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Abstract 

For the comparative analysis of proteins, their proper clustering, and evolutionary relationships require 

analysis of their sequences. We used a mathematical parameter termed a similar factor to create a similar 

degree matrix of ND6 protein sequences taken from eight different species in this paper. We built a network 

out of the matrix to analyze their evolutionary and similarity trends with each other. By observing the various 

centrality measures, the correlation between multiple centrality measures and different network parameter 

shows that our network is consistent with the known evolution fact of ND6 protein sequences.  
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1 Introduction 

The biological systems in nature are formed up of cells, with each cell's chromosomes serving as a core for 

living beings. Chromosomes are the aggregation of genes (DNA sequences), each creating a specific protein. 

Proteins are linear sequences of amino acids, essential building blocks and operating components of living 

organisms. The three-base genetic code consists of four nitrogenous bases: thymine T or uracil U, adenine A, 

cytosine C, and guanine G. A codon is a unit that consists of three nitrogenous bases. A codon is a three-letter 

code that represents each amino acid. The genetic code is a set of codons that specifies which amino acids are 

needed to generate a particular protein. Overall, 61 codon triplets correspond to the 20 amino acids 

Phenylalanine (P), Leucine (L), Isoleucine (I), Methionine (M), Valine (V), Serine (S), Proline (P), Threonine 

(T), Alanine (A), Tyrosine (Y), Histidine (H), Glutamine (Q), Asparagine (N), Lysine (K), Aspartic acid (D), 

Glutamic acid (E), Cysteine (C), Tryptophan (W), Arginine (R), Glycine (G), with the other three triplets, 

UAA, UAG, and UGA, being known as stop codons or nonsense codons. These nonsense and stop codons do 

not affect forming an amino acid. Codon degeneracy is a mechanism in which different codons code for the 

same amino acid. Amino acid sequence analysis is crucial for understanding protein structure and function in 
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the cell. So, the study of protein sequences for similarity and dissimilarity is essential because proteins with 

similar sequences usually have identical structures. 

There are two methods of sequence comparisons: one is alignment-based computer oriented and the other 

is alignment-free. The alignment-based approaches, however, have a considerable computational cost. 

Alignment-free graphical representation contributes equally to outcomes and has a low processing cost. Since 

1983, several researchers have represented DNA and protein sequences in various dimensional spaces (Hamori 

and Ruskin, 1983; Hamori, 1985; Gates, 1986; Leong and Morgenthaler, 1995; El-Lakkani and El-Sherif, 2013; 

Yao et al., 2009). Many distance matrices and mathematical descriptors were provided for numerical and 

graphical comparisons by treating each nucleotide and amino acid in a given DNA and protein sequence as a 

point in different dimension spaces (Bai and Wang, 2006; Abo-Elkhier et al., 2019; Pearson, 2013; Bajusz et 

al., 2021). Xie et al. (2012) proposed a novel approach for assessing the similarity/dissimilarity of protein 

sequences based on the protein sequence's conditional probability. The unique method was demonstrated using 

the protein sequences of eight species' ND6 (NADH dehydrogenase subunit 6) proteins. Gupta et al. (2014) 

introduced a two-dimensional graphical representation of protein sequences. The recommended approach is 

evaluated on ND6 protein sequences from eight different species. Their graphical representation is used to 

build a probabilistic distribution of protein sequences and measure sequence similarity using relative entropy 

(Kullaback-Leibler divergence). Ali et al. (2016) created an amino acid distance matrix and demonstrated that 

the network derived from the distance matrix depicted the amino acid evolutionary trend. 

Similarly, the evolutionary homology of the ND6 protein sequences taken from eight different species is 

investigated in this paper by various graph theories concept based on aspects of their network. Here, we restrict 

our study to only a few protein sequences homology. The following is how the paper is structured: In section 2, 

we go over some basic graph theory concepts and several centrality measures. Section 3 designs a network in 

protein sequences based on a similar degree matrix and examines several centrality measurements in the 

network. Further, we discuss several network parameters of the protein sequence network in section 4, and 

finally, we gave the paper's conclusion in section 5.  

 

2 Material and Methods  

2.1 Some basic concepts of graphs 

An undirected graph  ܩ ൌ ሺܸ,  ሻ (Bertman and Jungck, 1979) has a finite number of vertices ܸ and a finiteܧ

number of edges ܧ  ك  ܸ ൈ  ܸ. The vertices ݑ and ݒ are said to be incident with the edge ݁ and next to each 

other if an edge ݁  ൌ   ሺݑ,  is the collection of all vertices near ݑ ሻ ofݑሻ links them. The neighbourhood ܰሺݒ

 is the ܧ ߳ ݁ of edges, where ܧ is made up of a set ܸ of vertices and a set ,ܩ A directed graph, or digraph .ݑ

direction of each edge in the graph ܩ. If no edge connects a vertex to itself, the graph is said to be loop-free. A 

graph's adjacency matrix A is a ሺ݊ ൈ ݊ሻ matrix, with ܽ௜௝= 1 if and only if ሺ݅, ݆ሻ א and ܽ௜௝ ,ܧ ൌ  0  otherwise 

(Zhang, 2016, 2018). Any undirected graph's adjacency matrix is symmetric. The degree of a vertex ݒ is 

defined as the number of edges with ݒ as one of their end nodes. A walk is a finite alternating series of 

vertices and edges that starts and ends with vertices and has each edge coincide with the vertices before and 

after it. In a walk, no edges emerge more than once. However, a vertex can occur several times. Starting and 

ending vertices are initial and terminal vertices in a walk. If the initial and terminal vertices coincide, the walk 

is closed; otherwise, it is open. A walk is said to be a path, if it does not have any repeating vertices. A walk is 

said to be the trail, if it has no repeated edges. A path with the shortest or geodesic length between two vertices 

,ݑ  .is called a shortest or geodesic path. A graph is linked if every pair of its vertices can be walked between ݒ

2.2 Centrality in protein sequence network graph  

2.2.1 Degree centrality  ሺ݀݁݃ሺ݇ሻሻ (Freeman, 1978) is the optimal topological index, referring to the range of 
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nodes directly adjacent to a given node ݒ, where neighbouring means are attached. The nodes that are directly 

linked to a given node ݒ are also known as the node's first neighbours. As a result, the degree refers to the 

number of adjoining corners of the incidence (Shams and Khansari, 2014; Zhang, 2016, 2018; Haliki, 2021). 

Biologically, the degree allows a quick estimation of a node's regulatory importance. For example, in a protein 

sequence network, a very high degree protein sequence is linked with other sequences, indicating a crucial role 

in the origin and their evolution. 

2.2.2 Closeness Centrality ሺܥ௖௟௢ሺݒሻሻ (Freeman, 1978) of a node ݒ is derived by calculating the optimal route 

between the node and the rest of the network's nodes, and then combining them. When this value is obtained, 

the reciprocal value is calculated to ensure that the higher values in terms of node closeness have a positive 

significance (Zhang, 2016, 2018; Haliki, 2021). Biologically, the closeness of nodes in the protein 

sequence network can be viewed as the vital node that can easily commute with the other nodes that share a 

close evolutionary relationship. 

2.2.3 Betweenness Centrality ሺݓݐܾܥሺݒሻሻ (Freeman, 1978) measures how central an edge is. Given an edge e, 

the couples of nodes ሺ1ݒ,  and going through the 2ݒ and 1ݒ 2ሻ and the number of shortest paths betweenݒ

edges ݁ are considered while calculating. The values are then connected to the total number of shortest paths 

that connect 1ݒ  and 2ݒ. As a result, an edge can only be traversed by one path connecting 1ݒ and 2ݒ, but if 

this path is the only one connecting 1ݒ and 2ݒ, the edge will have a greater betweenness value (Shams and 

Khansari, 2014; Zhang, 2016, 2018; Haliki, 2021). Biologically, betweenness centrality is the process of 

determining which nodes in a protein sequence network control the flow of evolutionary information. More 

similar pairs of protein sequences (nodes) are connected to it. 

2.2.4 Eigenvector Centrality (Freeman, 1978) is an index of node centrality. It assigns comparative results to 

all network nodes based on the notion that connections to high-scoring nodes contribute more to the node score 

than equal links to low-scoring nodes. The definition is recursive: a high Eigenvector value means that a node 

has a several neighbourhoods with high Eigenvector value. A high Eigenvector centrality indicates that the 

nodes are being visited while traversing and are well connected. Biologically, the eigenvector centrality of 

nodes in a protein sequence network contributes to the regulatory flow of evolutionary information to it’s 

neighbouring sequence and neighbours of neighbour’s and so on. In other words, the flow of information 

occurs between the closely evolved neighbour’s that have similar or identical protein sequences. 

2.3 Network of ND6 protein sequences 

Characterization of protein sequences is done to preserve the genetic information of different species that share 

a considerable amount of information in their protein-coding sequence, resulting in significant homology. So 

there arises the question of sequence similarity/dissimilarity and the distances between the sequences. The 

protein sequences are the linear chain of amino acids, and the degeneracy of the amino acids plays a vital role 

in evolution. We have created a similar degree matrix and a network to analyze their evolutionary trends by 

introducing a mathematical parameter termed as similar factor by considering amino acids degeneracy, their 

locations in the quadrants and their angular values with respect to ݔ െaxis (Fig. 1).  

In this section, we define the mathematical parameter similar factor for a protein sequence to create a 

similar degree matrix of eight ND6 protein sequence. Following several steps below, the degree of similarity 

between arbitrary protein sequences, say ܲ1 and ܲ2 is calculated. 

 

I. Amino acids are arranged alphabetically in descending order according to their 

degeneracy number 6,4,3,2,1 obtain from the standard genetic code table  

ܮ ൏ ܴ ൏ ܵ ൏ ܣ ൏ ܩ ൏ ܲ ൏ ܸ ൏ ܶ ൏ ܫ ൏ ܥ ൏ ܦ ൏ ܧ ൏ ܨ ൏ ܪ ൏ ܭ ൏ ܰ ൏ ܳ ൏ ܻ

൏ ܯ ൏ ܹ 
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II. Treating each amino acids above arrangement confined to first quadrant only, a two 

dimensional ሺ2ܦሻ vector representation all having equal positive ݔ െ co-ordinate and 

assigned angles 3°, 6°, 9°, … , 60° with the positive direction of ݔ െaxis (Fig. 1). 

III. The vector representations of the amino acids based on step I and II are depicted in the 

Fig. 1 below. 

IV. Characteristic Vectors: For an arbitrary protein sequence:  

WTFESRNDPAKDPVILWLNGGPGCSSLTGL, the corresponding set of characteristic 

vectors is ሼ ሬܸԦௐ  ሬܸԦ்   ሬܸԦி …  ሬܸሬሬԦ௅ሽ 
V. We define a matrix ܯ for ܰ different protein sequences denoted as ܲ1, ܲ2,… , ܲܰ 

whose elements ݉௜௝ are calculated as 
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where ሬܸԦ௞
௜ and ሬܸԦ௞

௝ represent the ݇th characteristics vector of the ݅th and ݇th proteins 
sequences, ݉௜௝ is the similar factor between the  ݅th and ݇th protein sequences, and the 

function ݂ሺሬܸԦ௞
௜ሻ represents the angles between the ݔ-axis and the ݇th characteristics 

vector. Similar degree matrix associated with the similar factor whose elements are given 

by the equation 2.  

VI. The eight ND6 protein sequences along with their accession number of Human 

(AP_000650), Gorilla (NP_008223), Common Chimpanzee (NP_008197), Harbor Seal 

(NP_006939), Gray Seal (NP_007080), Rat (AP_004903), Mouse (NP_904339) and 

Wallaroo (NP_007405) taken from https://www.ncbi.nlm.nih.gov/ were used for 

analyzing their evolutionary trends.  
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Fig. 1 Vector representation of twenty amino acids. 
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4 Discussion 

4.1 Centralities of the protein sequence network 

In this section, we have calculated the different centrality measures in Table 2 for the protein sequence 

network and analyze the results in terms of the evolutionary importance of the node. The number of nodes in a 

network that are likely direct descendants or antecedent of a protein sequence, say ܲ1, is determined by its 

degree of centrality. From the network in Fig. 2 we see that the node 7ܣ has the highest degree centrality. So 

in the process of evolution the nodes 1ܣ, ,2ܣ  are probable 7ܣ which are first neighbour’s of 6ܣ and 3ܣ

immediate predecessor or successor i.e. the protein sequences of 1ܣ, ,2ܣ  have close evolutionary 6ܣ ݀݊ܽ 3ܣ

relationship with 7ܣ. 

 

 

Table 2 Centrality measure of protein sequence network             Table 3 Correlation coefficient of centrality measures 

Vertex 

Degree 

Centrality 

 (ௗܥ)

Closeness 

Centrality 

 (௖௟ܥ)

Betweenness 

Centrality 

 (௕௪௧ܥ)

Eigenvector 

Centrality (ܥఒ)

 A1 3  0.8  0  0.876543

A2 3  0.8  0  0.876543

A3 3  0.8  0  0.876543

A4 1  1  0  0.154321

A5 1  1  0  0.154321

A6 1  0.571429 0  0.320988

A7 4  1  3  1

A8 0  0  0  0

   

 

ௗܥ  ௖௟ܥ  ௕௪௧ܥ ఒܥ

ௗܥ 1 0.1226  0.606977  0.919545

௖௟ܥ 0.1226 1 
0.305126 

 

0.331888

௕௪௧ܥ 0.606977 0.305126  1 
0.468935

ఒܥ 0.919545 0.331888  0.468935  1

         

   Closeness centrality of the node in a network refers to the close distances to all other nodes through which 

flow of evolutionary information occurs between the nodes (Yang and Zhang, 2022). Higher the closeness 

centrality value of the node the more actively it can communicate with other nodes in the network. In our 

network, the closeness centrality of the node A7, A4, and A5 are higher than another node. So in the process of 

evolution more genetic information is easily communicable to the rest of the nodes through them or vice versa. 

   The centrality of a node's betweenness in a network gives us the contribution it has in transmission of the 

evolutionary information in the network (Xin and Zhang, 2021). Higher the betweenness centralities of the 

node more the similar pairs of nodes are connected to it through evolutionary process. In our network, 7ܣ has 

the highest betweenness centrality value and highest degree value, so many shortest paths are linked through it 

connecting the similar protein sequences node in the network. 

   Eigenvector centrality in a network estimates the distributive impact of nodes. A high eigenvector 

centrality measure of a nodes indicates that the nodes itself is connected to its neighbours which themselves 

have high eigenvector centrality value. In our network, 7ܣ has the highest eigenvector centrality followed by 

,1ܣ ,2ܣ  indicating that information flow occurs between the closely evolved neighbour’s that ,6ܣ and 3ܣ

have the similar protein sequences. 

4.2 Correlation analysis of the four centrality measures 

In this section, we analyze the four correlation centrality measure that we have used in our protein sequence 

network. Assortative or dissasortative analysis of a network can be known through the use of the correlation 

coefficientሺݎሻ. If the vertices with a higher degree of connectedness have a tendency to connect with other 
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vertices with a high degree of connectivity, the network is called assortative. When high-degree vertices have a 

tendency to connect with low-degree vertices, the network is said to be disassortative. The correlation 

coefficient of the four centrality measures is shown in Table 3 and all the values are in the range of െ1 to 1. 

Further, we observe from Table 3 all correlation values between the different centrality measures are strongly 

correlated except degree with closeness centrality. All values of correlation coefficients are positive, so our 

network in Fig. 2 is of assortative type where the evolutionary information is transmissible more easily than 

the dis-assortative type network. 

4.3 Network parameters 

In biological networks, a variety of network parameters are used. We only looked at three network parameter 

in this paper: clustering coefficient, degree of distribution, and skewness (Zhang, 2018). The clustering 

coefficient is a measurement that indicates how likely a network is to be separated into groups. A cluster is a 

collection of vertices that contains a large number of edges linking them. The ratio between the total numbers 

of edges ݁௜ of a node ݅ actually linking its nearest neighbours to the total number of all conceivable links 

between these nearest neighbours is the clustering coefficient ܥ௜. The total number of conceivable link is given 

by ݇௜ሺ݇௜ െ 1ሻ/2 . Mathematically, ܥ௜ ൌ
ଶ௘೔

௞೔ሺ௞೔ିଵሻ
  . A clustering coefficient has a value in the range of 

0 ൑ ௜ܥ ൑ 1, where ܥ௜ ൌ 0 for the nodes ݅ which have fewer than two neighbours and ܥ௜ ൌ 1 for nodes ݅ 

and its neighbours which are part of a group, or a completely connected group of nodes. A node with a greater 

clustering coefficient has a strong association with its neighbours, i.e. the greater the clustering coefficients of 

a node, the more connections there are among its neighbours. The clustering coefficients of all amino acids are 

listed in Table 4. It is obvious from this that protein sequences clustering coefficient is determined by their 

degree as well as by the number of direct links between two neighbouring protein sequences.  

 

 

 Table 4 Clustering coefficients of Protein sequence network      Table 5 Degree distribution of the protein sequence network 

Nodes(i)  ௜ܥ

A1 1 

A2 1 

A3 1 

A4 0 

A5 0 

A6 0 

A7 0.5 

A8 0 
 

Nodes(i)  ௜ܥ

A1 0.375 

A2 0.375 

A3 0.375 

A4 0.375 

A5 0.375 

A6 0.375 

A7 0.125 

A8 0.125 

 

 

   In our network, all the primates ሺ1ܣ, ,2ܣ  has 0.5 and the rest 7ܣ ,3ሻ has the highest equal value 1ܣ

have zero values. Again we found that the clustering coefficient of the whole network is 0.4375 which is 

almost nearer to node 7ܣ. The clustering coefficient increases with the number of connections between 

neighbours. Higher clustering coefficients in our network have a big effect on the network's nodes and delay 

the spread of evolutionary information near the neighbourhood of similar protein sequences, signifying that 

their betweenness centrality value are zero. 

   Next, we investigate the degree of distribution of each node in our network. The spread in a number of 

links or edges a node has to other nodes determines its degree in a network. The ratio of nodes in a network of 
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degree ݇ is defined as the network's degree distribution ܲሺ݇ሻ. If a network has ݊ nodes in total and ݊௞ of 

them have degree ݇, we have ܲሺ݇ሻ  ൌ  ݊௞/݊. In general; a node's degree distribution value indicates the 

probability that a specific node would have exactly ݇ relationships. In Table 5 above we have shown the 

degree of distribution of protein sequences as nodes in our network. 

   Finally, we investigate the third network parameter for our network known as skewness. Karl Pearson 

proposed the concept of quantifying skewness in 1895. Skewness is a method to estimate whether a variable's 

distribution is symmetric or asymmetric. If on either side of a curve, the variables are equidistant from the 

centre value, which is referred to as symmetry. Asymmetric refers to skewed data which is either positively or 

negatively skewed. Skewness is represented by the letter ܵ௞ . There are two forms of skewness in the 

distribution: positive skewness and negative skewness, which are determined by the values and relative 

positions of the mode, mean, and median. A positive skewed distribution is one in which the mean is the 

highest, the mode is the lowest, and the median is in the middle. Negative skewed distribution occurs when the 

mode is the highest, the mean is the lowest, and the median is in the middle. Throughout this study, we used 

Karl Pearson's skewness coefficient, which is calculated using the formula  

 

      ܵ௞ ൌ
ଷሺெ௘௔௡ିெ௘ௗ௜௔௡ሻ

ௌ௧௔௡ௗ௔௥ௗ ஽௘௩௜௔௧௜௢௡
 

 

The skewness measure has a value in the range of െ3 to ൅3. ܵ௞  ൌ  0 the distribution is symmetrical, or 

normal. ܵ௞ ൐ 0, the distribution is positively skewed. ܵ௞ ൏ 0, the distribution is skewed negatively. From 

Table 5, their Pearson’s coefficient of skewness is found to be −1.62. The negative value led us to conclude 

that the degree of distribution of the protein sequences are skewed negatively.  

 

5 Conclusion 

We attempted to study in this paper the evolutionary aspect of few protein sequences by constructing a 

network and analyzing their similarity/dissimilarity with the known sequences. Similarity analysis helps us in 

saving time and effort in re-determining the function, structure and relationship of the new sequence. The 

numerical characterization of the protein sequences helps in the construction of the ND6 protein's network, 

providing us a simple and intuitive way for analyzing and sorting the sequences. By observing the various 

centrality measures of the network, the protein sequence of the mouse has the highest centrality measure viz. 

degree, closeness, betweenness and eigenvector centrality. So we can conclude that the protein sequences of 

the mouse and their neighbouring linked sequences in the network revealed that they have some close 

evolutionary relationship. 

   We have also studied the correlation coefficient of the various centrality measures in our network and 

found that degree and closeness centrality is not strongly correlated. As a result, we may conclude that 

degree centrality is independent of the closeness centrality measures in the analysis of ND6 protein networks 

based on similar degree matrix and must be explored individually.  

   By examining the clustering value of protein sequences, we can see 2ܣ ,1ܣ and 3ܣ have a high 

clustering coefficient. As a result, in comparison to rest of the node of the network, the flow of evolutionary 

information to other node through the neighbourhood of 2ܣ ,1ܣ and 3ܣ is comparatively slow. This 

network is assortative type so evolutionary information transfer is easy. Finally, we found that the degree of 

distribution is negatively skewed. In further work, we would like to investigate the evolutionary aspects of 

more protein sequences, corona virus sequences based on different physico- chemical, classification of amino 

acids. 
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