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Abstract 

Cancer is commonly acknowledged to be among the leading causes of death, and mathematical modeling has 

the potential to dramatically improve experimental cancer research. To investigate the impact of quiescent 

cells, we present a 3-C tumor growth model that extends the conventional Gompertz model. We used the 

Monte Carlo sampling technique, namely the Latin Hypercube Sampling (LHS), to determine the most critical 

parameters in the model dynamics. Our findings suggest that radiation therapy can be influenced by a variety 

of factors, including the volume of quiescent cells and the radiation sensitivity coefficient. Furthermore, in 

some situations, quiescent cells might transform into dividing cells, which can have a significant impact on 

tumor progression. 
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1 Introduction 

If we try to find the prime causes of death worldwide, cancer would be one of them. Although our medical 

fields have been improved a lot, some cancers are hard to overcome, for example, lung cancer (Jemal et al., 

2011a; Ferlay et al., 2015a). According to the data, there were approximately 14.1 million new instances of 

cancer and 8.2 deaths associated with cancer globally during the year 2012. Using mathematics, we can 

contribute to many areas of experimental cancer investigation and explore the aspect of cancer; different 

mathematical models have been introduced so far (Kim et al., 2007a; Cristini, 2009a; Deisboeck and 

Stamatakos, 2010a; Ira et al., 2020a; Kamrujjaman et al., 2021a; Kim et al., 2011b). Mathematical modeling 

can be a potential tool to analyze the dynamics of complex systems and experiment hypotheses. Clinical data 

could be used to calibrate the model (Wang et al., 2009b; Macklin et al., 2012a; Hossine et al., 2019a; Gao et 
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al., 2013a), and competing hypotheses of tumorigenesis and therapy alternatives could be investigated prior to 

starting clinical treatment (Rockne et al., 2010b; Enderling et al., 2007b; Cappuccio, 2006; Marcu et al., 2009c; 

Powathil et al., 2012b). 

Different techniques are used for treating a cancer patient, including surgical procedures, radiation therapy, 

and chemotherapy. Recently the application of radiation therapy for cancer management has become a major 

interest to many investigators who use mathematical modeling to find the result. Rigorous investigations have 

been done on cancer progression and its response to radiation therapy. Both stochastic models and significant 

biological processes such as apoptosis and angiogenesis at the molecular level were used (Borkenstein et al., 

2004a; Harting et al., 2007c; Titz and Jeraj, 2008a; Alam et al., 2020b). The reference articles (Rockne et al, 

2009d; Perez-Garcia et al., 2014a; Nawrocki and Zubik-Kowal, 2014b) represented tumor growth as diffusion 

in three-dimensional space, applying the model to investigate the progression of cancer and its response to 

radiation therapy focusing on glioblastoma multiforme (GBM) and low-grade glioma, which are brain tumors. 

Cancer metabolic process is very complex, and the mechanism is still yet to be discovered. Scientists have 

been trying since the early 1900s when mathematical modeling was projected to conduct clinical treatment to 

treat cancer which has got a new dimension due to the extensive improvement in computer science technology 

(Bratus et al., 2014c; Nazila and Lotfi, 2016a). 

   The uncontrolled multiplication of the cell leads to the emergence of cancer. Cancer cells proliferate 

abnormally, affect the normal cells in the body, and eventually spread to the whole body without responding 

adequately to the system controlling the healthy cell response. Since cancer could be raised due to abnormal 

proliferation of any type of cells, as a result, there are over a hundred different forms of cancer, each with its 

unique characteristics and clinical intervention. The most critical topic in cancer pathophysiology is the 

difference between benign and malignant tumors. A benign tumor is limited to its site of origin not infecting 

the nearby cells while the malignant one has the capability to infect healthy cells and spread to other organs, 

which is done by the circulatory or lymphatic systems known as metastasis (Cooper et al., 2007d). 

Cancer-inducing substances are known as carcinogens. Multiple complicated steps are required to develop 

cancer, and many factors are responsible for this. A commonly accepted argument is that mutation of the gene 

is responsible for turning a healthy cell into cancer cells despite having several controversies regarding the 

initialization of cancer (Michor et al., 2004b). However, other substances cause cancer by accelerating the 

proliferation of cells known as tumor promoters. A basic difference between a cancer cell and a normal cell is 

that the normal cell exhibits density-dependent inhibition (DDI) in cell multiplication, meaning the normal cell 

continues to be proliferated to reach a specific density level. On the other hand, cancer cells are insensitive to 

the DDI (Cooper et al., 2007d). 

In this study, we have considered two different models: first, the tumor growth model and its 

corresponding dynamics, while in the second phase, we designed a model to reduce the tumor volume by 

treatment strategy using multiple factors. The results suggest that various factors, including the volume of 

quiescent cells and the radiation sensitivity coefficient, can influence radiation therapy. Moreover, in many 

cases, quiescent cells might transform into dividing cells, which can significantly impact tumor progression. 

The article is organized as follows: a three-component mathematical model of tumor growth is discussed 

elaborately in Section 2 with a flow diagram and established theoretical results. Section 3 discussed the 

inducing cell death in proliferative tumor cells or lowering tumor support to reduce tumor size significantly. 

The Latin Hypercube Sampling, scheme, and heat maps are presented in Section 4. Section 5 features 

computational results to visualize the tumor size upward and reduce the volume size. Finally, the results are 

summarized in Section 6. 

 

214



 IAEES  

2 Three-

Research

where th

body onc

2016b; C

role in tu

cells to p

level is l

cells ma

circumsta

within m

modeling

fact, nut

hypothes

acquire v

prompted

angiogen

ODE mo

 

        

where ܥ

non-divid

nutrient p

Lemma 

            

-component 

hers sometim

he growth of 

ce they are d

Chvetsov et al

umor progres

proliferate. O

low while th

ay arise from

ances are req

malignant cell

g have been p

trient (in par

sis. Accordin

vessels from

d extensive s

nesis (Blagos

odel is given b

 

ە
ۖ
۔

ۖ
ۓ

௣ܥ݀

ݐ݀
ൌ ௣ܥߤ

௤ܥ݀

ݐ݀
ൌ ଵଶݎ

ௗܥ݀

ݐ݀
ൌ ଵଷݎ

௣ is the proܥ

ding cell volu

provided by t

1. The dynam

            

(3-C) Mathe

es classify m

the tumor de

dead. This ty

l., 2009e). Al

ssion. It is ob

n the other h

e tumor cells

m the quies

quired for th

ls has been p

published in 

rticular oxyg

g to this theo

m the host va

study into a 

sklonny, 2004

by the follow

Fig. 1 

௣ െ ௣ln ൬ܥߣ
ܥ
ܭ

௣ܥ ൅ ݎ െ ሺݎଶ

௣ܥ ൅ ௤ܥଶଷݎ െ

liferative (di

ume, ݎ௜௝ is th

the vasculatur

mic (2.1) pres

Network B

            

ematical Mod

malignant cell

epends on the

ype of model

lthough the q

bserved that th

and, program

s remain quie

cent cells th

is event. A m

proposed sinc

recent years 

gen) diffusion

ory, tumors s

asculature vi

possible can

4d). For mor

wing 

(Left) 2-Compo

௣ܥ

ܭ
൰ െ ሺݎଵଶ ൅

ଵ ൅ ௤ܥଶଷሻݎ

െ ௗܥߟ

ividing) cell 

he rate of ch

re with rate ݎ

serves positiv

Biology, 2023, 

            

del 

s into two di

e first one, an

l is known a

quiescent cells

he environme

mmed cell dea

escent when 

hat can affe

mathematical

ce the mid of

(Araujo and 

n limits tum

should have t

ia angiogene

ncer cure bas

re actual ana

 

onent model; (r

௣ܥଵଷሻݎ ൅ ଶଵݎ

volume, ܥ௤

ange from sta

 .ݎ

vity. 

13(4): 213-229

            

fferent categ

nd the non-di

as the two-co

s are overlook

ent filled with

ath, known as

the nutrient 

ect the grow

l model regar

f 1960s. Seve

McElwain, 2

mor spheroid 

their blood ar

esis (Carmeli

ed on the id

lysis, a 3-C 

right) 3-Compon

ଵܥ௤ ൅ ݎ

          

is the quies

ate i to state 

9 

            

ories: dividin

iving cells wi

omponent (2-

ked here, this

h nutrients is

s apoptosis, h

level is med

wth of tumor

rding nutrien

eral evaluatio

2004c; Adam

growth, lead

rteries becom

iet and Jain,

dentification o

model is pro

nent model. 

                       

scent cell vo

j, is the ce ߟ

            

ng and non-d

ill be elimina

-C) Model (Y

s type of cell 

s conducive f

happens when

dium. Sometim

r cells, altho

nt ingestion a

ons of this to

m, 1996; Byrn

ding to the 

me large; hen

, 2000). This

of substances

oposed in thi

                       

olume, ܥௗ is 

ell clear rate 

www.iaees.org

ividing cells,

ated from the

Yoichi et al.,

has a crucial

for malignant

n the nutrient

mes dividing

ough special

and diffusion

opic of tumor

ne, 1999a). In

angiogenesis

ce they must

s theory has

s that inhibit

is paper. The

      ሺ2.1ሻ 

the dead or

and the fresh

g

, 

e 

, 

l 

t 

t 

g 

l 

n 

r 

n 

s 

t 

s 

t 

e 

 

r 

h 

215



Network Biology, 2023, 13(4): 213-229 

 IAEES                                                                                      www.iaees.org

௣ܥ        
଴ ൐ 0, ௤ܥ

଴ ൐ 0, ௗܥ
଴ ൐ 0 ֜ ሻݐ௣ሺܥ ൐ 0, ሻݐ௤ሺܥ ൐ 0, ሻݐௗሺܥ ൐ 0, ݐ׊  ൐ 0                                          ሺ2.2ሻ 

Proof. We define, ݖሺݐሻ ൌ
ଵ

ଶ
ሻିݐ௣ሺܥൣ

ଶ ൅ ሻିݐ௤ሺܥ
ଶ ൅ ሻିݐௗሺܥ

ଶ ൧ and note that ݖሺ0ሻ ൌ 0. Using the chain rule we 

compute 

ሻݐሺݖ̇  ൌ െܥ௣ି̇ܥ௣ െ ௤ܥ௤ି̇ܥ െ ௗܥௗି̇ܥ

 ൌ െܥ௣ି ൤ܥߤ௣ െ ௣ln ൬ܥߣ
௣ܥ

ܭ
൰ െ ሺݎଵଶ ൅ ௣ܥଵଷሻݎ ൅ ௤ܥଶଵݎ ൅ ൨ݎ

 െܥ௤ିൣݎଵଶܥ௣ ൅ ݎ െ ሺݎଶଵ ൅ ௤൧ܥଶଷሻݎ െ ௣ܥଵଷݎௗିൣܥ ൅ ௤ܥଶଷݎ െ ௗ൧ܥߟ

 ൑ ௣ିܥߤ
ଶ െ ௣ିܥ൫ݎ ൅ ௤ି൯ܥ ൅ ሺݎଵଶ ൅ ௤ିܥ௣ିܥଶଵሻݎ ൅ ௗିܥ௣ିܥଵଷݎ ൅ ௗିܥ௤ିܥଶଷݎ

 

Because terms as ܥ௣ିܥ௣ ൌ െܥ௣ି
ଶ  or െܥ௣ିܥ௤ା are non-positive. Therefore, we conclude that, for some 

constant ߛ ൐ 0, 

ሻݐሺݖ̇ ൑ ሻିݐ௣ሺܥൣߛ
ଶ ൅ ሻିݐ௤ሺܥ

ଶ ൅ ሻିݐௗሺܥ
ଶ ൧ ൌ  ሻଶݐሺݖߛ

Because ݖሺ0ሻ ൌ 0 and ݖሺݐሻ ൒ 0, we conclude that ݖሺݐሻ ؠ 0. 

Lemma 2. The dynamic (2.1) is a “monotonic operator” i.e. 

௣ሺ0ሻܥ̇ ൐ 0, ௤ሺ0ሻܥ̇ ൐ 0, ௗሺ0ሻܥ̇ ൐ 0

                                     ֜ ሻݐ௣ሺܥ̇ ൐ 0, ሻݐ௤ሺܥ̇ ൐ 0, ሻݐௗሺܥ̇ ൐ ݐ׊   0 ൐ 0                                                    ሺ2.3ሻ 
 

Proof. Suppose, 

 

ሻݐሺߙ  ൌ ሻݐ௣ሺܥ̇

ሻݐሺߚ  ൌ ሻݐ௤ሺܥ̇

ሻݐሺߞ  ൌ ሻݐௗሺܥ̇

                                                                                              

Differentiating equations (2.1) gives 

     

ە
۔

ሻݐሺߙ̇ۓ ൌ ߙ௣൯ܥ൫ܨ െ ሺݎଵଶ ൅ ߙଵଷሻݎ ൅ ߚଶଵݎ ൅ ,ݎ  ൤ܨ൫ܥ௣൯ ൌ ߤ െ ܭߣ െ ߣ ln ൬
௣ܥ

ܭ
൰൨ .
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ሻݐሺߞ̇ ൌ ߙଵଷݎ ൅ ߚଶଷݎ െ ߞߟ

                      ሺ2.4ሻ 

Deducing based on the signs of ߙሺݐሻ,  ሻ we computeݐሺߞ ሻ andݐሺߚ

1
2

݀
ݐ݀
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ଶ ൅ ሻିݐሺߚ
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 െݎሺݑሺݐሻି ൅ ሻିሻݐሺݒ െ ሺݎଶଵ ൅ ሻିݐሺݒଶଷሻݎ
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Because ߙሺ0ሻି
ଶ ൅ ሺ0ሻିߚ

ଶ ൅ ሺ0ሻିߞ
ଶ ൌ 0, we deduce that ߙሺݐሻି

ଶ ൅ ሻିݐሺߚ
ଶ ൅ ሻିݐሺߞ

ଶ ؠ 0. 

Lemma 3. ((Elisabet), Lemma 1.6) The non-trivial steady state is linearly stable for small death rate i.e. 
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ሺݎଵଷ ൅  .ଶଷሻ being very smallݎ

௣തതതܥ ൌ ,ܭ௣଴ܥ ௣଴ܥ  ൌ ߤ െ ln ቈߣ
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The zero steady state ሺ0,0ሻ is linearly unstable if 
ఒ

ఓ
൐ ሺݎ ൅ ଵଶݎ ൅  .ଵଷሻݎ

The following theorem is a detailed mathematical conclusion regarding the system of ordinary differential 

equations concerning proliferative, quiescent, and dead cells. 

Theorem 1. ((Elisabet), Theorem 1.8) We assume death rate of cells is zero, that is ሺݎଵଷ ൅ ଶଷሻݎ ൌ 0. For 

௣ሺ0ሻܥ ൒ 0, ௤ሺ0ሻܥ ൒ 0, ௗሺ0ሻܥ ൒ 0 and ൫ܥ௣ሺ0ሻ, ,௤ሺ0ሻܥ ௗሺ0ሻ൯ܥ ് ሺ0, 0, 0ሻ the solution of system (2.1) satisfies 

that 

ሻݐ௣ሺܥ  ՜ ,ܭ ݐ  ՜ ∞,

ሻݐ௤ሺܥ  ՜ ൤
ݎ ൅ ଵଶݎ ൅ ଵଷݎ

ݎ ൅ ଶଵݎ
൨ ,ܭ ݐ  ՜ ∞.

 

We can also extend the theorem for non-zero death rate ሺݎଵଷ ൅ ଶଷሻݎ ൐ 0. 

3 Radiotherapy 3-C Mathematical Model 

Nutrients like oxygen, glucose cannot enter inside the tumor cell once it has grown to a diameter of about 

1 mm which causes cell death known as necrosis. Then the Vascular Endothelial Growth Factors (VEGF) are 

released by necrotic cells, causing neovasculature to form. Nutrients can thus be delivered in greater quantities 

to the tumor which helps the cells to be developed again. The concept of employing anti-angiogenetic (AA) 

medications to inhibit tumor progression dates back to the 1970s (Folkman, 1972). Bevacizumab, a 

monoclonal antibody, was developed in 2004. (Commercial name: Avastin) has been shown to have 

anti-tumor activity, however, it is usually used in conjunction with chemotherapeutic drugs. Several studies 

have come to differing outcomes AA may be effective on primary cancers by accelerating metastatic tumors, 

AA scheduling, and cytotoxic medicines may have a major role). Several considerations are possible: 

decreasing the vasculature causes the limited chemotherapeutic delivery towards the malignant cells. Recently 

it has been revealed that instead of decreasing vasculature, AA normalizes it. 

Tumors can be treated using one of two methods. Inducing cell death in proliferative tumor cells or 

lowering tumor support via reduced carrying capability can both result in a significant reduction in tumor size. 

Differential equation models can easily incorporate the impacts of both types of cancer therapy (Hahnfeldt et 

al., 1999b): 

݀݊
ݐ݀

ൌ ݊ߤ െ ln ቀ݊ߣ
݊
ܭ

ቁ െ ݊ߦ

ܭ݀
ݐ݀

ൌ ߶݊ െ ଶ/ଷ݊ܭ߮ െ ሻݐሺ݃ܭߴ
 

Here,  

 ߶ is the angiogenesis rate. It is positive, invariant by supposition. 

 ߮ is the inhibition rate. It is positive, invariant by supposition. 
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 ߦ א ሾ0,1ሿ is the strength of annihilation of a continuous tumor cell by the anti tumor treatment of 

discussion, preferably immunotherapy or chemotherapy. 

According to Hahnfeldt et al. (1999b), the diminution of angiogenesis caused by governed antiangiogenic 

medications is proportional to the dose concentration ݃ሺݐሻ, which includes partially cleared concentration of 

the previous dose. 

݃ሺݐሻ ൌ න ԝ
ஶ

଴
Λሺݐᇱሻ݁ିஏሺ௧ି௧ᇲሻ݀ݐᇱ 

Here, 

 Λሺݐᇱሻ is the administration rate of inhibition concentration. 

 Ψሺݐ െ  .ᇱሻ is the clearance rate of inhibition concentrationݐ

The interaction between radiation rays and tumor cells in radiotherapy is quite diverse due to the different 

properties. The usual model for radiation-induced cell death after a single dose supposes that some tumor cells 

die while the rest continue to proliferate. The LQ model is the most prevalent and widely utilized for X-ray or 

gamma-ray (Matthias et al., 2013b; Masahiro et al., 2012c). Its formulation in terms of ordinary differential 

equation is as follows 

                                                      
ܥ݀
ݐ݀

ൌ െሺܴߛௗ ൅ ௗܴߜ2
ଶሻܥ                                                                                    ሺ3.1ሻ 

Here, 

 ܥ is the volume of the tumor. 

 ܴௗ is the dose of radiation. 

 ߛ is the coefficient of the linear item. 

 ߜ is the coefficient of the quadratic item. 

Normally, ߜ/ߛ depicts the radiation sensitivity of the tumor cells. It is widely known that, tumor cells in 

different phases are more or less sensitive to radiation. Hence, this article assumes that radiation beams only 

affect on proliferating and quiescent cells with varying sensitivity. The system of ordinary differential 

equations modelling this phenomenon is as follows: 

               

ە
ۖ
۔

ۖ
ۓ

௣ܥ݀

ݐ݀
ൌ ௣ܥߤ െ ௣ln ൬ܥߣ

௣ܥ

ܭ
൰ െ ሺݎଵଶ ൅ ௣ܥଵଷሻݎ ൅ ௤ܥଶଵݎ ൅ ݎ െ ሺߛଵܴௗ ൅ ଵܴௗߜ2

ଶሻܥ௣

௤ܥ݀

ݐ݀
ൌ ௣ܥଵଶݎ ൅ ݎ െ ሺݎଶଵ ൅ ௤ܥଶଷሻݎ െ ሺߛଶܴௗ ൅ ଶܴௗߜ2

ଶሻܥ௤

ௗܥ݀

ݐ݀
ൌ ௣ܥଵଷݎ ൅ ௤ܥଶଷݎ െ ௗܥߟ

              ሺ3.2ሻ 

where ߛଵ, ;ଵߜ ,ଶߛ  ଶ are the radiation sensitivity of quiescent cells and dividing cells, respectively. In regularߜ

radiotherapy, fractional radiotherapy is now the prevalent plan. It is crucial to assess tumor cell proliferation as 

well as changes in quiescent cells between two fractions. The model described is hence unsuitable for 

simulating the process. We thus propose a piecewise integration model for fractional radiotherapy simulation 

in this paper: 
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Recruitment rate 0.005 ߤ െ 0.2 Estimated 

Gompertz growth rate 0.25 ߣ െ 1.50 Estimated 

 ଵଶݎ
Rate of transition from Proliferative cell to 

Quiescent cell 
0.05 െ 0.15 

Estimated (Wen-song and Gang-qing, 

2019b) 

 ଶଵݎ
Rate of transition from Quiescent cell to 

Proliferative cell 
0.05 െ 0.15 

Estimated (Wen-song and Gang-qing, 

2019b) 

 ଵଷݎ
Rate of transition from Proliferative cell to 

Non-dividing cell 
0.04 െ 0.06 

Estimated (Wen-song and Gang-qing, 

2019b) 

 ଶଷݎ
Rate of transition from Quiescent cell to 

Non-dividing cell 
0.04 െ 0.06 

Estimated (Wen-song and Gang-qing, 

2019b) 

Nutrition Rate 0.50 ݎ െ 2.50 Estimated 

Cell clearance rate 0.05 ߟ െ 0.35 
Estimated (Wen-song and Gang-qing, 

2019b) 

 

 

5.1 Model calibration without radiotherapy 

Simulation and analysis for tumor growth model 

Example 1. (effect of ߣ) We consider Equation (2.1) with ൌ 0.005, ଵଶݎ ൌ ଶଵݎ ൌ 0.1, ଵଷݎ ൌ ݎଶଷ ൌ 0.05, ߟ ൌ

0.2. We take here ܭ ൌ 1.0, a constant and ܭ ൌ 1.2 ൅ cos ሺݐߨሻ. We change here the Gompertz growth rate by 

50 percent and 75 percent ߣ ൌ 0.25,0.75,1.50 and observe the behavior of the tumor volume in Fig. 4. 

 

 

Fig. 4 Total tumor volume of (2.1) for different Growth rate ߣ; (left) for ܭ ൌ 1.0; (right) for ܭ ൌ 1.2 ൅ cos ሺݐߨሻ. 

 

Example 2. (effect of ߤ) We consider Equation (2.1) with ݎଵଶ ൌ ଶଵݎ ൌ 0.1, ଵଷݎ ൌ ଶଷݎ ൌ 0.05, ߟ ൌ 0.2. We 

take here ܭ ൌ 1.0. We have changed recruitment rate ߤ ൌ 0.005, 0.01, 0.02 and observe the behavior of the 

tumor volume in Fig. 5. 
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Fig. 7 Total tumor volume of (2.1) for different nutrition rate with the of change ݎଶଵ (left) for ܭ ൌ 1.0; (right) for ܭ ൌ 1.2 ൅ cos ሺݐߨሻ. 

 

Example 4. (Overall effect of ݎଵଷ and ݎଶଷ) We consider Equation (2.1) with ൌ 0.005, ߣ ൌ 0.75, ଵଶݎ ൌ ଶଵݎ ൌ

0.1, ߟ ൌ 0.2. We take here ܭ ൌ 1.0, a constant. We know that the rate of the proliferative cell to dead cells 

 ଵଷ increases with the decrease in nutrition. With high nutrition, the proliferative cells convert at a very lowݎ

rate to the dead cells, and with low nutrition, the proliferative cells convert to the dead cells at a high rate. This 

is also the same for converting quiescent cells to dead cells. We take ݎଵଷ ൌ ଶଷݎ ൌ 0.05, 0.10, 0.15 and 

observe the behavior of total tumor volume (Fig. 8). 

 

Fig. 8 Total tumor volume of (2.1) with the of change of ݎଵଷ and ݎଶଷ. 

 

Example 5. (Overall effect of ߟ) We consider Equation (2.1) with ൌ 0.005, ߣ ൌ 0.75, ଵଶݎ ൌ ݎଶଵ ൌ 0.1, ଵଷݎ ൌ

ଶଷݎ ൌ 0.05. We take here ܭ ൌ 1.0, a constant. We change the clearance rate by 75 percent as ߟ ൌ

0.05, 0.2, 0.35 and observe the behavior of the total tumor volume, see Fig. 9. 
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Fig. 11 Total tumor volume of (3.2) for constant ݎ ൌ 1.5 (left), and ݎ ൌ ߣ ൌ 0 (right). 

 

Figs 10, and 11 demonstrate that by increasing the radiation dose in each fraction ሺܴௗሻ, the tumor volume 

decreases and quickly converges to a particular volume. On the other hand, in Figure 10 (right), the tumor 

volume approaches zero if we maintain the nutrition rate ݎ ൌ 0. Additionally, by preserving the Gompertz 

growth and nutrition rate at zero for continuous dosing, the volume of tumors can be controlled to be zero. 

Impact of the value of 
ఈ

ఉ
 to radiotherapy result 

According to the model, the influential facts of quiescent cells on tumor radiotherapy include the initial 

volume, the transition probability of quiescent cells to other cells, and 
ఊ

ఋ
, which is the radiation sensitivity 

parameters. The model's application to clinical radiation may require all of the parameters. The radiation 

sensitivity of tumor cells is indicated by 
ఊ

ఋ
. In general, the linear action of the LQ model is of greater 

significance compared to the quadratic action as the 
ఊ

ఋ
 ratio increases. Under the same settings, the larger the 

ఊ

ఋ
 ratio, the flatter the tumor control curve is, and more fractional times or dosages are required. Because of the 

activity of quiescent cells in our model, the simulation results are also influenced by 
ఊమ

ఋమ
, the radiation 

sensitivity of quiescent cells. We may use the model to determine that the higher the ratio of 
ఊమ

ఋమ
, the worse the 

radiation effect. 

 

Example 8. We consider Equation (3.2) with ൌ 0.005, ߣ ൌ 0.75, ଵଶݎ ൌ ଶଵݎ ൌ 0.1, ଵଷݎ ൌ ݎଶଷ ൌ 0.05. We take 

here ܭ ൌ 1.2 ൅ cos ሺݐߨሻ, ߟ ൌ 0.3, ଵߛ ൌ 1.5, ଵߜ ൌ 0.125, the radiotherapy dose ܴௗ ൌ 0.01 we take the ratio 

ఊమ

ఋమ
ൌ 4.12, 3, 7. 
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Fig. 12 Total tumor volume of (3.2) for constant ݎ ൌ 1.5 (left) and ݎ ൌ ߣ ൌ 0 (right). 

 

Fig. 12 represents the dynamics of the tumor volume for various ratios of 
ఊమ

ఋమ
 and a constant radiation dose.  

 

For ݎ ൌ ߣ ൌ 0, the volume of tumors can be maintained at a neutral level in Fig. 12 (right). 

6 Summary and Concluding Remarks 

In the radiation therapy model, two different divisions are available. One of them is a normal model focusing 

on the initiation and progression of cancer, while the remaining one is related to the interpretation of malignant 

cells and radiation particles. In the first model, the GM is considered a prominent mathematical model. The 

complex biological processes could be described comprehensively with this model, which helps create a new 

dimension of tumor research. Since the biomedical procedures are complex and have limited research 

conditions, a basic investigation of tumor characteristics could be done with this model. It is impossible to use 

all kinds of mathematical modeling from the clinical perspective without appropriate quantized model 

parameters. Scientists are trying rigorously to get solutions in this aspect so that mathematical modeling can be 

used in the clinical research of tumors. The interaction model tests with radiation particles and cancer cells 

began in the 1960s, using an output from the widely used LQ model. Recent studies show that broad 

mathematical modeling and the LQ model can be successfully coupled to predict the effect of radiation. This 

paper provides a 3-C tumor model to investigate the influence of the dormant cell. The simulation results 

reveal that the primary volume of the quiescent cell and the radiation sensitivity coefficient can influence 

radiation therapy. By integrating a more exact model and genuine model characteristics, the 3-C tumor model 

could be more useful in clinical settings. The investigations allow us to quantify the relationship between the 

indexes and our model parameters. Some patient-specific factors can be retrieved and fit to real-world 

biological data. This study is intended to open the way for more effective investigation of mathematical 

modeling in tumor radiation therapy. 
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