݊ݕ ൅
ሺ௧ି௡ఘሻഀ

ఈ୻ሺఈሻ
൫ܾ െ ሻߩ௡ሺ݊ݕܽ െ  ሻ൯               (8)ߩ௡ሺ݊ݕሻߩ௡ଶሺ݊ݔ

where ݐ א ሾ݊ߩ, ሺ݊ ൅ 1ሻߩሻ. For ݐ ՜ ሺ݊ ൅ 1ሻߩ, system (8) reduced to  

௡ାଵݔ ൌ ௡ݔ ൅
ఘഀ

୻ሺଵାఈሻ
ሺܽݕ௡ െ ௡ݔ ൅   ௡ሻݕ௡ଶݔ

௡ାଵݕ        ൌ ௡ݕ ൅
ఈߩ

Γሺ1 ൅ ሻߙ
ሺܾ െ ௡ݕܽ െ  ௡ሻ                                                                         ሺ9ሻݕ௡ଶݔ

The remaining part of this paper is organized as follows: The topological divisions of fixed points are 

examined in Sect. 2. In Sect.3, we demonstrate analytically that the system (9) experiences a Flip or NS 

bifurcation under a certain parametric condition. In Sect.4, to support our analytical conclusions, we exhibit 

system dynamics quantitatively, including bifurcation diagrams, phase portraits, MLEs and FDs. In Sect.5, 

we implement a OGY method to calm the turbulence of the unmanaged system. In Sect.6, we give a succinct 

discussion. 

 

2 Stability Analysis 

The system (9) has a unique fixed point ܧሺכݔ, כݔ ሻ, whereכݕ ൌ ܾ and כݕ ൌ
௕

௔ା௕మ
 which always exist for all 

permissible parameter values. 

The Jacobian matrix of system (9) evaluated at ܧሺכݔ,   ሻ areכݕ

,כݔሺܬ                     ሻכݕ ൌ ቌ
ሺ1 ൅ ሺെ1 ൅ ሻכݕכݔ2

ఘഀ

୻ሺଵାఈሻ
ሻ ሺכݔଶ ൅ ܽሻ

ఘഀ

୻ሺଵାఈሻ

െ2כݕכݔ
ఘഀ

୻ሺଵାఈሻ
1 െ ሺכݔଶ ൅ ܽሻ

ఘഀ

୻ሺଵାఈሻ

ቍ           (10)    

Now the Jacobian matrix at ܧሺܾ,
௕

௔ା௕మ
ሻ is given by 

ாܬ                     ൌ ቌ
1 ൅

ሺି௔ା௕మሻ

௔ା௕మ
ఘഀ

୻ሺଵାఈሻ
ሺܽ ൅ ܾଶሻ

ఘഀ

୻ሺଵାఈሻ

െ
ଶ௕మ

௔ା௕మ
ఘഀ

୻ሺଵାఈሻ
ሺ1 െ ሺܽ ൅ ܾଶሻ

ఘഀ

୻ሺଵାఈሻ
ሻ
ቍ                 (11) 

The characteristic polynomial of the Jacobian matrix can be written as  

ሻߣሺܨ                     ؔ ଶߣ െ ߣாሻܬ ሺݎܶ ൅ ாሻܬ ሺݐ݁ܦ ൌ 0                           (12) 
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where ܶݎሺ ܬாሻ is the trace and ݐ݁ܦሺ ܬாሻ is the determinant of the Jacobian matrix  ܬா, and is given by 

ாሻܬ ሺݎܶ ൌ 2 ൅ ൬െ1 െ ܽ ൅ ܾଶሺെ1 ൅
2

ܽ ൅ ܾଶ
ሻ൰

ఈߩ

Γሺ1 ൅ ሻߙ
 

ாሻܬ ሺݐ݁ܦ ൌ
௔ା௕మାሺି௔మିଶ௔௕మି௔ା௕మି௕రሻ ഐഀ

Γሺభశഀሻ
ାሺ௔మାଶ௔௕మା௕రሻቀ ഐഀ

Γሺభశഀሻ
ቁ
మ

௔ା௕మ
                (13) 

The eigenvalues of (12) can be written as ߣଵ,ଶ ൌ
்௥ሺ ௃ಶሻേට൫்௥ሺ ௃ಶሻ൯

మ
ିସ஽௘௧ሺ ௃ಶሻ

ଶ
. 

Jury Criterion: The stability condition for the equilibrium point ܧሺכݔ, ሺ1ሻܨ ሻ is given as followsכݕ ൐

0, ሺെ1ሻܨ ൐ 0, ሺ0ሻܨ െ 1 ൏ 0. 

Let, ܲܦா ൌ ൝ሺܽ, ܾ, ,ߩ ߩ :ሻߙ ൌ ቀΓሺ1 ൅ .ሻߙ
    ஺మേ√௅

஺భ
ቁ
భ
ഀ
ൌ ,േߩ ܮ ൒ 0ൡ. 

where, 

ଵܣ ൌ ܽଶ ൅ 2ܾܽଶ ൅ ܾସ 

ଶܣ  ൌ ܽ ൅ ܽଶ െ ܾଶ ൅ 2ܾܽଶ ൅ ܾସ 

ଷܣ ൌ 4ܽ ൅ 4ܾଶ 

ܮ ൌ ଶܣ
ଶ െ ଷܣ כ  ଵܣ

Then the system (9) experience a flip bifurcation at ܧ when parameters ሺܽ, ܾ, ,ߩ  ሻ vary in a smallߙ

vicinity of ܲܦா. 

Also let 

ܰܵா ൌ ൝ሺܽ, ܾ, ,ߩ ߩ :ሻߙ ൌ ൬Γሺ1 ൅ .ሻߙ
ଶܣ 
ଵܣ
൰

భ
ഀ

ൌ ,ேௌߩ ܮ ൏ 0ൡ 

Then the system (9) experiences a NS bifurcation at ܧ when parameters ሺܽ, ܾ, ,ߩ  ሻ change around theߙ

set ܰܵா. 

We give the following Lemma for the stability condition of the fixed point ܧ.  

Lemma 1. For any choice of parameter values, the fixed point E is a  

- sink if (i) ܮ ൒ 0, ߩ ൏  ,ሻ݁݀݋݊ ݈ܾ݁ܽݐݏሺିߩ

     (ii) ܮ ൏ 0, ߩ ൏  ,ሻݏݑܿ݋݂ ݈ܾ݁ܽݐݏேௌሺߩ

- source (i) ܮ ൒ 0, ߩ ൏  ,ሻ݁݀݋݊ ݈ܾ݁ܽݐݏ݊ݑାሺߩ

      (ii) ܮ ൏ 0, ߩ ൐  ,ሻݏݑܿ݋݂ ݈ܾ݁ܽݐݏ݊ݑேௌሺߩ

- non-hyperbolic (i) ܮ ൒ 0, ߩ ൌ ߩ  ݎ݋ ିߩ ൌ   ,ሻ݌݈݂݅ ݄ݐ݅ݓ ݈݁݀݀ܽݏାሺߩ

             (ii) ܮ ൏ 0, ߩ ൌ  ,ሻݏݑܿ݋݂ ேௌሺߩ

- saddle: otherwise 

 

3 Bifurcation Analysis 

In this section, we will discuss the existence, direction and stability analysis of flip and NS bifurcations near 

the fixed point ܧ by using center-manifold and bifurcation theory (Kuznetsov, 2013; Wen, 2005; Yao, 2012). 

We consider ߩ as the bifurcation parameter, otherwise stated. 

3.1 Flip bifurcation 

We choose the parameters ሺܽ, ܾ, ,ߩ  ா. Consider the system (9) at the equilibriumܦܲ ሻ arbitrarily locate inߙ

point ܧሺכݔ,   .ாܦܲ ሻ. Assume the parameters lie inכݕ

Let, ߩ ൌ ቀΓሺ1 ൅ .ሻߙ
    ஺మି√௅

஺భ
ቁ
భ
ഀ
ൌ ,ିߩ ܮ ൒ 0. 
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And the eigenvalues of ܬா are given as  

ଵߣ ൌ െ1 and ߣଶ ൌ 3 ൅  ିߩଶܣ

In order for |ߣଶ| ് 1 implies ܣଶିߩ ് െ2,െ4                                    (14) 

Next, we use the transformation ݔො ൌ ݔ െ ,ାݔ ොݕ ൌ ݕ െ ሻିߩሺܣ ାand setݕ  ൌ ,כݔሺܬ   ሻ. We shift the fixedכݕ

point of system (9) to the origin. So the system (9) can be written as 

൬
ොݔ
ො൰ݕ ՜ ሻିߩሺܣ ൬

ොݔ
ො൰ݕ ൅ ൬

,ොݔଵሺܨ ,ොݕ ሻିߩ
,ොݔଶሺܨ ,ොݕ ሻିߩ

൰                                              (15) 

where ܺ ൌ ሺݔො,  ොሻ் andݕ

,ොݔଵሺܨ ,ොݕ ሻିߩ ൌ
1
ଵܣ
ଶܣො൫ݕොଶݔ െ ൯ܮ√ ൅ 

1
2
൤

1
ሺܽ ൅ ܾଶሻଷ

ଶܣොଶܾ൫ݔ2 െ ൯ܮ√ ൅
1
ଵܣ
ଶܣොܾ൫ݕොݔ4 െ  ൯൨ܮ√

,ොݔଶሺܨ ,ොݕ ሻିߩ ൌ െ
ଵ

஺భ
ଶܣො൫ݕොଶݔ െ ൯ܮ√ ൅ 

ଵ

ଶ
ቂ

ିଵ

ሺ௔ା௕మሻయ
ଶܣොଶܾ൫ݔ2 െ ൯ܮ√ െ

ଵ

஺భ
ଶܣොܾ൫ݕොݔ4 െ  ൯ቃ    (16)ܮ√

The system (15) can be expressed as 

ܺ௡ାଵ ൌ ௡ܺܣ ൅
1
2
,ሺܺ௡ܤ ܺ௡ሻ ൅

1
6
,ሺܺ௡ܥ ܺ௡, ܺ௡ሻ ൅ ܱሺԡܺ௡ԡସሻ 

where ܤሺݔ, ሻݕ ൌ ൬
,ݔଵሺܤ ሻݕ
,ݔଶሺܤ ݕ

൰ and ܥሺݔ, ,ݕ ሻݒ ൌ ൬
,ݔଵሺܥ ,ݕ ሻݒ
,ݔଶሺܥ ,ݕ ሻݒ

൰ are symmetric multi-linear vector functions 

of ݔ, ,ݕ ݒ א Թଶ and defined as follows: 

,ݔଵሺܤ ሻݕ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௞ߝߜ௝ߝߜ

ଶ

௝,௞ୀଵ

ቮ

ఌୀ଴

௞ݕ௝ݔ ൌ
1

ሺܽ ൅ ܾଶሻଷ
2ܾሺݔଶݕଵሺܽ ൅ ܾଶሻ ൅ ଵݕଵሺݔ ൅ ଶሺܽݕ ൅ ܾଶሻሻሻ൫ܣଶ െ  ൯ܮ√

,ݔଶሺܤ ሻݕ ൌ ෍
,ߝଶሺܨଶߜ ሻߩ

௞ߝߜ௝ߝߜ

ଶ

௝,௞ୀଵ

ቮ

ఌୀ଴

௞ݕ௝ݔ ൌ െ
1

ሺܽ ൅ ܾଶሻଷ
2ܾሺݔଶݕଵሺܽ ൅ ܾଶሻ ൅ ଵݕଵሺݔ ൅ ଶሺܽݕ ൅ ܾଶሻሻሻ൫ܣଶ െ  ൯ܮ√

and  

 

,ݔଵሺܥ ,ݕ ሻݒ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௟ߝߜ௞ߝߜ௝ߝߜ

ଶ

௝,௞,௟ୀଵ

ቮ

ఌୀ଴

௟ݒ௞ݕ௝ݔ ൌ
1

ሺܽ ൅ ܾଶሻଶ
2൫ܣଶ െ ଵݕଵݔଶݒ൯ሺܮ√ ൅ ଵݕଶݔଵݒ ൅  ଶሻݕଵݔଵݒ

,ݔଶሺܥ ,ݕ ሻݒ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௟ߝߜ௞ߝߜ௝ߝߜ

ଶ

௝,௞,௟ୀଵ

ቮ

ఌୀ଴

௟ݒ௞ݕ௝ݔ ൌ െ
1

ሺܽ ൅ ܾଶሻଶ
2൫ܣଶ െ ଵݕଵݔଶݒ൯ሺܮ√ ൅ ଵݕଶݔଵݒ ൅  ଶሻݕଵݔଵݒ

Let, ݍଵ, ଶݍ א Թଶ be two eigenvectors of A and ்ܣ for eigenvalue ߣଵሺିߩሻ  ൌ  െ1 such that ܣሺିߩሻݍଵ ൌ

െݍଵ and ்ܣሺିߩሻݍଶ ൌ െݍଶ. 

Then by direct calculation we get, 

ଵݍ ൌ ቌ
ሺܣଵሺܽ െ ܽଶ ൅ 3ܾଶ െ 2ܾܽଶ െ ܾସ ൅ ሻሻܮ√

ሺ2ܾଶ൫ܣଶ െ ൯ሻܮ√
1

ቍ ൌ ቀ
ଵଵݍ
1 ቁ 

ଶݍ ൌ ቌ
ሺܣଵሺܽ െ ܽଶ ൅ 3ܾଶ െ 2ܾܽଶ െ ܾସ ൅ ሻሻܮ√

ሺ2ܾଶ൫ܣଶ െ ൯ሻܮ√
1

ቍ ൌ ቀ
ଶଵݍ
1 ቁ 

In order to get, ൏ ,ଵݍ ଶݍ ൐ 1, where ൏ ,ଵݍ ଶݍ ൐ ൌ ଶଵݍଵଵݍ ൅  ଶଶ, we have to use the normalizedݍଵଶݍ

vector ݍଶ ൌ ிߛ ଶ, withݍிߛ ൌ
ଵ

ଵା௤భభ௤మభ
. 
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To obtain the direction of the flip bifurcation, we have to check the sign of ݈ଵሺିߩሻ,  the coefficient of 

critical normal form (Kuzenetsov, 1998) and is given by 

݈ଵሺିߩሻ ൌ
ଵ

଺
൏ ,ଶݍ ,ଵݍሺܥ ,ଵݍ ଵሻݍ ൐ െ

ଵ

ଶ
൏ ,ଶݍ ,ଶݍሺܤ ሺܣ െ ,ଵݍሺܤሻିଵܫ ଵሻሻݍ ൐                  (17) 

According to above discussion, the direction and stability of Flip bifurcation can be presented in the 

following theorem 

Theorem 1. Suppose (14) holds and ݈ଵሺିߩሻ ് 0, then Flip bifurcation at fixed point ܧሺכݔ,  ሻ forכݕ

system (9) 

if the ߩ changes its value in small neighbourhood of ܲܦா. Moreover, if ݈ଵሺିߩሻ ൏ 0 (resp. ݈ଵሺିߩሻ ൐ 0), 

then 

there exists attracting (resp. repelling) smooth closed invariant curve bifurcate from ܧሺכݔ,  ሻ and theכݕ

bifurcationis sub-critical (resp. super-critical). 

3.2 Neimark-Sacker bifurcation 

When ܮ  ൏  0 and the parameters ሺܽ, ܾ, ,ߩ ሻߙ א ܰܵா, then the eigenvalues of system (12) are given by 

,ߣ ҧߣ ൌ
்௥ሺ௃ಶሻേඥସ஽௘௧ሺ௃ಶሻି்௥ሺ௃ಶሻమ

ଶ
                                                    (18) 

Let, ߩ ൌ ேௌߩ ൌ ቀΓሺ1 ൅ .ሻߙ
 ஺మ
஺భ
ቁ
భ
ഀ 

Moreover, the transversality and non-resonance conditions yield 

       
|ሻߩ௜ሺߣ|݀
ߩ݀

ฬ
ఘୀఘಿೄ

ൌ
ଶܣ2
ଷܣ

് 0 

െሺܶݎሺܬாሻሻ|ఘୀఘಿೄ ് 0 ֜
ସ஺మ

మ

஺భ஺య
് 2,3                                               (19) 

Using the transformation ݔො ൌ ݔ െ ,ାݔ ොݕ ൌ ݕ െ ሻߩሺܣ ାand setݕ  ൌ ,כݔሺܬ   ሻ. We shift the fixed pointכݕ

of system (9) to the origin. So the system (9) can be written as 

ܺ ൌ ሻܺߩሺܣ ൅  (20)                                                               ܨ

where ܺ ൌ ሺݔො, ܨ ොሻ் andݕ ൌ ሺܨଵ,   ଶሻ் are given byܨ

,ොݔଵሺܨ ,ොݕ ேௌሻߩ ൌ
ଶܣ
ଵܣ
ොݕොଶݔ ൅ 

1
2
൤

1
ሺܽ ൅ ܾଶሻଷ

ଶሻܣොଶܾሺݔ2 ൅
1
ଵܣ
 ଶሻ൨ܣොܾሺݕොݔ4

,ොݔଶሺܨ ,ොݕ ேௌሻߩ ൌ െ
஺మ
஺భ
ොݕොଶݔ െ 

ଵ

ଶ
ቂ

ଵ

ሺ௔ା௕మሻయ
ଶሻܣොଶܾሺݔ2 ൅

ଵ

஺భ
 ଶሻቃ                           (21)ܣොܾሺݕොݔ4

The system (20) can be expressed as 

ܺ௡ାଵ ൌ ௡ܺܣ ൅
1
2
,ሺܺ௡ܤ ܺ௡ሻ ൅

1
6
,ሺܺ௡ܥ ܺ௡, ܺ௡ሻ ൅ ܱሺԡܺ௡ԡସሻ 

where ܤሺݔ, ሻݕ ൌ ൬
,ݔଵሺܤ ሻݕ
,ݔଶሺܤ ݕ

൰ and ܥሺݔ, ,ݕ ሻݒ ൌ ൬
,ݔଵሺܥ ,ݕ ሻݒ
,ݔଶሺܥ ,ݕ ሻݒ

൰ are symmetric multi-linear vector functions 

of ݔ, ,ݕ ݒ א Թଶ and defined as follows: 

,ݔଵሺܤ ሻݕ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௞ߝߜ௝ߝߜ

ଶ

௝,௞ୀଵ

ቮ

ఌୀ଴

௞ݕ௝ݔ ൌ
1

ሺܽ ൅ ܾଶሻଷ
2ܾሺݔଶݕଵሺܽ ൅ ܾଶሻ ൅ ଵݕଵሺݔ ൅ ଶሺܽݕ ൅ ܾଶሻሻሻሺܣଶሻ 

,ݔଶሺܤ ሻݕ ൌ ෍
,ߝଶሺܨଶߜ ሻߩ

௞ߝߜ௝ߝߜ

ଶ

௝,௞ୀଵ

ቮ

ఌୀ଴

௞ݕ௝ݔ ൌ െ
1

ሺܽ ൅ ܾଶሻଷ
2ܾሺݔଶݕଵሺܽ ൅ ܾଶሻ ൅ ଵݕଵሺݔ ൅ ଶሺܽݕ ൅ ܾଶሻሻሻሺܣଶሻ 

and  
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,ݔଵሺܥ ,ݕ ሻݒ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௟ߝߜ௞ߝߜ௝ߝߜ

ଶ

௝,௞,௟ୀଵ

ቮ

ఌୀ଴

௟ݒ௞ݕ௝ݔ ൌ
1

ሺܽ ൅ ܾଶሻଶ
2ሺܣଶሻሺݒଶݔଵݕଵ ൅ ଵݕଶݔଵݒ ൅  ଶሻݕଵݔଵݒ

,ݔଶሺܥ ,ݕ ሻݒ ൌ ෍
,ߝଵሺܨଶߜ ሻߩ

௟ߝߜ௞ߝߜ௝ߝߜ

ଶ

௝,௞,௟ୀଵ

ቮ

ఌୀ଴

௟ݒ௞ݕ௝ݔ ൌ െ
1

ሺܽ ൅ ܾଶሻଶ
2ሺܣଶሻሺݒଶݔଵݕଵ ൅ ଵݕଶݔଵݒ ൅  ଶሻݕଵݔଵݒ

Suppose, ݍଵ, ଶݍ א ԧଶ be two eigenvectors of A and ்ܣ for eigenvalue ߣሺߩேௌሻ,  ேௌሻ such thatߩഥሺߣ 

ଵݍேௌሻߩሺܣ        ൌ ,ଵݍேௌሻߩሺߣ ଵݍேௌሻߩሺܣ ൌ  ଵݍேௌሻߩҧሺߣ

ଶݍேௌሻߩሺ்ܣ ൌ ,ଶݍேௌሻߩҧሺߣ ଶݍேௌሻߩሺ்ܣ ൌ  ଶ                              (22)ݍேௌሻߩሺߣ

Then by direct calculation, we get 

ଵݍ ൌ ൭െ
ܽଶ ൅ ܾଶ ൅ ܾସ ൅ ܽሺെ1 ൅ 2ܾଶሻ െ ܮ√

4ܾଶ
1

൱ ൌ ቀߟଵ ൅ ଶߟ݅
1

ቁ 

where ߟଵ ൌ-
௔మା௕మା௕రା௔ሺିଵାଶ௕మሻ

ସ௕మ
ଶߟ ; ൌ

ି√ି௅

ସ௕మ
 

ଶݍ ൌ ቌ
ܽଶ ൅ ܾଶ ൅ ܾସ ൅ ܽሺെ1 ൅ 2ܾଶሻ ൅ ܮ√

ଵܣ2
1

ቍ ൌ ቀߴଵ ൅ ଶߴ݅
1

ቁ 

where ߴଵ ൌ
௔మା௕మା௕రା௔ሺିଵାଶ௕మሻ

ଶ஺భ
; ଶߴ  ൌ

ି√ି௅

ଶ஺భ
 

For ൏ ,ଵݍ ଶݍ ൐ 1, where ൏ ,ଵݍ ଶݍ ൐ ൌ ଶଵݍଵଵݍ ൅ ଶݍ ଶଶ,we have to use the normalized vectorݍଵଶݍ ൌ

ேௌߛ ଶ, withݍே௦ߛ ൌ
ଵ

ଵିሺణభା௜ణమሻሺఎభି௜ఎమሻ
. 

So the eigenvectors are computed as follows: 

ଵݍ ൌ ቀߟଵ ൅ ଶߟ݅
1

ቁ 

ଶݍ ൌ

ۉ

ۈ
ۇ

ଵߴ ൅ ଶߴ݅
1 െ ሺߴଵ ൅ ଵߟଶሻሺߴ݅ െ ଶሻߟ݅

1
1 െ ሺߴଵ ൅ ଵߟଶሻሺߴ݅ െ یଶሻߟ݅

ۋ
ۊ

 

We decompose ܺ א Թଶ as ܺ ൌ ଵݍݖ ൅ ߩ ଵതതത by consideringݍҧݖ  vary near to ߩேௌ and for ݖ א ԧ . The 

explicit formula of ݖ is ݖ ൌ ,ଶݍۦ ܺۧ. So, the system (9) transformed to the following system for |ߩ| close to 

 :ேௌߩ

ݖ ՜ ݖሻߩሺߣ ൅ ො݃ሺݖ, ,ҧݖ  ሻ                                                     (23)ߩ

where ߣሺߩሻ ൌ ሺ1 ൅ ߮ሺߩሻሻ݁௜ఏఘ with ߮ሺߩேௌሻ ൌ 0 and ො݃ሺݖ, ,ҧݖ   .ሻis a smooth complex-valued functionߩ

After Taylor expression of ݃ with respect to ሺݖ,  ҧሻ, we obtainݖ

ො݃ሺݖ, ,ҧݖ ሻߩ ൌ ∑ ଵ

௞!௟!
݃௞௟ෞ ሺߩሻݖ௞ିݖ௟௞ା௟ஹଶ , with ݃௞௟ෞ א ԧ, ݇, ݈ ൌ 0,1,… 

According to multilinear symmetric vector functions, the coefficients ݃௞௟ are 

 ݃ଶ଴ෞ ሺߩேௌሻ ൌ ,ଶݍۦ ,ଵݍሺܤ ,ଵሻۧݍ ݃ଵଵෞ ሺߩேௌሻ ൌ ,ଶݍۦ ,ଵݍሺܤ  ଵതതതሻۧݍ
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݃଴ଶෞ ሺߩேௌሻ ൌ ,ଶݍۦ ,ଵതതതݍሺܤ ,ଵതതതሻۧݍ ݃ଶଵෞ ሺߩேௌሻ ൌ ,ଶݍۦ ,ଵݍሺܥ ,ଵݍ  ଵതതതሻۧ                        (24)ݍ

The sign of first Lyapunov coefficient ݈ଶሺߩேௌሻ determines the direction of NS bifurcation and is defined 

by 

݈ଶሺߩேௌሻ ൌ ܴ݁ ቀ
ఒమ௚మభෞ

ଶ
ቁ െ ܴ݁ ቀ

ሺଵିଶఒభሻఒమ
మ௚మబෞ ௚భభෞ

ଶሺଵିఒభሻ
ቁ െ

ଵ

ଶ
|݃ଵଵෞ |ଶ െ

ଵ

ଶ
|݃଴ଶෞ |ଶ                 (25) 

We give the following theorem regarding the direction and stability of the Neimark-Sacker bifurcation in 

light of the aforementioned study. 

Theorem 2. Suppose (19) holds and ݈ଶሺߩேௌሻ ് 0, then NS bifurcation at fixed point ܧሺכݔ,  ሻ for systemכݕ

(9) 

if the ߩ changes its value in small neighbourhood of ܰܵா. Moreover, if ݈ଶሺߩேௌሻ ൏ 0 (resp. ݈ଶሺߩேௌሻ ൐

0), then there exists attracting (resp. repelling) smooth closed invariant curve bifurcate from ܧሺכݔ,  ሻ  andכݕ

the bifurcation is sub-critical (resp. super-critical). 

 

4 Numerical Simulations 

We will use numerical simulations to support our theoretical conclusions for system (9) in this part, which 

will include diagrams of bifurcation, phase portraits, MLEs and FDs. 

Example 1: We choose the values of the parameters as ܽ ൌ 2.05, ܾ ൌ 1.61, ߙ ൌ 0.5896 and ,  varies ߩ

in the range 0.38 ൑ ߩ ൑ 0.78. We find a fixed point ܧሺכݔ, ሻכݕ ൌ ሺ1.61,0.346826ሻ and the bifurcation 

point for the system (9) is ߩி ൌ 0.4255. The eigenvalues are ߣଵ,ଶ ൌ െ1,െ0.0641301. The corresponding 

eigenvectors are  

 ଶ~ሺ0.341808,0.93977ሻ்ݍ ଵ~ሺെ0.834056,0.551679ሻ்andݍ

For ൏ ,ଵݍ ଶݍ ൐ ൌ 1, then we can take the normalized factor ߛி ൌ 4.28515. 

From (17), we get ݈ଵሺିߩሻ ൌ 0.579167 ൐ 0. Therefore, the Flip bifurcation is sub-critical and the 

requirements of Theorem 1 is fulfilled. 

We can observe from Fig. 1(a-b) that fixed point stability occurs for ߩ ൏ ߩ ி, loses its stability atߩ ൌ  ,ிߩ

and a period doubling phenomenon leads to chaos for ߩ ൐  ி. Fig. 1(c-d) shown MLEs and FD related toߩ

Fig. 1(a-b). We note the occurrence of the period -2, -4, -8, and -16 orbits and chaotic set for different values 

of ߩ. The status of stable, periodic, or chaotic dynamics are compatible with sign in Fig. 1 (c-d), as defined 

by the Maximum Lyapunov Exponent. The phase portrait of bifurcations diagrams corresponding to Fig. 1 

for different values of ߩ א ሾ0.38,0.78ሿ depicted in Fig. 2. 

 

 

 (a) 

 

 (b) 
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 (a) 

 

 (b) 

 (c) (d) 

 

Fig. 3 NS Bifurcation diagram with ܽ ൌ 0.2, ܾ ൌ 0.9, ߙ ൌ 0.5896, ߩ א ሾ0.13,0.37 ሿ ሺݔ଴, ଴ሻݕ ൌ ሺ0.9,0.891ሻ in (a) 

ሺߩ, ,ߩሻ plane (b) ሺݔ  .ሻ plane (c,d) MLEs and FDݕ
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௅ሸܨ ൌ ݇ ൅
∑ ௝ݏ
௞
௝ୀଵ

|௝ାଵݏ|
 

where ݇ is the largest integer such that ∑ ௝ݏ
௞
௝ୀଵ ൒ 0 and ∑ ௝ݏ ൏ 0௞ାଵ

௝ୀଵ  and ݏ௝’s are Lyapunov exponents. 

The fractal dimensions now have the form for the system (9): 

௅ሸܨ ൌ 2 ൅
ଶݏଵ൅ݏ
|ଷݏ|

 

Increasing the value of the parameter ߩ results in an unstable system dynamics for the fractional order 

glycolysis model because the chaotic dynamics of the system (9) (see Fig. 4) are quantized with the sign of the 

FD (see Fig. 3(d)). 

 

5 Chaos Control 

Controlling chaos is a challenging issue. For controlling chaos in fractional order glycolysis model we 

introduce OGY control strategy, taking ܽ as a control parameter. We reformat system (9) as follows in order 

to use the OGY approach first described by Edward et al. (1990):  

௡ାଵݔ                      ൌ ௡ݔ ൅
ఈߩ

Γሺ1 ൅ ሻߙ
ሺܽݕ௡ െ ௡ݔ ൅ ௡ሻݕ௡ଶݔ ൌ ଵ෥ݖ ሺݔ, ,ݕ ܽሻ 

௡ାଵݕ                      ൌ ௡ݕ ൅
ఈߩ

Γሺ1 ൅ ሻߙ
ሺܾ െ ௡ݕܽ െ ௡ሻݕ௡ଶݔ ൌ ଶ෥ݖ ሺݔ, ,ݕ ܽሻ                                        ሺ26ሻ 

where ܽ stands for a parameter used to regulate chaos. Additionally, ܽ is constrained to exist in a certain 

narrow interval |ܽ െ ܽ଴| ൏ ߴ with ߴ ൐  0 and ܽ଴ denotes the nominal value associated with the chaotic 

zone. To direct the trajectory towards the intended orbit, we use the stabilizing feedback control approach. 

Consider the possibility that the system's ሺ9ሻ unstable fixed point ሺݔା,  ାሻ is located in an area of chaosݕ

brought on by the appearance of a Neimark-Sacker bifurcation, then the system ሺ29ሻ can be approximated 

by the following linear map in the vicinity of the unstable fixed point ሺݔା,   :ାሻݕ

൤
௡ାଵݔ െ ାݔ

௡ାଵݕ െ ାݕ
൨ ൎ ሚܣ ൤

௡ݔ െ ାݔ

௡ݕ െ ାݕ
൨ ൅ ෨ሾܽܤ െ ܽ଴ሿ 

where,          ܣሚ ൌ ቎

డ௭భ෦ሺ௫,௬,௔ሻ

డ௫

డ௭భ෦ሺ௫,௬,௔ሻ

డ௬
డ௭మ෦ሺ௫,௬,௔ሻ

డ௫

డ௭మ෦ሺ௫,௬,௔ሻ

డ௬

቏ ൌ

ۏ
ێ
ێ
ێ
1ۍ ൅

ሺି௔ା௕మሻ
ഐഀ

Γሺభశഀሻ

௔ା௕మ
ሺܽ ൅ ܾଶሻ

ఘഀ

Γሺଵାఈሻ

ିଶ௕మ ഐഀ

Γሺభశഀሻ

௔ା௕మ
1 െ ሺܽ ൅ ܾଶሻ

ఘഀ

Γሺଵାఈሻے
ۑ
ۑ
ۑ
ې

 

and  

෨ܤ ൌ ൦

ଵ෥ݖ߲ ሺݔ, ,ݕ ܽሻ
߲ܽ

ଶ෥ݖ߲ ሺݔ, ,ݕ ܽሻ
߲ܽ

൪ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ܾ

ఘഀ

Γሺଵାఈሻ

ܽ ൅ ܾଶ

െܾ
ఘഀ

Γሺଵାఈሻ

ܽ ൅ ܾଶ ے
ۑ
ۑ
ۑ
ۑ
ې

 

The subsequent matrix is calculated to determine if the system (26) is controllable: 

ሚܥ ൌ :෨ܤൣ ෨൧ܤሚܣ ൌ

ۏ
ێ
ێ
ێ
ۍ ௕ ഐഀ

Γሺభశഀሻ

௔ା௕మ
ܾ

ఘഀ

Γሺଵାఈሻ
ቆെ

ఘഀ

Γሺଵାఈሻ
൅

௔ି௔ ഐഀ

Γሺభశഀሻ
ା௕మቀଵା ഐഀ

Γሺభశഀሻ
ቁ

ሺ௔ା௕మሻమ
ቇ

ିଶ௕ ഐഀ

Γሺభశഀሻ

௔ା௕మ

௕ ഐഀ

Γሺభశഀሻ
ቆ௔మ ഐഀ

Γሺభశഀሻ
ା௔ቀିଵାଶ௕మ ഐഀ

Γሺభశഀሻ
ቁା௕మቀିଵାሺିଶା௕మሻ ഐഀ

Γሺభశഀሻ
ቁቇ

ሺ௔ା௕మሻమ ے
ۑ
ۑ
ۑ
ې

. 

At positive fixed point, ܥሚ has rank 2. Assume that ሾܽ െ ܽ଴ሿ ൌ െܭ෩ ൤
௡ݔ െ ାݔ

௡ݕ െ ାݕ
൨, where ܭ෩ ൌ ሾߪଵሷ ଶሷߪ ሿ, then 
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system ሺ26ሻ can be written as  ൤
௡ାଵݔ െ ାݔ

௡ାଵݕ െ ାݕ
൨ ൎ ሚܣൣ െ ෩൧ܭ෨ܤ ൤

௡ݔ െ ାݔ

௡ݕ െ ାݕ
൨ 

The appropriate controlled system of ሺ9ሻ is also provided by 

௡ାଵݔ             ൌ ௡ݔ ൅
ఈߩ

Γሺ1 ൅ ሻߙ
ሺሺܽ଴ െ ଵሷߪ ሺݔ௡ െ ାሻݔ െ ଶሷߪ ሺݕ௡ െ ௡ݕାሻሻݕ െ ௡ݔ ൅  ௡ሻݕ௡ଶݔ

௡ାଵݕ                                   ൌ ௡ݕ ൅
ఈߩ

Γሺ1 ൅ ሻߙ
ሺܾ െ ሺܽ଴ െ ଵሷߪ ሺݔ௡ െ ାሻݔ െ ଶሷߪ ሺݕ௡ െ ௡ݕାሻሻݕ െ  ௡ሻ        ሺ27ሻݕ௡ଶݔ

Furthermore, the system's fixed point ሺݔା,  ାሻ is locally asymptotically stable if the modulus of the matrix'sݕ

൫ܣሚ െ ሚܣ෩൯ eigenvalues is smaller than 1. The regulated system’s ሺ27ሻ Jacobian matrix ሺܭ෨ܤ െ  ෩ሻ can beܭ෨ܤ

expressed as follows: 

ሚܣ െ ෩ܭ෨ܤ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 ൅ ቆെ1 ൅

2ܾଶ

ܽ ൅ ܾଶ
ቇ

ఈߩ

Γሺ1 ൅ ሻߙ
െ
ܾ

ఘഀ

Γሺଵାఈሻ
ଵሷߪ

ܽ ൅ ܾଶ
ሺܽ ൅ ܾଶሻ

ఈߩ

Γሺ1 ൅ ሻߙ
െ
ܾ

ఘഀ

Γሺଵାఈሻ
ଶሷߪ

ܽ ൅ ܾଶ

െ
2ܾଶ

ఘഀ

Γሺଵାఈሻ

ܽ ൅ ܾଶ
൅
ܾ

ఘഀ

Γሺଵାఈሻ
ଵሷߪ

ܽ ൅ ܾଶ
1 ൅ ሺെܽ െ ܾଶሻ

ఈߩ

Γሺ1 ൅ ሻߙ
൅
ܾ

ఘഀ

Γሺଵାఈሻ
ଶሷߪ

ܽ ൅ ܾଶ ے
ۑ
ۑ
ۑ
ۑ
ې

 

The characteristic equation of the Jacobian matrix ܣሚ െ  ෩ is given byܭ෨ܤ

ሷଶߣ െ ൭2 ൅ ሺെܽ െ ܾଶሻ
ఘഀ

Γሺଵାఈሻ
൅ ቀെ1 ൅

ଶ௕మ

௔ା௕మ
ቁ

ఘഀ

Γሺଵାఈሻ
െ

௕ ഐഀ

Γሺభశഀሻ
ఙభሷ

௔ା௕మ
൅

௕ ഐഀ

Γሺభశഀሻ
ఙమሷ

௔ା௕మ
൱ ሷߣ ൅

ଵ

௔ା௕మ
൬ܽ ൅ ܾଶ െ ሺܽ ൅ ܽଶ െ

ܾଶ ൅ 2ܾܽଶ ൅ ܾସሻ
ఘഀ

Γሺଵାఈሻ
൅ ሺܽଶ ൅ 2ܾܽଶ ൅ ܾସሻ ቀ

ఘഀ

Γሺଵାఈሻ
ቁ
ଶ
െ ܾ

ఘഀ

Γሺଵାఈሻ
ଵሷߪ െ ܾ ቀെ1 ൅

ఘഀ

Γሺଵାఈሻ
ቁ

ఘഀ

Γሺଵାఈሻ
ଶሷߪ ቁ ൌ 0                

(28) 

Assume ߣଵሷ  and ߣଶሷ  be the roots of the equation ሺ28ሻ, then  

ଵሷߣ ൅ ଶሷߣ ൌ 2 ൅ ሺെܽ െ ܾଶሻ
ఘഀ

Γሺଵାఈሻ
൅ ቀെ1 ൅

ଶ௕మ

௔ା௕మ
ቁ

ఘഀ

Γሺଵାఈሻ
െ

௕ ഐഀ

Γሺభశഀሻ
ఙభሷ

௔ା௕మ
൅

௕ ഐഀ

Γሺభశഀሻ
ఙమሷ

௔ା௕మ
          (29) 

ଵሷߣ ଶሷߣ ൌ
1

ܽ ൅ ܾଶ
ቆܽ ൅ ܾଶ െ ሺܽ ൅ ܽଶ െ ܾଶ ൅ 2ܾܽଶ ൅ ܾସሻ

ఈߩ

Γሺ1 ൅ ሻߙ
൅ ሺܽଶ ൅ 2ܾܽଶ ൅ ܾସሻ ൬

ఈߩ

Γሺ1 ൅ ሻߙ
൰
ଶ

െ ܾ
ఈߩ

Γሺ1 ൅ ሻߙ
ଵሷߪ െ ܾ ൬െ1 ൅

ఈߩ

Γሺ1 ൅ ሻߙ
൰

ఈߩ

Γሺ1 ൅ ሻߙ
ଶሷߪ ቇ                                  ሺ30ሻ 

The lines of minimal stability for the appropriate controlled system are then obtained by taking ߣଵሷ ൌ േ1 and 

ଵሷߣ ଶሷߣ ൌ 1. Additionally, these limitations guarantee that ߣଵሷ  and ߣଶሷ  are inside the open unit disk. Consider 

that ߣଵሷ ଶሷߣ ൌ 1, then ሺ30ሻ gives 

ଵሸܭ ൌ
1

ܽ ൅ ܾଶ
ఈߩ

Γሺ1 ൅ ሻߙ
൬െሺܽ ൅ ܽଶ െ ܾଶ ൅ 2ܾܽଶ ൅ ܾସሻ ൅ ሺܽଶ ൅ 2ܾܽଶ ൅ ܾସሻ

ఈߩ

Γሺ1 ൅ ሻߙ
െ ଵሷߪܾ

െ ൬ܾ െ ܾ
ఈߩ

Γሺ1 ൅ ሻߙ
൰ߪଶሷ ൰ 

Using the assumption that ߣଵሷ ൌ 1, ሺ29ሻ and ሺ30ሻ result in: 

ଶሸܭ =
ଵ

௔ା௕మ
൬4ܽ ൅ 4ܾଶ െ ሺ2ܽ ൅ 2ܽଶ െ 2ܾଶ ൅ 4ܾܽଶ ൅ 2ܾସሻ

ఘഀ

Γሺଵାఈሻ
൅ ሺܽଶ ൅ 2ܾܽଶ ൅ ܾସሻ ቀ

ఘഀ

Γሺଵାఈሻ
ቁ
ଶ
െ

2ܾ
ఘഀ

Γሺଵାఈሻ
ଵሷߪ െ ܾ ቀെ2 ൅

ఘഀ

Γሺଵାఈሻ
ቁ

ఘഀ

Γሺଵାఈሻ
ଶሷߪ ቁ 

Taking ߣଵሷ ൌ െ1 as the final step, we have from Eqs. ሺ29ሻ and ሺ30ሻ 

ଷሸܭ ൌ െ
ቀ

ఘഀ

Γሺଵାఈሻ
ቁ
ଶ
ሺሺܽ ൅ ܾଶሻଶ െ ଶሷߪܾ ሻ

ܽ ൅ ܾଶ
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Then, for specific parametric values, stable eigenvalues are found in the triangle in the ߪଵሷ ଶሷߪ െ plane enclosed 

by the straight lines ܭଵ,ሸ ଶሸܭ  and ܭଷሸ . 

Example 4: To talk about the OGY feedback control technique for systems ሺ9ሻ, we choose ܽ଴ ൌ

0.0808, ܾ ൌ 0.9, ߙ ൌ 0.5896 and ߩ ൌ 0.1758. In this instance, the unstable system ሺ9ሻ contains a single 

positive fixed point ሺݔା, ାሻݕ ൌ ሺ0.9, 1.01033ሻ. Following that, a matching controlled system is provided by 

 

௡ାଵݔ          ൌ ௡ݔ ൅ 0.4002 ሺሺ0.0808 െ ଵሷߪ ሺݔ௡ െ 0.9ሻ െ ଶሷߪ ሺݕ௡ െ 1.01033ሻሻݕ௡ െ ௡ݔ ൅  ௡ሻݕ௡ଶݔ

௡ାଵݕ          ൌ ௡ݕ ൅ 0.4002ሺ0.9 െ ሺ0.0808 െ ଵሷߪ ሺݔ௡ െ 0.9ሻ െ ଶሷߪ ሺݕ௡ െ 1.01033ሻሻݕ௡ െ  ௡ሻ       (31)ݕ௡ଶݔ

where ܭ෩ ൌ ሾߪଵሷ ଶሷߪ ሿ  be the gain matrix. We get, ܣሚ ൌ ቂ 1.3276 0.356498
െ0.7278 0.643502

ቃ ෨ܤ , ൌ ቂ
0.404333
െ0,404333ቃ  and 

ሚܥ ൌ ቂ 0.404333 0.392649
െ0.808666 െ0.554463

ቃ. It is then simple to verify that the rank of the matrix ܥሚ is 2. Consequently, 

the system ሺ31ሻ can be controlled. Afterward, the controlled system's ሺ31ሻ Jacobian matrix is provided by  

ሚܣ െ ෩ܭ෨ܤ ൌ ൤
1.3276 െ ଵሷߪ0.404333 0.356498 െ ଶሷߪ0.404333
െ0.7278 ൅ ଵሷߪ0.404333 0.643502 ൅ ଶሷߪ0.404333

൨ 

Furthermore, the marginal stability's lines ܭଵ,ሸ ଶሸܭ  and ܭଷሸ are given by: 

ଵሸܭ ൌ 0.113772 െ ଵሷߪ0.404333 ൅ ଶሷߪ0.242519 ൌ 0 

ଶሸܭ ൌ 4.08487 െ ଵሷߪ0.808666 ൅ ଶሷߪ0.6468526 ൌ 0 

and 

ଷሸܭ ൌ െ0.142671 ൅ ଶሷߪ0.161814 ൌ 0 

The stable triangular region for the controlled system ሺ33ሻ is then depicted in Fig. 7 and is bounded by the 

marginal lines ܭଵ,ሸ ଶሸܭ  and ܭଷሸ . 

 

 

 

    (a) 

 

      (b) 

 

     (c) 

 

     (d) 

 

Fig. 7 Control of system (27) aberrant trajectories. (a) The ߪଵሷ ଶሷߪ െ plane stability zone, (b-c) the time series for the states ݔ 

andݕ, respectively, (d) Phase diagram of system (27). 
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6 Discussion 

This study discusses a novel fractional order glycolysis model. From the Caputo fractional derivative notion, 

such a fractional order model is derived. By using the center manifold theorem and bifurcation theory, we 

demonstrate that if ߩ fluctuates around the sets ܲܦா or ܰܵா, the system (9) can undergo a bifurcation (flip 

or NS) at a certain positive fixed pointܧ.The model shows a number of complex dynamical behaviors as ߩ 

and ߙ are changed, such as the appearance of flip and N-S bifurcations, period-2, 4, 8, 10, 11, 14 and 16 

orbits, quasi-periodic orbits, attracting invariant circle and chaotic sets. Through the calculation of maximal 

Lyapunov exponents and fractal dimension, we are able to affirm the presence of chaos. Additionally, we can 

observe that selecting the right value of ߩ helps stabilize the dynamical system (9). The two bifurcations 

lead the system to abruptly transition from steady state to chaotic dynamical behavior via periodic and 

quasi-periodic states and open pathways to chaos; in other words, chaotic dynamics occur or vanish 

simultaneously with the formation of bifurcations. Finally, in order to remove unstable system trajectories, 

we employ a OGY control method. Exploring multiple parameter bifurcation in the system is still a difficult 

topic, though. Future research on this topic is anticipated to yield additional analytical findings. 
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