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Abstract

Cancer is commonly acknowledged to be among the leading causes of death, and mathematical modeling has
the potential to dramatically improve experimental cancer research. To investigate the impact of quiescent
cells, we present a 3-C tumor growth model that extends the conventional Gompertz model. We used the
Monte Carlo sampling technique, namely the Latin Hypercube Sampling (LHS), to determine the most critical
parameters in the model dynamics. Our findings suggest that radiation therapy can be influenced by a variety
of factors, including the volume of quiescent cells and the radiation sensitivity coefficient. Furthermore, in
some situations, quiescent cells might transform into dividing cells, which can have a significant impact on
tumor progression.
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1 Introduction

If we try to find the prime causes of death worldwide, cancer would be one of them. Although our medical
fields have been improved a lot, some cancers are hard to overcome, for example, lung cancer (Jemal et al.,
2011a; Ferlay et al., 2015a). According to the data, there were approximately 14.1 million new instances of
cancer and 8.2 deaths associated with cancer globally during the year 2012. Using mathematics, we can
contribute to many areas of experimental cancer investigation and explore the aspect of cancer; different
mathematical models have been introduced so far (Kim et al., 2007a; Cristini, 2009a; Deisboeck and
Stamatakos, 2010a; Ira et al., 2020a; Kamrujjaman et al., 2021a; Kim et al., 2011b). Mathematical modeling
can be a potential tool to analyze the dynamics of complex systems and experiment hypotheses. Clinical data
could be used to calibrate the model (Wang et al., 2009b; Macklin et al., 2012a; Hossine et al., 2019a; Gao et
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al., 2013a), and competing hypotheses of tumorigenesis and therapy alternatives could be investigated prior to
starting clinical treatment (Rockne et al., 2010b; Enderling et al., 2007b; Cappuccio, 2006; Marcu et al., 2009c;
Powathil et al., 2012Db).

Different techniques are used for treating a cancer patient, including surgical procedures, radiation therapy,
and chemotherapy. Recently the application of radiation therapy for cancer management has become a major
interest to many investigators who use mathematical modeling to find the result. Rigorous investigations have
been done on cancer progression and its response to radiation therapy. Both stochastic models and significant
biological processes such as apoptosis and angiogenesis at the molecular level were used (Borkenstein et al.,
2004a; Harting et al., 2007c; Titz and Jeraj, 2008a; Alam et al., 2020b). The reference articles (Rockne et al,
2009d; Perez-Garcia et al., 2014a; Nawrocki and Zubik-Kowal, 2014b) represented tumor growth as diffusion
in three-dimensional space, applying the model to investigate the progression of cancer and its response to
radiation therapy focusing on glioblastoma multiforme (GBM) and low-grade glioma, which are brain tumors.
Cancer metabolic process is very complex, and the mechanism is still yet to be discovered. Scientists have
been trying since the early 1900s when mathematical modeling was projected to conduct clinical treatment to
treat cancer which has got a new dimension due to the extensive improvement in computer science technology
(Bratus et al., 2014c; Nazila and Lotfi, 2016a).

The uncontrolled multiplication of the cell leads to the emergence of cancer. Cancer cells proliferate
abnormally, affect the normal cells in the body, and eventually spread to the whole body without responding
adequately to the system controlling the healthy cell response. Since cancer could be raised due to abnormal
proliferation of any type of cells, as a result, there are over a hundred different forms of cancer, each with its
unique characteristics and clinical intervention. The most critical topic in cancer pathophysiology is the
difference between benign and malignant tumors. A benign tumor is limited to its site of origin not infecting
the nearby cells while the malignant one has the capability to infect healthy cells and spread to other organs,
which is done by the circulatory or lymphatic systems known as metastasis (Cooper et al., 2007d).

Cancer-inducing substances are known as carcinogens. Multiple complicated steps are required to develop
cancer, and many factors are responsible for this. A commonly accepted argument is that mutation of the gene
is responsible for turning a healthy cell into cancer cells despite having several controversies regarding the
initialization of cancer (Michor et al., 2004b). However, other substances cause cancer by accelerating the
proliferation of cells known as tumor promoters. A basic difference between a cancer cell and a normal cell is
that the normal cell exhibits density-dependent inhibition (DDI) in cell multiplication, meaning the normal cell
continues to be proliferated to reach a specific density level. On the other hand, cancer cells are insensitive to
the DDI (Cooper et al., 2007d).

In this study, we have considered two different models: first, the tumor growth model and its
corresponding dynamics, while in the second phase, we designed a model to reduce the tumor volume by
treatment strategy using multiple factors. The results suggest that various factors, including the volume of
quiescent cells and the radiation sensitivity coefficient, can influence radiation therapy. Moreover, in many
cases, quiescent cells might transform into dividing cells, which can significantly impact tumor progression.

The article is organized as follows: a three-component mathematical model of tumor growth is discussed
elaborately in Section 2 with a flow diagram and established theoretical results. Section 3 discussed the
inducing cell death in proliferative tumor cells or lowering tumor support to reduce tumor size significantly.
The Latin Hypercube Sampling, scheme, and heat maps are presented in Section 4. Section 5 features
computational results to visualize the tumor size upward and reduce the volume size. Finally, the results are
summarized in Section 6.
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2 Three-component (3-C) Mathematical Model

Researchers sometimes classify malignant cells into two different categories: dividing and non-dividing cells,
where the growth of the tumor depends on the first one, and the non-diving cells will be eliminated from the
body once they are dead. This type of model is known as the two-component (2-C) Model (Yoichi et al.,
2016b; Chvetsov et al., 2009e). Although the quiescent cells are overlooked here, this type of cell has a crucial
role in tumor progression. It is observed that the environment filled with nutrients is conducive for malignant
cells to proliferate. On the other hand, programmed cell death, known as apoptosis, happens when the nutrient
level is low while the tumor cells remain quiescent when the nutrient level is medium. Sometimes dividing
cells may arise from the quiescent cells that can affect the growth of tumor cells, although special
circumstances are required for this event. A mathematical model regarding nutrient ingestion and diffusion
within malignant cells has been proposed since the mid of 1960s. Several evaluations of this topic of tumor
modeling have been published in recent years (Araujo and McElwain, 2004c; Adam, 1996; Byrne, 1999a). In
fact, nutrient (in particular oxygen) diffusion limits tumor spheroid growth, leading to the angiogenesis
hypothesis. According to this theory, tumors should have their blood arteries become large; hence they must
acquire vessels from the host vasculature via angiogenesis (Carmeliet and Jain, 2000). This theory has
prompted extensive study into a possible cancer cure based on the identification of substances that inhibit
angiogenesis (Blagosklonny, 2004d). For more actual analysis, a 3-C model is proposed in this paper. The
ODE model is given by the following

Nutrition
Quescent
Cell C,

Fig. 1 (Left) 2-Component model; (right) 3-Component model.

dc,

dt

dc,
de

dc,
dt

C
= IJ.CP - /‘leln (%) - (T12 + T13)Cp + T'21Cq +r
= rlch +r— (er + rzg)cq (21)

=113Cp + 12305 —1Cy

where C, is the proliferative (dividing) cell volume, C, is the quiescent cell volume, C; is the dead or
non-dividing cell volume, r;; is the rate of change from state i to state j,n is the cell clear rate and the fresh
nutrient provided by the vasculature with rate r.

Lemma 1. The dynamic (2.1) preserves positivity.
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Cp>0,C0>0,C)>0=C,(t) >0,C,(t) >0,C4(t) >0, VE>0 (2.2)

Proof. We define, z(t) = %[Cp(t)i + C4(6)% + C4(t)2] and note that z(0) = 0. Using the chain rule we
compute
2(t) =-Cp-C,—CyCy—Cy_Cy

C
= _Cp_ [‘uCp - /‘{Cpln (?p) - (7‘12 + 7'13)Cp + T21Cq + 7']
_Cq_[rlch + r— (T21 + T23)Cq] - Cd_[r13Cp + T23Cq - T’Cd]
S HCZ_ - T'(Cp_ + Cq_) + (rlz + er)Cp_Cq_ + T'13Cp_Cd_ + T'23Cq_Cd_

Because terms as C,_C, = —Cj_ or —C,_C,, are non-positive. Therefore, we conclude that, for some
constant y > 0,

2(t) < y[C, ()2 + Co(0)2 + Ca(D)2] = yz(t)?
Because z(0) =0 and z(t) = 0, we conclude that z(t) = 0.
Lemma 2. The dynamic (2.1) is a “monotonic operator” i.e.

C,(0) > 0,C,4(0) >0,C4(0) >0

= C,(t) > 0,C,(t) > 0,(4(t) >0 Vt>0 (2.3)
Proof. Suppose,
a(t) =Cy(t)
Bt) = Co(t)
{® =Cu®

Differentiating equations (2.1) gives

C
{o':(t) = F(Cp)a —(rz trz)a+rf+, [F(Cp) =p—AK—Aln (?p)] '

{B(t) =rpa+1— (1 +123)8
{(t) =rza+ 136 —ng

(2.4)

Deducing based on the signs of a(t), 8(t) and {(t) we compute

d

I [a(®)2 + B()2 + {(t)2]

= [F,(Cp) — (112 + m3)|a(®)2 =y fa(t) - — rpaB ()= — rzad (t)- — 3B (t)-
—r(u(t)- + v(t)-) — (11 + 123)v(1)% — nw ()2

+ 1y + 13+
< [|F’(Cp) — (ryy +r13)| +r12 21 - 713 T 123

N| =

+ (0 13 + 1) [@(O2 + B2 + (2]

Because a(0)2 + (0)2 + ¢(0)2 = 0, we deduce that a ()% + B(t)% + {(t)2 = 0.

Lemma 3. ((Elisabet), Lemma 1.6) The non-trivial steady state is linearly stable for small death rate i.e.
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(113 + 133) being very small.

Alr+ 1y, + 13 +7123+7)
(r + 112 +113) (M + 113 + 123)
_ r+r,+r _

[ 12 T 113 ]Cp (2.5)
T+1‘21+T13+T23 +77

C_pz CpoK, Cpo =I.l_lln

Cq =

The zero steady state (0,0) is linearly unstable if % > (r+ 1, +113).

The following theorem is a detailed mathematical conclusion regarding the system of ordinary differential
equations concerning proliferative, quiescent, and dead cells.

Theorem 1. ((Elisabet), Theorem 1.8) We assume death rate of cells is zero, that is (r;5 + r,3) = 0. For
€,(0) > 0,C,(0) = 0,C4(0) =0 and (C,(0),C,4(0),C4(0)) # (0,0,0) the solution of system (2.1) satisfies
that

C(t) -K,t- o,

r+ 1+ 13
G

]K, t - oo,
T+ 1y

We can also extend the theorem for non-zero death rate (r;5 + 133) > 0.

3 Radiotherapy 3-C Mathematical Model

Nutrients like oxygen, glucose cannot enter inside the tumor cell once it has grown to a diameter of about
1 mm which causes cell death known as necrosis. Then the Vascular Endothelial Growth Factors (VEGF) are
released by necrotic cells, causing neovasculature to form. Nutrients can thus be delivered in greater quantities
to the tumor which helps the cells to be developed again. The concept of employing anti-angiogenetic (AA)
medications to inhibit tumor progression dates back to the 1970s (Folkman, 1972). Bevacizumab, a
monoclonal antibody, was developed in 2004. (Commercial name: Avastin) has been shown to have
anti-tumor activity, however, it is usually used in conjunction with chemotherapeutic drugs. Several studies
have come to differing outcomes AA may be effective on primary cancers by accelerating metastatic tumors,
AA scheduling, and cytotoxic medicines may have a major role). Several considerations are possible:
decreasing the vasculature causes the limited chemotherapeutic delivery towards the malignant cells. Recently
it has been revealed that instead of decreasing vasculature, AA normalizes it.

Tumors can be treated using one of two methods. Inducing cell death in proliferative tumor cells or
lowering tumor support via reduced carrying capability can both result in a significant reduction in tumor size.
Differential equation models can easily incorporate the impacts of both types of cancer therapy (Hahnfeldt et
al., 1999b):

dn

= yn — Anln (=
E—yn— nn(E)—fn
dK
E=¢n—(pKn2/3—z9Kg(t)

Here,
e ¢ isthe angiogenesis rate. It is positive, invariant by supposition.
e ¢ isthe inhibition rate. It is positive, invariant by supposition.
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e ¢ €]0,1] isthe strength of annihilation of a continuous tumor cell by the anti tumor treatment of
discussion, preferably immunotherapy or chemotherapy.
According to Hahnfeldt et al. (1999b), the diminution of angiogenesis caused by governed antiangiogenic
medications is proportional to the dose concentration g(t), which includes partially cleared concentration of
the previous dose.

g(t) =f At)e = ge
0

Here,

e A(t") is the administration rate of inhibition concentration.

e W(t—t") isthe clearance rate of inhibition concentration.
The interaction between radiation rays and tumor cells in radiotherapy is quite diverse due to the different
properties. The usual model for radiation-induced cell death after a single dose supposes that some tumor cells
die while the rest continue to proliferate. The LQ model is the most prevalent and widely utilized for X-ray or
gamma-ray (Matthias et al., 2013b; Masahiro et al., 2012c). Its formulation in terms of ordinary differential
equation is as follows

dc
- = —(yR4 + 26R3)C (3.1)
Here,
e ( isthe volume of the tumor.
e R, isthe dose of radiation.
e v is the coefficient of the linear item.
e ¢ isthe coefficient of the quadratic item.
Normally, y/& depicts the radiation sensitivity of the tumor cells. It is widely known that, tumor cells in
different phases are more or less sensitive to radiation. Hence, this article assumes that radiation beams only
affect on proliferating and quiescent cells with varying sensitivity. The system of ordinary differential

equations modelling this phenomenon is as follows:

dCy Cp 2

e uC, — AC,In (7) — (ri2 +113)Cp + 121C4 + 1 — (y1R4q + 26:R3)C,

dc

d_tq =112C, + 1 — (121 + 123)Cq — (V2Rq + 28,R3)C, (3.2)
dc,

W = 1’13Cp + T‘23Cq - T]Cd

where y4,81;v2, 0, are the radiation sensitivity of quiescent cells and dividing cells, respectively. In regular
radiotherapy, fractional radiotherapy is now the prevalent plan. It is crucial to assess tumor cell proliferation as
well as changes in quiescent cells between two fractions. The model described is hence unsuitable for
simulating the process. We thus propose a piecewise integration model for fractional radiotherapy simulation
in this paper:
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)
I

N t,
P Z U —(ledi+261R§i)Cpidt>
— 0

=1

ta C.:
Z (ft (uCpi — ACpiIn (%) — (ri2 +113)Cpi +121Cq; + r) dt) (3.3)
0

i=1

+

Here,
e R, isthe dose of radiation in each fraction.
e (0,t,) isthe time length of the radiation.
o (to ty) isthe time lapse between two fractions.

e Cp isthevolumeof C, at i*" fraction.
e C, isthevolumeof C, at i*" fraction.

N is the total number of radiotherapy fractions.
We can construct the integration model for C, in a similar fashion.

N t,
C, = Z (f — (y2Rai + 262R§i)qudt>
i=1 0
N
ta
+ Z ( (rlszi +r— (T21 + T23)qu)dt> (34)
i=1 “to

4 Sensitivity Analysis

This article performed a sensitivity analysis to test the model's (2.1) robustness to parameter values, which aids
the identification of the most crucial parameters in model dynamics. The Latin Hypercube Sampling (LHS)
scheme is utilized for parameter estimation that samples over numerous values over the topological space of
the parameters to be estimated as described in Table 1 (Marino et al., 2008b). 5000 model simulations were
run for the system of differential equations presented in by randomly selecting paired sampled values for all
LHS parameters as described in (2.1). Fig. 2 depicts the corresponding non-linear yet unmodulated interaction
among model state variables and each parameter using Partial Rank Correlation Coefficients (PRCC) and
p-values. Furthermore, if the associated p-value is smaller than 1%, the output is considered statistically
significant.
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Fig. 2 PRCC values for the 3-C model (2.1).

Fig. 2 illustrates, u,A,1,4,7, and r,5; to be the parameters those strongly influence the dynamics of tumor
growth. Parameters u and r have a positive influence; i.e. deviation of parameter is directly proportinal to
the model variables. While parameter A negatively influences the model compartments, other significant
parameters have a mixed influence on the model variables. Another significant result is shown in the following
Fig. 3 generated by utilizing the Perturbation Theory Toolbox for Systems (PeTTSy) (Domijan et al., 2016c),
which illustrates the sensitivity heat map (SHM) of the model variables concerning time, corresponding to the
model parameters. This is because the variable C, (quiescent cell volume) is the most sensitive model
variable to all factors throughout the simulation period, followed by C, (proliferative cell volume) and Cg4
(dead cell volume).

ratia max min
3.20

320 0.00

280
E 240
035 0.00 L bm

-1.60

~H1.20

0.06 0.00

0.60

0.40

25 30
Time (Days)
Fig. 3 Heat diagram of parameter and model variable sensitivity with maximum value 3.2017.

Thus, sensitivity analysis helps to conclude that in order to curtail the factors for tumor growth such as
(recruitment rate (w), and Nutrition Rate (7)), we need to amplify some therapeutic treatment strategies on
the important compartment C,, and C,.

5 Results and Discussion

This section features the topological nature of the model (3.2) under different parameters settings. Parameter
values are given in Table 1. For illustration, this article the value of the parameters to be assumed within actual
limit for a typical scenario in a human body.

Table 1 Description of parameter values used in the model (2.1).

Notation Interpretation Values/Range References
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u Recruitment rate 0.005—-0.2 Estimated
A Gompertz growth rate 0.25 - 1.50 Estimated
Rate of transition from Proliferative cell to 0.05 — 015 Estimated (Wen-song and Gang-qing,
T . — U
2 Quiescent cell 2019b)
Rate of transition from Quiescent cell to Estimated (Wen-song and Gang-ging,
21 . . 0.05—-0.15
Proliferative cell 2019b)
Rate of transition from Proliferative cell to 0.04— 0.06 Estimated (Wen-song and Gang-qing,
T . — U
h Non-dividing cell 2019b)
Rate of transition from Quiescent cell to 0.04 — 0.06 Estimated (Wen-song and Gang-ging,
T; . — U
2 Non-dividing cell 2019b)
r Nutrition Rate 0.50 — 2.50 Estimated
Estimated (Wen-song and Gang-ging,
n Cell clearance rate 0.05—-0.35
2019b)

Tumor Volume (cm? )

5.1 Model calibration without radiotherapy

Simulation and analysis for tumor growth model

Example 1. (effect of 1) We consider Equation (2.1) with = 0.005,7r, =15, = 0.1,1y3 = 1,3 = 0.05, =
0.2. We take here K = 1.0, aconstant and K = 1.2 + cos (ret). We change here the Gompertz growth rate by
50 percent and 75 percent 2 = 0.25,0.75,1.50 and observe the behavior of the tumor volume in Fig. 4.

2.5
.............................. = ‘
- 3 2 ‘ ‘ , ‘ ‘ ‘
............................... . 2
"""""""""""" 3
§ 15 F i PRRIRA ,",";’u’\l.v'w’w’w'\"u
..... 2=0.25 ~ 4 . """,‘/\, (VAT LN =02
===A=0.75 § 1 R s imem =075
—=1.50 ST ARt — =150
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50
Time (Days) Time (Days)

Fig. 4 Total tumor volume of (2.1) for different Growth rate A; (left) for K = 1.0; (right) for K = 1.2 + cos (mt).

Example 2. (effect of u) We consider Equation (2.1) with r, =1, = 0.1,13 = r,3 = 0.05,7 = 0.2. We
take here K = 1.0. We have changed recruitment rate u = 0.005,0.01,0.02 and observe the behavior of the
tumor volume in Fig. 5.
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18.7

18.65

18.6

—
so
n
n

18.5}
18.45}

18.4

Tumor Volume (cms)

18.35
—nun=1

18.3 n=2

18.25 1 1 L
0 1 2 3 4 5 6 7 8 9

Time (Days)

Fig. 5 Total tumor volume of (2.1) for different recruitment rate u.

10

Example 3. (Overall effect of r, and r,;) We consider Equation (2.1) with = 0.005,4 = 0.75,1,; =
0.1,7,5 = 1,3 = 0.05,n = 0.2. We take here K = 1.0, a constant. We know that the rate of proliferative cell
to quiescent cell ry, increase with the decrease of nutrition. That is, with high nutritions the proliferative cells
convert to the quiescent cells in a very low rate and with low nutritions the proliferative cells convert to the
quiescent cells in a very high rate. We take r;, = 0.05,0.10,0.15 to observe the behavior (Fig. 6).

-= -r12=0.05
_r12=0.1
.-.-.r12=0.15

Tumor Volume (cmg )

0 » » »
0 10 20 30 40 50 60
Time (Days)

Fig. 6 Total tumor volume of (2.1) with the of change r;,.

Similarly, we observe the change while rate of change from quiescent cells to proliferative cells r,; =
0.15,0.1,0.05. Here the quiescent cells convert to the proliferative cells in a high rate with a high nutrition

environment (Fig. 7).
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2 25
m\ N\ 2
S1s "’g
) )
15
3, 3
Q S
S N _
: L1 —r, =015
§ 0.5 E 0.5 ===y =01
ety =005
0 10 20 30 40 50 0 10 20 30 40 50

Time (Days) Time (Days)

Fig. 7 Total tumor volume of (2.1) for different nutrition rate with the of change r,, (left) for K = 1.0; (right) for K = 1.2 + cos (nt).

Example 4. (Overall effect of ;5 and r,3) We consider Equation (2.1) with = 0.005,1 = 0.75,175, =131 =
0.1,n = 0.2. We take here K = 1.0, a constant. We know that the rate of the proliferative cell to dead cells
113 increases with the decrease in nutrition. With high nutrition, the proliferative cells convert at a very low
rate to the dead cells, and with low nutrition, the proliferative cells convert to the dead cells at a high rate. This
is also the same for converting quiescent cells to dead cells. We take 1,3 = 3 = 0.05,0.10,0.15 and
observe the behavior of total tumor volume (Fig. 8).

=
7))

Tumor Volume (cnf )
[y

—T = 0.04
05 mem X ST S 0.05
STl Py 0.06
00 5 1-0 1-5 2.0 2.5 3-0 3.5 4.0
Time (Days)

Fig. 8 Total tumor volume of (2.1) with the of change of r;; and ry5.

Example 5. (Overall effect of n) We consider Equation (2.1) with = 0.005,4 = 0.75,ry, = 151 = 0.1,1y53 =
3 = 0.05. We take here K = 1.0, a constant. We change the clearance rate by 75 percent as n
0.05,0.2,0.35 and observe the behavior of the total tumor volume, see Fig. 9.
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3 4r
25
83
? §
N
1.5 E 2F
1 5
S
05 &

=

10 20 30 40 50 60 70
Time (Days)

°< >

Fig. 9 Total tumor volume of (2.1) for different clearance rate n (left) for K = 1.0; (right) for K = 1.2 + cos (nt).

5.2 Model calibration with radiotherapy
In general, the higher the dose (fractional/continuous), the better the tumor control and the faster the model

convergence. Of course, a bigger dose will injure the normal tissues around it. To optimize tumor radiotherapy,
the radiation models for normal tissues and those for the tumor must be considered.

Example 6. (Impact of fractional dose) We consider Equation (3.2) with u = 0.005,4 = 0.75,7,, =
01,1, =01, 13 =13 =0.05. We take here K = 1.2+ cos (nt),n =0.3,y; =1.5,6; =0.125,y,
2.1,6, = 0.51. We change the fractional dose R,; and observe the behavior of the total tumor volume.

20

16F —R,=L5 Gy/Day s —R =15 Gy/Day
14 —R_=2.25 Gy/Day 'g ---:R =2.25 Gy/Day
12 ——R,=3.0 Gy/Day ‘g -e-- Rd=3.ll Gy/Day
=10
10
st '
T
+ i
Y _
‘0 5 10 15 20 25 30 35 40 45 50 0 y '
5 10 15 20 25 30

Time (Days) Time (Days)

Fig. 10 Total tumor volume of (3.2) for constant r = 1.5 (left), and r = 0 (right).

Example 7. (Impact of Continuous dose) We consider Equation (3.2) with = 0.005,4= 0.75,7;, =
0.1,15; =0.1,1y3 = 1,3 = 0.05 . We take here K = 1.2+ cos(nt),n =0.3,y; = 1.5,6; = 0.125,y, =
2.1,6, = 0.51. We change the radiotherapy dose R,; and observe the behavior of the total tumor volume.
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20,
—R =0.0001 Gy/Day
15 —R =0.001 Gy/Day
—R d=0.01 Gy/Day
10
5

0 10 20 30 40 50 60 70
Time (Days)

Fig. 11 Total tumor volume of (3.2) for constant r = 1.5 (left),and r = 1 = 0 (right).

Figs 10, and 11 demonstrate that by increasing the radiation dose in each fraction (R;), the tumor volume
decreases and quickly converges to a particular volume. On the other hand, in Figure 10 (right), the tumor
volume approaches zero if we maintain the nutrition rate » = 0. Additionally, by preserving the Gompertz
growth and nutrition rate at zero for continuous dosing, the volume of tumors can be controlled to be zero.

Impact of the value of % to radiotherapy result
According to the model, the influential facts of quiescent cells on tumor radiotherapy include the initial

volume, the transition probability of quiescent cells to other cells, and g, which is the radiation sensitivity
parameters. The model's application to clinical radiation may require all of the parameters. The radiation

sensitivity of tumor cells is indicated by %- In general, the linear action of the LQ model is of greater

significance compared to the quadratic action as the % ratio increases. Under the same settings, the larger the

Y

5 ratio, the flatter the tumor control curve is, and more fractional times or dosages are required. Because of the

activity of quiescent cells in our model, the simulation results are also influenced by ;—2, the radiation
2

sensitivity of quiescent cells. We may use the model to determine that the higher the ratio of g—z, the worse the
2
radiation effect.

Example 8. We consider Equation (3.2) with = 0.005,1 = 0.75,ry, = 15, = 0.1,73 = 1,3 = 0.05. We take
here K = 1.2 + cos (nt),n = 0.3,y; = 1.5,6; = 0.125, the radiotherapy dose R; = 0.01 we take the ratio

Y2 __
5 = 4.12,3,7.

2
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K) 10 20 30 40 50
Time (Days)

Fig. 12 Total tumor volume of (3.2) for constant r = 1.5 (leftyand r = 2 = 0 (right).

Fig. 12 represents the dynamics of the tumor volume for various ratios of g_z and a constant radiation dose.
2

For r = A = 0, the volume of tumors can be maintained at a neutral level in Fig. 12 (right).

6 Summary and Concluding Remarks

In the radiation therapy model, two different divisions are available. One of them is a normal model focusing
on the initiation and progression of cancer, while the remaining one is related to the interpretation of malignant
cells and radiation particles. In the first model, the GM is considered a prominent mathematical model. The
complex biological processes could be described comprehensively with this model, which helps create a new
dimension of tumor research. Since the biomedical procedures are complex and have limited research
conditions, a basic investigation of tumor characteristics could be done with this model. It is impossible to use
all kinds of mathematical modeling from the clinical perspective without appropriate quantized model
parameters. Scientists are trying rigorously to get solutions in this aspect so that mathematical modeling can be
used in the clinical research of tumors. The interaction model tests with radiation particles and cancer cells
began in the 1960s, using an output from the widely used LQ model. Recent studies show that broad
mathematical modeling and the LQ model can be successfully coupled to predict the effect of radiation. This
paper provides a 3-C tumor model to investigate the influence of the dormant cell. The simulation results
reveal that the primary volume of the quiescent cell and the radiation sensitivity coefficient can influence
radiation therapy. By integrating a more exact model and genuine model characteristics, the 3-C tumor model
could be more useful in clinical settings. The investigations allow us to quantify the relationship between the
indexes and our model parameters. Some patient-specific factors can be retrieved and fit to real-world
biological data. This study is intended to open the way for more effective investigation of mathematical
modeling in tumor radiation therapy.
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