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Abstract

Bovine mastitis, a bout of inflammation of the mammary gland in high-yield dairy cows, frequently brings on by
bacterial infections. One of the biggest illnesses that harm the dairy sector financially is mastitis, which lowers
milk production and quality. Taking into consideration the impact of mastitis on milk production and dairy
industry, research studies are already underway, but till now no concrete solution is there. It is assuming that
molecular level understanding behind the mastitis can boost the process to control the mastitis at some extent.
Thus, the goal of this scientific study was to identify immunogenic genes and their functional characterization.
Along with that study also attempts to explore the possibilities for the use of immunogenic proteins as
therapeutic targets to control mastitis. For the purpose cDNA microarray data of bovine mammary epithelial
cells after the in vitro stimulation with Escherichia coli was considered. This investigation proceeds to study
immunological responses on mammary epithelial (BME) cells. Using network based approach the investigation
pinpointed 25 essential key genes for E. coli mastitis and their contribution related to the immune response.
Through molecular docking, study also reported 33 herbal compounds with considerable affinity against toll-like
receptor (TLR) and bovine granulocyte-colony stimulating factor proteins which are critical for mastitis.

Keywords bovine mastitis; immunogenic genes; toll-like receptors; inflammation; mammary gland; E. coli;
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1 Introduction

All over the world, there has been increasing demand from consumers for healthy dairy products. Imperatively to
say, there is a need to pay attention to animal health and it has an expensive problem in global milk production
(Palii et al., 2020; Krishna et al., 2022). Inflammatory disease, i.e., bovine mastitis, is one of the common
diseases that caused significant economic losses for the global dairy industry (Barkema, 2015). There are two
sub-type of mastitis in the dairy world, i.e., Clinical and subclinical, which manifest the degree of inflammation,
and their causative factors primarily depend on bacterial pathogens (Andrews et al., 2003). Predisposing factors
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and pathogen types are crucial and have a critical role in severity and outbreak of complex and various
etiological nature of diseases whereas environment, host, pathogen combination and disease severity makes it
more complex (De Vliegher, 2012). Mastitis is caused by teat infection through bacterial pathogens, other
factors such as unhygienic milking processes, biological agents and management techniques of the herd also
contributes in infection. All these situations are responsible for the reduction of milk production (Hortet et al.,
1998). Recommendations are made to maintain the hygiene in crowds and vaccinate bovine with antibiotic
injection, although milk production is affected by the use of injection or antibiotics (Schepers and Dijkhuizen
1991; Porter et al., 2016). Bovine mastitis is a frequently received inflammatory condition involving the
mammary gland in dairy cows. It may compromise milk supply and quality while also costing more to cure
(Bhattarai et al., 2018). Research regarding the molecules, i.e., genes or proteins involve in mastitis related
inflammatory process might can boost the understanding of mastitis and help to handle it.

Pathogen-associated molecular patterns (PAMPs) are flagged by the family of proteins known as toll-like
receptors (TLRs), and they subsequently known to trigger an immune response (Mauri¢ et al., 2023). TLRs have
been recognized to the pathophysiology of bovine mastitis. TLRs members that have been most extensively
looked over in bovine mastitis are TLR2 and TLR4. While TLR4 acknowledges lipopolysaccharides (LPS) from
gram-negative bacteria, TLR2 recognizes lipoproteins and peptidoglycans from gram-positive bacteria (de
Mesquita et al., 2012). Activation of TLR2 and TLR4 promotes the synthesis of chemokines, which attract
immune cells to the site of infection, pro-inflammatory cytokines, i.e., TNF- alpha, IL-1beta, and IL-6, are also
known to get trigger by TLR2 and TLR4. However, excessive TLR activation might end up in tissue damage and
excessive inflammation, which may aggravate the severity of mastitis (Akhtar et al., 2020). Involvement of
TLR in mastitis make it one of the potential target, thus, targeting TLRs, for therapeutic purpose, might
constitute a viable method for the management of bovine mastitis. As an instance, some research investigated the
use of TLR agonists or antagonists as immunomodulators to boost or decrease the immunological response in
cows with mastitis (Li et al., 2021; Orsatti et al., 2010).

Advancement of bioinformatics resources, mainly database, offering range of information gathered from
different experiments and high throughput technologies (Katara, 2014; Yadav et al., 2020). Availability of
cDNA microarray data on bovine mastitis offers genome wide gene expression studies which can be utilized to
understand and deduce role of genes in mastitis. In silico approaches, mainly, gene enrichment and molecular
network can further extend the possibilities to get more inside of molecular process behind the disease (Verma et
al., 2020).

Considering the scenario current in silico study aims to categorize genes involved in inflammatory process,
and identifies immune-related therapeutic targets to control the disease. Along with these, study also attempts to
identify potential therapeutic herbal compounds, i.e., Aloe (Aloe barbadensis miller), Basil (Ocimum basilicum)
and Neem (Azadirachta indica) against the predicted targets to control the mastitis (Mainardi et al., 2008). To
fulfill the objectives, study considered cDNA microarray data and utilized bioinformatics tools for data analysis,
network construction, and molecular docking purpose.

2 Materials and Methodology
2.1 Datasets and resources
cDNA microarray based gene expression profile data for bovine mastitis infected with E. coli were downloaded
from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE15020,
GSE24217, GSE50685 (platform: GPL2112 Affymetrix Bovine Genome Array).

GEO Raw expression data files and the annotation files were downloaded and background correction and
quantile normalization were used for preprocessing and normalization of the gene expression data of all the
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samples.  Linear models for  microarray data (LIMMA) package of  Bioconductor
(https://ww.bioconductor.org/packages/release/bioc/html/limma.html) was used for probe summarization
(Ritchie et al., 2015). LIMMA package was also used to identify differentially expressed genes (DEGS) between
infected and healthy bovine mammary gland’s sample at 24 hour post infection with E. coli from three different
GSEs under study.

2.2 Comparison analysis of selected DEGs

The expression of selected DEGs belongs to GSE15020, GSE24217, and GSE50685 at post infection with E.
coli, were used to identify overlapping DEGs (ODEGs). Venn diagrams, developed through Venn diagram
package in R-Studio, were utilized to observe overlapping genes among the GSE.

2.3 Regulatory and PPI network analysis

To construct the regulatory network, reported miRNA and TFs against the predicted DEGs, for their regulatory
role, are screened out from available databases. The miRTarbase database was used to search miRNA, miRNA
obtained from database searching were compared with those reported in the database of cattle candidate gene
and genetic marker for milk production and mastitis. Transcription factors against the genes were collected from
‘Regulators’ database (Wang and Nishida, 2015). Predicted miRNA and TF were integrated with DEGs through
Cytoscape 3.2.0 (http://www.cytoscape.org/) to construct regulatory network, i.e., mMiRNA-DEG-TF regulatory
network.

Protein-protein interactions were predicted using the relationship between predicted ODEGs by setting the
cutoff threshold as gene pair PPI score > 0.4. PPIN among the ODEGs proteins was developed through STRING,
v11.2 and visualization and network statistics analysis was performed through Cytoscape v3.2.2.

2.4 Enrichment analysis for the ODEGs

To search the functional enrichment of ODEGs and biological pathways Database for Annotation, Visualisation
and Integrated Discovery (DAVID) was utilized. Adjusted p-value < 0.05 and gene count >= 2 were set as cutoff
criteria. Henceforth ggplot2 in ‘R’ was used to visualize a diagram as histogram for the enrichment term GO and
KEGG along with their gene counts and p-value (Yang and Zhang, 2022).

2.5 ldentification of immunogenic key genes for bovine mastitis

Plugin of Cytoscape, CytoHubba were used to rank nodes by using network features i.e., MNC, MCC, EPC,
EcCentricity and degree (Zhang, 2023). These network features were made five network topologies and these
five network topologies were combined to generate key immunogenic genes by Venn diagram.

2.6 Literature mining for experimentally (GCMS) characterized bioactive compounds

To list out experimentally characterized bioactive compounds, literature mining has been done from PubMed
database. Screening has been done for bioactive compounds belonging to three well established medicinal plants,
i.e., Aloe, Basil and Neem. In total, 147 compounds from Alog, 91 compounds from Basil, and 191 compounds
from Neem, were screened out. Further to perform structure based analysis, 3-D structures of all listed
compounds were downloaded from PubChem database.

2.7 Screening of anti inflammatory compounds from Neem, Basil and Aloe through molecular docking
To screen-out bioactive anti-inflammatory compounds from all three considered plants against identified
inflammatory causative targets, i.e., toll-like receptor-2 (PDBID: 3RG1) and bovine granulocyte colony
stimulating factor (PDBID: 1BGC). To find out the interaction affinity between bioactive compounds and target
protein molecular docking was performed through autodock vina (Hoppstadter et al., 2019).
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Fig. 1 Graphical summary of the work.

3 Results

3.1 Identification of differentially expressed genes (DEGS)

Genome wide gene expression analysis summarizes the involvement of genes in considered conditions. To find
out list of considerable genes involved in E. coli infected mastitis, attempt made to identify differentially
expressed genes across all three data sets. To minimize false positive gene selections, log2 and FC based
selection parameters were considered for DEG identification, i.e., |log2 fold change (FC)| > 1 and FDR 0.05.
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Using the cut-off criterion, in total 1177, 615, and 470 DEGs have been found from three datasets, i.e.,

GSE15020, GSE24217 and GSE50685, respectively (Fig. 2). The DEG expressions from the three dataset
GSEs were identified 247 intersect genes among three E. coli infected mastitis datasets. Additionally, the 247

DEGs had similar expression patterns across the datasets (Fig. 3).

Fig. 2 Volcano plot showing expression patterns of the genes. Genes with |log2 fold change (FC)| > 1 and FDR 0.05) parameter
were considered as DEGs. (A) Volcano plot of GSE15020. (B) Volcano plot of GSE24217. (C) Volcano plot of GSE50685.
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Fig. 3 Distribution of DEGs across three mastitis data sets.

3.2 Regulatory network analysis

Regulatory network provides connectivity between regulatory elements and related targets. MicroRNA and TFs
were screened out for the predicted 247 mastitis related genes. Naturally, these genes are controlled by their
miRNAs through post transcriptional gene regulation process, which acts on the basis of sequence
complementarily. Transcription factors are also involved in gene expression regulation process during the
transcription initiation event. To find out the involvement of miRNAs and TFs factors and their interaction with
multi genes, gene regulatory network was developed (Fig. 4).

In the resulting regulatory network, 50 regulatory links have been observed among mi-RNA, transcription
factors (TFs) and overlapping differentially expressed targeted genes and considered this association network as
‘MmiRNA-DEG-TF’ regulatory network. The ‘miRNA-DEG-TF’ regulatory network contained 48
mi-RNA-DEGs pairs and 4 TF-DEGs pairs. Transcription factor has been found from REGULATOR database
(Table s1). Regulatory links have been established from miRTarBase database (Table s2). Multiple humbers of
miRNAs demonstrate significant interactions with specific gene targets. As demonstrated in the network, 7
genes, i.e., GPAM, CD69, SOCS3, VCAMI, PLAU, CXCL2 and SRGN are linked to the miRNA bta-miR-181a
(Fig. 4). bta-miR-17-5p is connected with six genes, i.e., GPAM, MPZL2, CASP4, CD69, CXCL5 and FGL2.
Micro RNA bta-miR-16a is associated with 5 genes, i.e., FGL2, FASN, IL6, IL10RA, and CD69. Micro
RNA bta-miR-15b is associated with 5 genes, i.e., ILIORA, IL6, CD69 FGL2, and FASN. The miRNA
bta-miR-21-5 has connections to CTSC, CD69, and FGL2. Three genes, i.e., FGL2, F13Al, and BIRC3 are
connected with miRNA bta-miR-155. These gene-miRNA connections shed light on putative regulatory
linkages and the molecular underpinnings of many biological processes in bovine.
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Fig. 4 The “miRNA-DEG-TF” regulatory network consists of many elements, each of which is represented by a unique set of nodes
and edges. DEGs, miRNAs, and TFs are represented in this network as orange (oval), blue (triangle), and green (hexagonal) nodes,
respectively. Black dotted arrows point out the TF-DEG regulatory associations, whereas black solid arrows reveal the
miRNA-DEG regulatory links.

3.3 PPI network analysis ODEGs

Proteins are the functional molecules of the cell and are responsible for almost all biological functions.
Interaction among the proteins is one of the ways to pass the signal and act in a systemic manner. Protein-protein
interaction (PPI) network provides a graphical view of interaction among the considered proteins on the basis of
reported experiment and published literature. In this study, proteins of 243 predicted overlapping ODEGs was
analyzed using the STRING to examine protein-protein (PPI) interactions between them. The network statistics
revealed 243 nodes and 2335 significant edges (connections) with combined score greater than 0.4 and PPI
enrichment p-value < 1.0e-16. A full PPI network with a total of 220 upregulated and 27 down regulated ODEGs
were then built using these interactions. For detail analysis of protein interaction through network, STRING
PPIN was imported into Cytoscape in which there are 205 nodes and their 2326 edges are observed after filtering
the isolated single nodes and would go for further analysis by using CytoHubba plugin (Chin et al., 2014).
Through cytoHubba, on the basis of interaction strength, top 50 ranked genes were identified. Further to avoid
any false positive predictions, interaction network between these 50 genes were reconstructed through 5
different topological analysis methods (Fig. 5), i.e., i) Degree, ii) Edge Percolated Component, iii) Maximum
Neighborhood Component, iv) Maximal Clique Centrality, and v) EcCentricity, based on shortest paths.
Observation of all five reconstructed network resulted in 25 commonly shared genes, i.e., CYBB, LAPTMS5,
HCK, CCL2, VCAM1, RAC2, HMOX1, CD69, ITGB2, GAPDH, IL6, ITGAL, TLR2, VAV, TYROBP, SELL,
NCF1, CXCL8, CASP4, CD68, IL1B, ICAM1, PLEK, NLRP3, and PTPRC.
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(G) Outer ring depicted 25 common top ranked genes.

Fig. 5 Network topologies of Top 50 ranked genes generated by considering five topological analysis methods from CytoHubba
plugin. (A) MNC network has 50 nodes and 527 edges, (B) MCC network has 50 nodes interacted with 521 edges, (C) EPC
network constructed by 50 nodes with their 535 edges, (D) EcCentricity network has also top 50 nodes linked with 370 edges, (E)
Degree network also has 50 nodes interacted with 530 edges (F) 25 overlapping genes identified by comparing genes of five
network topologies method include MNC, MCC, EPC, EcCentricity, Degree. (G) Most important DEG PPI network complex
related to the E. coli mastitis module. The majority of the 530 linkages and 50 nodes in this module are connected by
immunological responses.

3.4 Pathway and functional enrichment analysis

To understand the involvement of genes in biological process gene enrichment was carried out. Biological
processes for the DEGs stated Gene Ontology (GO) was identified (Figure 6 (A)). Through ontology analysis, it
has been observed that 25 genes were engaged in the immunological response, 24 genes in the defensive
response, and 21 genes in the inflammatory response among these activities. Fifteen more genes were also
discovered to express themselves directly in response to the bacteria. Pathway enrichment for DEGs through
KEGG enrichment analysis suggested that notably 10 DEGs were connected to the signaling route for NOD-like
receptors, while 14 DEGs were connected to the chemokine signaling pathway (Table 1, Fig. 6(B)). The
molecular processes underpinning the host's reaction to the infection are clarified by these discoveries, which
also offer important insights into the signaling pathways that are essential.

Table 1 Gene ontology and KEGG Pathway analysis for genes of selected modules.

A. Biological process DEGs

1 Immune system response NLRP3, IL1B, VAV1, ITGAL, CCL4, TYROBP, TLR2, PLEK, CXCLS6,
CCL2, PTPRC, CCL19, IL6, CTSS, IL1IRN, CXCL8, CYBB, CD40, CASP4,
FCER1G, CCL3, CXCL2, MX1, VCAM1, SELL, NCKAPIL, HCK,
CORO1A, GRO1, CXCR1

2 Inflammatory response NLRP3, IL1B, CCL4, TYROBP, TLR2, CXCL6, CCL2, CCL19, IL6, IL1RN,
CXCL8, CYBB, CD40, CASP4, FCER1G, CCL3, CXCL2, CD44, HCK,
GRO1
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3 Defense response NLRP3, IL1B, CCL4, TYROBP, TLR2, CXCL6, CCL2, PTPRC, CCL19, IL6,
ILIRN, CXCL8, CYBB, CD40, CASP4, FCER1G, CCL3, CXCL2, MX1,
CD44, HCK, CORO1A, GRO1

B. KEGG Pathways DEGs

1 NOD-like receptor signaling | NLRP3, IL1B, CCL2, IL6, NFKBIA, CXCL8, CYBB, CASP4, CXCL2,
pathway GRO1

2 Chemokine signaling pathway | NCF1, CCL4, CXCL6, CCL2, RAC2, CCL19, NFKBIA, CXCL16, CXCLS,

CCL3, CXCL2, HCK, GRO1, CXCR1

(A) KEGG Pathway
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(B) Functional Enrichment

Fig. 6 enrichment analysis of degs (a) investigation of the signaling pathways of degs linked to mastitis caused by E. coli. kyoto
encyclopedia of genes and genome pathway enrichment of degs was found using the online tool david with gene count and adjusted
p values. (b) investigation of the gene ontology of degs linked to mastitis caused by E. coli. biological process (bp) in functional
enrichment of degs was performed by webtool david with gene count and adjusted p values.

3.5 Docking based Screening of bioactive compounds (Aloe, Basil and Neem) against TLR and BGCS
In this study, we examined the bioactive components of Aloe (147), Basil (91), and Neem (191), collected from
published literature. Investigations were carried out to determine how well these compounds bound to the
toll-like receptor-2 (PDB ID: 3RG1) and the bovine granulocyte-colony stimulating factor (PDB ID: 1BGC)
proteins. Fig. 7 showed the outcomes of the docking assessments. Based on their affinity for toll-like receptor-2
(3RG1), compounds from aloe, basil, and neem were depicted by green, yellow, and blue bars, respectively.
Energy thresholds were denoted by the color codes green (-6.0 kcal/mol), yellow (-7.0 kcal/mol), and blue (-8.0
kcal/mol). 13, 4, and 9 Aloe compounds for toll-like receptor-2 (3RG1) showed binding energies under -6.0
kcal/mol, -7.0 kcal/mol, and -8.0 kcal/mol, respectively. Similar results were found for basil and neem, where 2,
33, 11, and 10, 13 and 31 compounds, respectively, showed binding energies below the corresponding
thresholds.

Bovine granulocyte-colony stimulating factor (1BGC) binding energies for the Aloe’s 6, 4, and 1 compounds
were respectively below -6.0 kcal/mol, -7.0 kcal/mol, and -8.0 kcal/mol. Only 8 compounds from basil were
observed with ranges below -6.0 kcal/mol and 10, 7 and 0 compounds from Neem, revealed binding energies
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ranges < -6.0 kcal/mol, -7.0 kcal/mol, and -8.0 kcal/mol for each plant, respectively. Fig. 8 exclusively
showcases the details and binding affinities of compounds from the considered herbs against TLR2 and the
docking results are represented in the form of minimum binding energy values ranging below -8.0 kcal/mol.
Nine compounds with below -7.0 kcal/mol, affinity against the 1BGC stimulating factor protein are shown in Fig.
9.

Fig. 7 The bar graph representing the number of compounds for Aloe, Basil, and Neem, while the color of each bar indicates
different ranges of binding affinity i.e., -8.0 kcal/mol, -7.0 kcal/mol and -6.0 kcal/mol. The cyan color bar represents the number of
compounds with a binding energy of less than or equal to -8 kcal/mol, the orange color bar represents the binding energy is less than
or equal to -7 kcal/mol for the number of compounds, and the green color bar represents the number of compounds with a binding
energy of less than or equal to -6 kcal/mol.
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Fig. 8 Herbal compounds (A-Aloe, B-Basil, and C-Neem) with good binding affinity towards Toll-Like Receptors 2 (TLRs) 3RG1.
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Fig. 9 Herbal compounds with good affinity towards Granulocyte-Colony Stimulating Factor (G-CSF) 1BGC.

All mentioned ligands in Figs 8-9 revealed that the binding pattern varied with the nature of the ligands. But
here we studied the highest binding affinity between toll-like receptor-2 and ligands, i.e., Difenakum (Aloe),
Flavone (basil), and stigmasterol (Neem). The docking results of bioactive compounds are shown in Fig. 10. The
same analysis for Bovine granulocyte-colony stimulating factor (1BGC) was observed for ligands including
Difenakun (Aloe) and Aziridine,2-isopropyl-1,3- dimethyl-,trans (Neem), depicted by Fig. 11.

3.5.1 Toll-like receptor-2 protein-ligand docking analysis

Protein-ligand docking analysis showed that Difenakum had an adequate binding affinity towards TLR2. There
are 2 H-bonds observed between TLR2 and Difenakum (Aloe); one bond with PHE-349 and another bond with
LEU-350, one pi stacking bond with PHE-322, pi cation interaction with LYS-347 and 8 hydrophobic bonds
were observed with single bond include ILE-319, LUE-328, VAL-348, PHE-349, LEU-350, PRO-352, and two
bonds with PHE-322, LY'S-347.

In the analysis of Flavon (basil) and TLR2 docking, active residues were found to form several interactions,
including hydrogen bonds, hydrophaobic interactions, and pi-stacking. Specifically, two hydrogen bonds were
observed with residues PHE-349 and LUE-350, while seven hydrophobic bonds formed single bonds with
PHE-322, PHE-325, LYS-347, and two with ILE-319 and PHE-349. Additionally, one pi-stacking interaction
was identified with PHE-322.

The investigation of the docking results between Stigmasterol from Neem and TLR2 revealed interactions
involving active residues. These interactions included hydrogen bonds and hydrophobic interactions. Notably,
LUE-350 formed single hydrogen bonds, while PHE-261, PHE-266, PHE-273, PHE-284, LEU-306, LEU-312,
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ILE-314, PHE-325, LEU-334, LUE-328 and VAL-348 active residues bind with hydrophobically in Fig. 10.

Fig. 10 Binding pocket’s residues of Toll-like receptor-2 (3RG1) protein interacted with Difenakum (Aloe), Flavone (Basil), and
Stigmasterol (Neem).

3.5.2 Bovine granulocyte-colony stimulating factor protein-ligand docking analysis

Bovine granulocyte-colony stimulating factor (G-CSF) is a cytokine that promotes the growth and
differentiation of neutrophils. It is also known to have anti-inflammatory effects. The protein-ligand docking
analysis identified that Difenakum from Aloe and Aziridine, 2-isopropyl-1,3-dimethyl-,trans from Neem, have
an efficient affinity for binding to Bovine granulocyte-colony stimulating factor (PDBID: 1BGC). Difenakum
from Aloe, binds with the active site residues: LEU-19, VAL-22, ARG-23, GLU-163, TYR-166, TYR-171
(Hydrophobic bonds), TYR-171 (pi-stacking)) while Aziridine,2-isopropyl-1,3-dimethyl-,trans from Neem,
bind with active residues: LEU-19, GLU-163, TYR-166, ARG-170, TYR-171(Hydrophobic interations) (Fig.
11).
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Fig. 11 Binding pocket residues of 1BGC interacted with Difenakum (Aloe) and Aziridine, 2-isopropyl-1,3-dimethyl-, trans
(Neem).

4 Discussion

Mastitis in dairy cows carries significant economic importance due to its detrimental impact on the dairy
industry, affecting the quality and composition of dairy products. The study identified crucial genes related to
differentially expressed genes (DEGs) with a, particularly found to be enriched in the immune response,
suggesting the development of an immune response against E. coli infection. Earlier Buitenhuis et al. (2011) also
reported an increase in the expression of upregulated genes related to the immune response biological process
during E. coli-induced mastitis. Furthermore, it is well reported that DEGs between udder quarters infected with
E. coli and adjacent tissue quarters, along with control animals, were predominantly associated with immune
response pathways (Mitterhuemer et al., 2010; Darang 2023). In both humans and animals, microRNAs
(miRNAs) play a critical role in regulating inborn immunity and diverse immunity (Ahmed et al., 2017).

The miRnaTarBase database identified 541 miRNAs in total for bovine. Upon analyzing miRNA expression
patterns, it was observed that 279 miRNAs and 305 miRNAs exhibited differential expression in tissues infected
with Staphylococcus aureus and E. coli, respectively, when compared to control samples (Luoreng et al., 2018).
In a study carried out by Santos et al., 2019, a recently identified medication therapy for infectious bovine
mastitis was investigated using an approach composed of transcriptomics and bioinformatics analysis. The study
demonstrated the possible efficacy of the drug treatment by targeting specific mechanisms of bovine mammary
genes, including MTOR and TP53. However, 9 miRNAs were related to bovine mastitis inflammation from the
databases of cattle candidate genes and genetic markers for milk production and mastitis. These miRNAs
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included bta-miR-146a, bta-miR-146b, bta-miR-21-5p, bta-miR-31, bta-miR-16a, bta-miR-15b, bta-miR-181a
and bta-miR-223. There were 6 DEG that were targeted by the bovine mastitis inflammation-related miRNAs.
CTSC was regulated by bta-miR-146a, bta-miR-146b, bta-miR-21-5p, bta-miR-31, as well as was IL6
modulated by bta-miR-16a, bta-miR-223, bta-miR-15b. Also, bta-miR-16a and bta-miR-15b, were regulated to
FASN, and CASP4, CXCL2, CXCL5 were regulated by bta-miR-17-5p, bta-miR-181a and bta-miR-17-5p
respectively. In the current study, we implemented bioinformatic analysis on three microarray profile datasets to
find significant key genes involved in the response to mastitis caused by bovine E. coli. Exclusively choosing
reported microarray data from in vivo investigations with live E. coli infection was a unique strategy used. This
made it possible for us to concentrate on certain genes and pathways linked to E. coli mastitis. The main
inferences from previous individual study findings, such as the encouragement of immune response,
inflammation, and the TNF signaling pathway, as reported by Buitenhuis et al., 2011 and Ginther et al., 2011,
were supported by the findings of our study. These results help to clarify the molecular processes underlying the
immune system's reaction to E. coli mastitis in cattle, (Li et al., 2019). In the current research, the top 50 ranked
genes were studied of which 25 common genes came from five topology networks. These 25 common genes
were CYBB, LAPTM5, HCK, CCL2, VCAM1, RAC2, HMOX1, CD69, ITGB2, GAPDH, IL6, ITGAL, TLR2,
VAV1, TYROBP, SELL, NCF1, CXCL8, CASP4, CD68, IL1B, ICAM1, PLEK, PTPRC, NLRP3, and
remaining top ranked nodes came from Degree topology network i.e., GRO1, NFKBIA, CXCL2, CCL4, CD53,
NCKAPIL, MYO1F, CORO1A, FCER1G, CD44, ITGA2, TIMP1, MX1, CCL19, CXR1, CXCLS6, IL1RN,
S100A1, SOCS3, IL10RA, CD40, BCL2A1, NCF2, CTSS, CCL3. This result is consistent with other studies,
such as those by Sharifi et al., 2018, who also found the top three genes, i.e., CXCL8, CXCL2, and GRO1 were
associated with E. coli mastitis. Han 2019 also identified CXCL2 and GRO1, IL6, NFKBIA as important genes
in mastitis caused by Staphylococcus aureus and E. coli (Han, 2019). Nine genes, namely, CXCL8, CXCLZ2,
IL10RA, CXCL6, GRO1, IL6, IL1B, ICAML1, and TLR2 are important genes for bovine mastitis in response to
E. coli strongly recommended by Li et al., 2019. The fact that these essential genes are consistently found in
investigations verifies the outcomes of the study we conducted. Toll-like receptor2 is a protein that is produced
by the TLR2 gene. A class of proteins known as toll-like receptors participates in the immunological response of
the mammary gland of bovine. Gram-negative bacteria produce a unique sort of cell wall component called LPS,
which is specially recognized by TLR2. Experiment Kits that use the TLR2 gene to check anti-inflammatory
activity typically involve exposing cells to LPS in the presence or absence of a potential anti-inflammatory
compound (An et al., 2021; Reid et al., 2019). Overall, the TLR is a useful tool for studying anti-inflammatory
activity. Experiment Kits that use this gene can help to identify new compounds that have the potential to treat
inflammatory diseases (Hoppstadter et al., 2019). It is used to examine the anti-inflammatory properties of the
substance curcumin. The findings demonstrated that curcumin prevented cells exposed to LPS from producing
IL-1 and TNF. This implies that curcumin could be useful as an anti-inflammatory medication. Whereas Bovine
granulocyte-colony stimulating factor (G-CSF) belongs to the cytokine family that plays an essential role in
stimulating the production and maturation of granulocytes is a type of white blood cell, in cattle. It is produced
by the number of immune cells, such as macrophages, fibroblasts, and endothelial cells, in response to infection
or inflammation (Reid et al., 2021). In Figure 8-9, we identified anti-inflammatory compounds derived from
Aloe, Basil, and Neem that exhibited strong binding affinity with TLR and Bovine granulocyte-colony
stimulating factor proteins. We suggested, compounds from Aloe: Difenakum, Betulin, alpha-sitosterol,
Ergosta-8,24[28]-dien-3-ol,4,14-dimethyl-,[3.beta.,4.alpha.,5.alpha.]-, Stigmasterol, Sitosterol, Ethyl iso
allocholate, Chrysophanic Acid, Gamma Tocopherol; compounds from Basil: Artemisin, flavone and
compounds  from Neem; stigmasta-5,22-dien-3-ol, Stigmasterol, Cholesta-4,6-dien-3-ol, [34],
4,22-Stigmastadiene-3-one, Campesterol, I'-Sitosterol, Aziridine,2-isopropyl-1,3-dimethyl-trans, Pipoxolan,
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Cholesta-22,24-dien-5-0l,4,4-dimethyl-, and B-sitosterol; it might be possible that they are found strongly
recommended anti inflammatory compounds for Toll-like receptor-2 (TLRZ2) protein. While for Bovine
granulocyte-colony stimulating factor protein: there are 7 and 5 compounds from Neem and Aloe found whose
binding affinities stay below -7.0 Kcal/mol, the remaining docked compounds were not getting space in Fig. 8 -
9. Aziridine, 2-isopropyl-1,3-dimethyl-, trans, stigmasta-5,22-dien-3-ol, Stigmasterol,
Stigmasta-4,22-dien-3-one, beta-sitosterol, campesterol, r-sitosterol from Neem while
Ergosta-8,24[28]-dien-3-0l,4,14-dimethyl-,[3.beta.,4.alpha.,5.alpha.]-,  Alpha-Sitosterol,  Sitosterol  and
Stigmasterol from Aloe were suggested as potent compounds against the protein. It can be administered as a
therapeutic agent to enhance the body's defense mechanisms and aid in the recovery process.

5 Conclusion

In this research, considering genome wide gene expression data of E. coli infected mastitis in total 247 DEGs
were identified and studied further for their biological role. The expression analysis and molecular network
based investigation pinpointed essential key genes, i.e., CYBB, LAPTM5, HCK, CCL2, VCAM1, RAC2,
HMOX1, CD69, ITGB2, GAPDH, IL6, ITGAL, TLR2, VAV1, TYROBP, SELL, NCF1, CXCL8, CASP4,
CD68, IL1B, ICAM1, PLEK, and NLRP3, involved in the immune response of E. Coli infected bovine mastitis.
Further studied explore two immune response related key protein, i.e., TLR and G-CSF as potential therapeutic
targets and bioactive compounds from Aloe (Aloe barbadensis miller), Basil (Ocimum basilicum) and Neem
(Azadirachta indica), were screened against them and found 33 compounds in total with considerable affinity
against the considered target proteins. The findings from this study offer valuable molecular insights of mastitis,
and offer mastitis related biomarkers which will be helpful for earlier detection of bovine mastitis. Along with
that, though predicted bioactive compounds need further experimental validation, they raise the hope for the
effective mastitis treatment.
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Table s1 Details of considered mi-RNAs known for regulation of DEGs.

DEGs Ensembl Family Protein Entrez-1D

Symbol

NFE2 ENSBTAG00000001562 TF_bZIP ENSBTAP00000059395.1; 514006
ENSBTAP00000044631.1;
ENSBTAP00000002043.1;

PLEK ENSBTAG00000009658 Others - 518658

ETS2 ENSBTAG00000009214 ETS ENSBTAP00000072496.1; 281148
ENSBTAP00000012144.5;

HLF ENSBTAGO00000006618 TF_bZIP ENSBTAP00000063281.1; 516069
ENSBTAP00000008682.5;

TCF19 ENSBTAG00000014435 Others - 514216

CEBPB ENSBTAG00000051972 TF_bzZIP ENSBTAP00000073202.1; 338319
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Table s2 Information of considered mi-RNAs known for regulation of 19 DEGs.

S.No. Target gene miRTarBase ID miRNA Entrez ID
1 IL10RA MIRT053818 bta-miR-15b 513478
MIRT053842 bta-miR-16a
2 FGL2 MIRT053816 bta-miR-15b 616885
MIRT053840 bta-miR-16a 616885
MIRT053885 bta-miR-21-5p 616885
MIRT053893 bta-miR-31 616885
MIRT053949 bta-miR-155 616885
MIRT053853 bta-miR-17-5p 511711
MIRT053880 bta-miR-21-5p 511711
MIRT053948 bta-miR-155 511711
3 PLAU MIRT053969 bta-miR-181a 281408
4 VCAM1 MIRT053908 bta-miR-145 534578
MIRT053974 bta-miR-181a 534578
5 MPZL2 MIRT053858 bta-miR-17-5p 540423
6 TRAF3IP3 MIRT054010 bta-miR-223 505371
7 LPL MIRT054012 bta-miR-223 280843
8 F13A1 MIRT053950 bta-miR-155 617881
9 FASN MIRT053492 bta-miR-15b 281152
MIRT053828 bta-miR-16a 616885
10 CD55 MIRT053896 bta-miR-31 518609
11 SRGN MIRT053803 bta-miR-10a 509501
MIRT053983 bta-miR-181a 509501
12 CD69 MIRT053824 bta-miR-15b 281058
MIRT053848 bta-miR-16a 281058
MIRT053865 bta-miR-17-5p 281058
MIRT053888 bta-miR-21-5p 281058
MIRT053982 bta-miR-181a 281058
13 CASP4 MIRT053861 bta-miR-17-5p 338039
14 SOCS3 MIRT053915 bta-miR-146a 282081
MIRT053931 bta-miR-146b 282081
MIRT053970 bta-miR-181a 282081
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MIRT054001 bta-miR-221 282081
15 IL6 MIRT053807 bta-miR-15b 517016
MIRT053833 bta-miR-16a 517016
MIRT053955 bta-miR-16a 517016
MIRT054007 bta-miR-223 517016
16 GPAM MIRT053876 bta-miR-17-5p 497202
MIRT053990 bta-miR-181a 497202
MIRT054004 bta-miR-221 497202
MIRT054016 bta-miR-205 497202
17 PSTPIP2 MIRT053800 bta-miR-10a 523223
18 BIRC3 MIRT053956 bta-miR-155 514386
19 CTSC MIRT053890 bta-miR-21-5p 352958
MIRT053897 bta-miR-31 352958
MIRT053922 bta-miR-146a 352958
MIRT053938 bta-miR-146b 352958
20 CXCL2 MIRT053975 bta-miR-181a 613667
21 CXCL5 MIRT053864 bta-miR-17-5p 281735
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