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Abstract 

Dependent upon the statistical significance p-value and statistical power, the sample size estimation is widely 

used in various experimental sciences. Nevertheless, the p-value based paradigm, which has resulted in 

numerous fake conclusions that originate partly from insufficient sample sizes, has been widely criticized in 

recent years for serious problems. Therefore, I developed a platform-independent computational tool, 

SampSizeCal, for sample sizes in the paradigm of new statistics. In this tool, both default p-values and the 

maximum p-values were greatly enhanced, which will lead to the reasonable increase of sample sizes. The 

computational tool harbors more than 120 sample size methods for experimental designs. SampSizeCal 

includes both online and offline versions, and can be used for various computing devices (PCs, iPads, 

smartphones, etc.), operating systems (Windows, Mac, Android, Harmony, etc.) and web browsers (Chrome, 

Firefox, Sougo, 360, etc). It is currently the most comprehensive platform-independent computational tool for 

sample sizes, and can be used in experimental sciences such as medicine (clinical medicine, experimental 

zoology, public health, pharmacy, etc.), biology, ecology, agronomy, psychology and engineering technology. 
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1 Introduction 

Sample size refers to the number of subjects or survey subjects included in each sample in experimental 

research and survey research. A sample size that is too small will result in insufficient information, unstable 

indicators, large sampling errors, poor reliability of conclusions, and poor accuracy in inferring the population. 

A sample size that is too large will result in a waste of manpower, material resources, financial resources, and 

time. If it is larger, it will also increase the difficulty of quality control at work. In addition, the too large 

sample size may introduce more confounding factors, adversely affecting the research results. Therefore, it is 

of great significance to determine the sample size on the premise of ensuring that the research conclusions are 

scientific, authentic and reliable (Mace, 1964; Cochran, 1977; Pielou, 1977; Eberhardt, 1978; Southwood, 
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1978; Burnham et al., 1980; Seber, 1982; Zar, 1984; Fleiss, 1986; Downing et al., 1987; Cohen, 1988; Krebs, 

1989; Desu and Raghavarao, 1990; Machin et al., 1997; Fleiss et al., 2003; Li and Fine, 2004; Ardilly, 2005; 

Good, 2005; Tille, 2006; Zhang, 2007; Chow et al., 2008; Ryan, 2013; Liang, 2014; Julious, 2020). 

   Dependent upon the statistical significance p-value and statistical power, the sample size estimation is 

widely used in various experimental sciences. The p-value is at the heart of the statistical significance testing 

and whether a research is statistically significant is mainly determined by using the p-value (Fisher, 1935; 

Yates, 1951; Sellke et al., 2001; Sun, 2016; Amrhein et al., 2019; Bergstrom and West, 2021; Zhang, 2022a-c). 

Nevertheless, the statistical significance paradigm has been substantially questioned in recent years because 

p-value is too sensitive, p-value is a dichotomous subjective index, and statistical significance is related to 

sample size, etc (Sellke et al., 2001; Trafimow and Marks, 2015; Baker, 2016; Wasserstein and Lazar, 2016; 

McShane and David, 2017; Amrhein et al., 2019; Tong, 2019; Wasserstein et al., 2019; Zhang, 2022a-c). 

Statistical significance paradigm was considered to be one of the sources of false conclusions and research 

reproducibility crisis (Ioannidis, 2005; Open Science Collaboration, 2015; Errington et al., 2021; Huang, 

2021a-b, 2023; Kafdar, 2021; Nature Editorial, 2021; Vrieze, 2021; Huang, 2021a-b, 2023; Zhang, 2022a-c, 

2023). To solve these problems, a new statistics, in which to use a stricter p-value rather than 0.05 is one of the 

choices, is suggested (Zhang, 2022a). Therefore, in addition to writing, publishing and using new statistical 

monographs and textbooks, the most urgent task is to revise and distribute various statistical software based on 

the new statistics for further use (Zhang, 2022a-c, 2023; Zhang and Qi, 2024).  

The p-value based significance level has resulted in numerous fake conclusions that originate partly from 

insufficient sample sizes. In present article, based on Liang (2014) and other studies (Mace, 1964; Cochran, 

1977; Pielou, 1977; Eberhardt, 1978; Southwood, 1978; Burnham et al., 1980; Seber, 1982; Zar, 1984; Fleiss, 

1986; Downing et al., 1987; Cohen, 1988; Krebs, 1989; Desu and Raghavarao, 1990; Machin et al., 1997; 

Fleiss et al., 2003; Li and Fine, 2004; Ardilly, 2005; Good, 2005; Tille, 2006; Zhang, 2007; Chow et al., 2008; 

Ryan, 2013; Julious, 2020), I thus developed a platform-independent computational tool for sample sizes in the 

paradigm of new statistics. In this tool, both default p-values and the maximum p-values were greatly 

enhanced, which will lead to the reasonable increase of sample sizes. It is expected to be used in various 

experimental sciences including medicine, biology, ecology, agricultural sciences, etc. 

 

2 Methods for Estimation of Sample Sizes 

2.1 Comparing Means  

2.1.1 One-Sample Design 

2.1.1.1 Baseline Method: Significance Test 

The baseline test is often used to compare the treatment group with the standard accepted value, or to compare 

the baseline data with the data after treatment. The sample size (n) is (Zar, 1984; Machin et al., 1997) 

 

     n = (zα/2 + zβ)
2σ2/d2  

 

where d: the expected difference between the sample mean and the reference value; σ: standard deviation; z: 

z-test value. α: the probability of rejecting the truth, that is, the probability of rejecting the null hypothesis 

when there is no difference is true; β is the probability of taking the false, that is, the probability of accepting 

the null hypothesis when the difference is false. 1-β is the statistical power. zα: standard normal deviation 

corresponding to α. zβ: standard normal deviation corresponding to β.  

2.1.1.2 Baseline Method: Non-inferiority or Superiority Test 

To make non-inferiority or superiority (NIS) test, the sample size (n) is 
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     n = (zα + zβ)
2σ2/(d - δ)2  

 

where σ: standard deviation; δ: the margin of clinic significance. δ<0 if non-inferiority test is made and δ>0 if 

superiority test is made. For example, to make non-inferiority test on a drug for hypertension, for a community, 

known σ=20, d=9, and the margin is 11, then let δ=-11.  

2.1.1.3 Baseline Method: Equivalence Test 

For equivalence test, the sample size (n) is 

 

     n = (zα + zβ/2)
2σ2/(δ- |d|)2  

 

2.1.1.4 One-Stage Test 

For one-stage mean test, the sample size (n) for mean estimation is 

 

        n = (zα/2 σ/d)2 

 

where σ: the standard deviation, zα/2: z-value, and d: the expected magin (absolute error of the mean, i.e., the 

half-width of confidence interval). The standard deviation, σ, can be estimated in some ways (Krebs, 1989; 

Zhang, 2007):  

(1) Use the σ obtained in the past studies. 

(2) σ is estimated from the previous explorative study. 

(3) Using rules generalized from professional studies. In fish sampling, for example, suppose there are m  

observations and the observed values are approximately between a and b, we have σ= (b - a)* fm, where fm is 

obtained from Table 1 (Krebs, 1989). 

 

Table 1 fm table. 

m 10 30 50 70 100 200 300 500 

fm 0.325 0.245 0.222 0.21 0.199 0.182 0.174 0.154 

 

 

   If the relative error is used, such as coefficient of variation (CV): 

 

CV = σ/ߤҧ 

 

The sample size for mean estimation is (Zhang, 2007): 

 

     n = (100*CV*zα/2/r)2 

 

where r: the expected relative error, i.e., the percent (0, 100) of half-width of confidence interval against the 

mean. Krebs (1989) argues that CV=0.7 for plankton, CV=0.4 for crabs, CV=0.4 for shellfish (0.4), and 

CV=0.8 for roadside sampling.     

If the sample size (n) is large enough compared to the total population, the sample size that is actually 

used should be corrected to n*: 
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     n* = n/(1 + n/N) 

 

where N: the size of total population. 

If a random variable does not strictly follow the normal distribution, it will approximately follow the 

normal distribution when the sample size is large enough, thus algorithms above hold also. Cochran (1977) 

proposes that the sample size is large enough if 

 

n > 25(∑(xi - ݔҧ)
3/(ns3))2 

 

2.1.1.5 Two-stage Test 

The sample size can be determined by using two-stage sampling, i.e., sampling with the pre-sampled sample 

size, n1, and obtain the standard deviation σ1, and then determine the sample size (Cochran, 1977): 

 

n = (1 + 2/n1)(zα/2σ1/d)2 

 

2.1.1.6 Random Variable Follows the Poisson Distribution 

If the random variable follows the Poisson distribution, the sample size (n) for mean estimation is 

 

n = (100*zα/2/r)2/ߤҧ 

 

where ߤҧ: the estimated mean of the random variable, and r: permissible relative error, i.e., the percent (0, 100) 

of half-width of confidence interval against the mean.  

Pielou (1969) proposes a method based on the absolute error d, as the following: 

 

n = (zα/2/d)2 ߤҧ 

 

2.1.1.7 Random Variable Follows the Negative Binomial Distribution 

Spatial dispersion of organisms in particular invertebrates, usually follow the negative binomial distribution. 

The sample size (n) for mean estimation is 

 

n = (100*zα/2/r)2 (1/ߤҧ + 1/k) 

 

where ߤҧ: the estimated mean of the random variable, k: the parameter of the negative binomial distribution, 

and r: the expected relative error, i.e., the percent (0, 100) of half-width of confidence interval against the 

mean.   

In addition, we may use the absolute error based estimation (Karandinos, 1976): 

 

n = (zα/2/d)2/((kߤҧ + ߤҧ2)/k) 

 

2.1.1.8 Random Variable Follows the Binomial Distribution 

For a random variable that follows the binomial distribution, the sample size (n) for mean estimation is 

 

n = (zα/2/d)2 w (1 - w) 
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where w=m/n, m: the number of subjects with incidence; d: between-incidence difference. 

2.1.1.9 Probabilistic Distribution Independent 

  

n = (zα/2/d)2[(α’ + 1) ߤҧ + (β’ - 1) ߤҧ2] 

 

where α’ and β’ are the parameters in Iwao regression: M* = α’+ β’ߤҧ.  

2.1.2 Two-Sample Parallel Design 

2.1.2.1 Significance Test 

(1) Known the standard deviation of between-group difference 

Suppose there are two groups, a treatment group and a control group (1:1 parallel control design; n 

observations are required for each group). To test the between-group difference significance, the sample size 

(n) for detecting between-group difference is (Machin et al., 1997; Chow et al., 2008; Julious, 2010) 

 

     n = 2(zα/2 + zβ)
2σ2/d2  

 

where σ: the standard deviation; d: between-group difference; z: z-value.  

(2) Known the standard deviations of two groups 

Suppose the standard deviations of two groups are are σ1 and σ2 respectively, the sample size (n) (1:1 design; n 

observations are required for each group) is 

 

n = zα/2
2(σ1

2 +σ2
2)/d2 

 

where d: between-group difference; zα/2: z value with confidence degree 1-α. σ1 and σ2: the standard deviations 

of two groups.  

2.1.2.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) for detecting between-group difference is 

 

     n = 2(zα/2 + zβ)
2σ2/(d - δ)2  

 

where σ: standard deviation; d: between-group difference; δ: the margin of clinic significance, δ<0 if 

non-inferiority test is made and δ>0 if superiority test is made. For example, to make non-inferiority test on 

hypertension difference of two groups (1:1 parallel control design; n observations are required for each group), 

for a community, known σ=20, between-group difference d=8, and the margin is 10, then let δ=-10.  

2.1.2.3 Equivalence Test 

For equivalence design, the sample size (n) for detecting between-group difference is 

 

     n = 2(zα/2 + zβ)
2σ2/(d - |δ|)2  

 

2.1.2.4 Comparison of Paired Data 

For the comparison of paired data, the sample size (n) (1:1 design; n observations are required for each group) 

is (Zar, 1984; Machin et al., 1997) 

 

     n = (zα/2 + zβ)
2σ2/d2  
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where σ: the standard deviation of between-group differences, d: between-group difference. Thus, n pairs of 

observations are required. 

2.1.3 Two-Sample Crossover Design 

2.1.3.1 Significance Test 

For two-sample crossover design, the sample size (n) is 

 

     n = (zα/2 + zβ)
2σ2/(2d2) 

 

where σ: the standard deviation of the difference; d: between-group difference. For example, use the drugs A 

and B to treat hypertension. In the first trial, use A for a period and thereafter use B for the same period. In the 

second trial, use B first and thereafter A. If B reduces 5 mm Hg of blood pressure more than A, B is considered 

to be more effective. Set σ=10, α=0.0001, β=0.1, two-sided significance test, and calculate the sample size n 

(1:1 design; n observations are required for each group). 

2.1.3.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) for detecting between-group difference is 

 

     n = (zα + zβ)
2σ2/(2(d - δ)2) 

 

where δ: the margin of clinic significance, δ<0 if non-inferiority test is made and δ>0 if superiority test is made. 

For the example above, to make two-sided non-inferiority test (1:1 design; n observations are required for each 

group). The margin is 1, i.e., δ=-1.  

2.1.3.3 Equivalence Test 

For equivalence design, the sample size (n) for detecting between-group difference is 

 

     n = (zα + zβ/2)
2σ2/(2(d - |δ|)2) 

 

Continue the example, for equivalence design, to make two-sided equivalence test (1:1 design; n observations 

are required for each group), δ=1. 

2.1.4 Multiple-Sample One-Way ANOVA 

2.1.4.1 Paralell Design 

Suppose one factor with k≥3 groups (levels). We hope to statistically compare the difference between means of 

k populations represented by k groups. Known the variance of means 

 

∆ = 1/σ2 ∑ ሺ
ୀଵ μi -  ߤҧ)

2 

 

the sample size (n) for each group is: n =λ/∆, where λ is obtained from Table 2. For example, use five drugs to 

control a disease, the means of incidence reduction are 25, 30, 32, 20, 28; the standard deviation of incidence 

reduction of each drug is σ=5; two-sided test. Calculate the sample size of each group. 

 

 

Table 2 λ table. 

k 
α=0.01 α=0.05 α=0.01 α=0.05 

β=0.1 β=0.2 

2 14.88 10.51 11.68 7.85 
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k α=0.01 α=0.05 α=0.01 α=0.05 

3 17.43 12.66 13.89 9.64 

4 19.25 14.18 15.46 10.91 

5 20.74 15.41 16.75 11.94 

6 22.03 16.47 17.87 12.83 

7 23.19 17.42 18.88 13.63 

8 24.24 18.29 19.79 14.36 

9 25.22 19.09 20.64 15.03 

10 26.13 19.83 21.43 15.65 

11 26.99 20.54 22.18 16.25 

12 27.8 21.20 22.89 16.81 

13 28.58 21.84 23.57 17.34 

14 29.32 22.44 24.22 17.85 

15 30.04 23.03 24.84 18.34 

16 30.73 23.59 25.44 18.82 

17 31.39 24.13 26.02 19.27 

18 32.04 24.65 26.58 19.71 

19 32.66 25.16 27.12 20.14 

20 33.27 25.66 27.65 20.56 

 

 

2.1.4.2 Pairwise Design 

In this design, there are at least two groups and no control group is included. The sample size (n) is (Desu and 

Raghavarao, 1990; Fleiss, 1986) 

 

n = max{nij} 

 

where 

 

     nij = 2σ2 (zα/(2T) + zβ)
2/dij

2 

 

where T: times of between-group comparisons, dij: between-group magin, dij=μi - μj. For example, the means of 

incidence reduction of two drugs (or dosages) are 18, 25, the value for the control group is 12, the σ for the 

incidence reduction of two drugs are 3.5 and 5. Conduct 1:1:1 parallel design, T=1; for n13, σ=3.5, 

d13=18-12=6; for n23, σ=5, d12=25-12=13. n= max{n13, n23}. 

2.1.4.3 Multiple-Sample Williams Design 

If the number of periods available for the crossover experiment is the same as the number of treatments, the 

crossover design that uses the generalized Latin square to balance the first-order lag effect with as few subjects 

as possible is the Williams design. Common Williams designs are three-group designs (a 6×3 crossover design) 

and four-group designs (a 4×4 crossover design). When the experimental groups (k) are odd, the design result 

is a 2k×k crossover design, and when the experimental groups are even, the design result is a k×k crossover 
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design. 

(1) Significance Test 

The sample size (n) is 

 

n = max{nij} 

 

where 

 

     nij = σ2 (zα/2 + zβ)
2/(mdij

2) 

 

For example, use three drugs A, B and C to treat a disease. Their incidence reduction are 16, 19, 13 and σ=3 

respectively. Use Williams three-crossover design, the treatments are ABC, ACB, BAC, BCA, CAB, CBA. m=6, 

d12=16-19=3, d13=16-13=3, d23=19-13=6. Two-sided test. n=max{n1, n2, n3}. 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is 

 

n = max{nij} 

 

where 

 

     nij = σ2(zα + zβ)
2/(m(dij - δ)

2) 

 

The margin δ<0 if non-inferiority test is made and δ>0 if superiority test is made 

(3) Equivalence Test 

For equivalence design, the sample size (n) for detecting between-group difference (two-sided test) is 

 

n = max{nij} 

 

where 

 

     nij = σ2(zα + zβ/2)
2/(m(δ - |dij|)

2) 

 

In the example above, m=6, d12=16-19=3, d13=16-13=3, d23=19-13=6, σ=3. n=max{n1, n2, n3}. 

2.2 Comparing Variabilities 

2.2.1 Estimation of Variance 

If the the sample size is large enough, the sample size for variance estimation is (Mace, 1964): 

 

     n = 1.5 + zα/2
2{[1/v + (1/v2 - 1)1/2]/v - 0.5} 

 

where zα/2: z-value at confidence level α, v: the permissible limit of variance ratio, represented by the ratio of 

confidence interval, as 0.35, 0.25, etc. 

2.2.2 Repeated Parallel Controlled Design 

2.2.2.1 Significance Test 

Assume that there are two groups and n and m are the number of cases and observations in a group 
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respectively. The sample size (n) is calculated from the following formula 

 

்ߪ
ଶ/ߪோ

ଶ = F1−β, n(m−1),n(m−1)/Fα/2,n(m−1),n(m−1) 

 

where ்ߪ
ଶ and ߪோ

ଶ: the variance for test group and reference group (control group). For example, a parallel 

control experiment with 2 groups, each repeated 3 times (3 replications). According to the pilot study, the 

within-subject standard deviation of the group T is 0.4, and the within-subject standard deviation of the group 

R is 0.6. 1:1 significance design. α=0.0001, β=0.10. Calculate the sample size for each group, n.  

2.2.2.2 Non-inferiority or Superiority Test 

The sample size (n) is calculated from the following formula 

 

்ߪ
ଶ/ሺߪோ

ଶ ߜଶሻ = F1−β, n(m−1),n(m−1)/Fα, n(m−1),n(m−1) 

 

where δ: the margin. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For example, δ=-1. 

2.2.2.3 Equivalence Test 

The sample size (n) is calculated from the following formula 

 

்ߪଶߜ
ଶ/ߪோ

ଶ = Fβ/2, n(m−1),n(m−1)/F1-α, n(m−1),n(m−1) 

 

where δ: the margin, for example, δ=-1.0.  

2.2.3 Simple Random Effects Model 

2.2.3.1 Significance Test 

For significance test, the sample size (n) is  

 

     n = (z1-α+ z1-β)
்ߪ)2

ଶ  ோߪ
ଶ)/(CVT - CVR)2 

 

where CVT and CVR: the coefficient of variation for group T (test group) and R (reference or control group) 

respectively; σT and σR: the standard deviation of group T and R respectively, and  

      

ߪ     
ଶ = 


మ

ଶכ
 ܥ ܸ

ସ 

 

For example, a two-group parallel control experiment with 2 replications. According to the pilot test, the 

coefficient of variation (CV) of the treatment group was 40%, and that of the control group was 60%. 

α=0.0001, β=0.10. 1:1 significance design. Calculate the sample size for each group, n. 

2.2.3.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is 

 

     n = (z1-α+ z1-β)
்ߪ)2

ଶ  ோߪ
ଶ)/(CVT - CVR - δ)

2 

 

where δ: the margin of CVT - CVR, e.g., δ=0.2. δ<0 if non-inferiority test is made and δ>0 if superiority test is 

made. 

2.2.3.3 Equivalence Test 

For equivalence test, the sample size (n) is 
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     n = (z1-α+ z1-β)
்ߪ)2

ଶ  ோߪ
ଶ)/(δ - |CVT - CVR |)

2 

 

2.2.4 Comparison of Between-Subject Variation  

2.2.4.1 Parallel Repeatable Design 

(1) Significance Test 

For significance test, the sample size (n) is  

 

     n = (z1-α/2+ z1-β)
்ߪ)/ଶߪ2

ଶ െ ோߪ
ଶ )2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + (ߪோ
ଶ ௐோߪ+

ଶ /m)2 + ߪௐ்
ସ /(m2(m-1)) + ߪௐோ

ସ /(m2(m-1))) 

 

For example, a parallel control experiment with two groups of 3 replications (m=3). According to the pilot 

study, the between-subject standard deviations of groups T and R were 0.2 (σBT) and 0.3 (σBR), respectively, 

and the within-subject standard deviations of groups T and R were 0.4 (σWT) and 0.5 (σWR), respectively. 

α=0.0001, β=0.10. 1:1 significance design. Calculate the sample size for each group, n. 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is 

 

     n = (z1-α+ z1-β)
்ߪ)/ଶߪ2

ଶ െ ோߪଶߜ
ଶ )2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + ߜସ(ߪோ
ଶ ௐோߪ+

ଶ /m)2 + ߪௐ்
ସ /(m2(m-1)) + ߜସߪௐோ

ସ /(m2(m-1))) 

 

where δ: the margin. 1:1 non-inferiority design. δ<0 if non-inferiority test is made and δ>0 if superiority test is 

made. Follow the example above.  

2.2.4.2 Crossover Repeatable Design 

(1) Significance Test 

For significance test, the sample size (n) is  

 

     n = ((z1-α/2+ z1-β)
்ߪ)/ଶߪ2

ଶ െ ோߪ
ଶ )2+2)/2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + (ߪோ
ଶ ௐோߪ+

ଶ /m)2 – 2ρ2ߪ்
ଶ ோߪ

ଶ ௐ்ߪ +
ସ /(m2(m-1)) + ߪௐோ

ସ /(m2(m-1))) 

 

For example, a two-group cross-control experiment with 2 replications (ABAB, BABA). According to the pilot 

study, the between-subject standard deviations of groups T and R were 0.2 and 0.3, respectively, and the 

within-subject standard deviations of groups T and R were 0.4 and 0.5, respectively. α=0.0001, β=0.10, ρ=0.7. 

1:1 significance design. Calculate the sample size for each group, n. 

(2) Non-inferiority or Superiority Test 
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For non-inferiority or superiority test, the sample size (n) is 

 

     n = ((z1-α + z1-β)
்ߪ)/ଶߪ2

ଶ െ ோߪଶߜ
ଶ )2+2)/2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + ߜସ(ߪோ
ଶ ௐோߪ+

ଶ /m)2 – 2ߜଶρ2ߪ்
ଶ ோߪ

ଶ ௐ்ߪ +
ସ /(m2(m-1)) + ߜସߪௐோ

ସ /(m2(m-1))) 

 

1:1 non-inferiority design. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. Follow the 

example above.  

2.2.5 Comparison of Overall Variation  

Estimates of overall variation were obtained from standard 2x2 crossover/parallel designs or repeated 2x2 

crossover/parallel designs. 

2.2.5.1 Non-Repeated Parallel Controlled Trials 

(1) Significance Test 

For significance test, the sample size (n) is calculated from the following formula 

 

்ߪ
ଶ/ߪோ

ଶ = F1−β, n−1,n−1/Fα/2,n−1,n−1 

 

where ்ߪ
ଶ and ߪோ

ଶ : the variance for test group and reference group (control group). For example, a 

non-repeated parallel controlled trial. According to the pilot study, the standard deviations of the groups T and 

R were 0.4 and 0.6. 1:1 significance design. α=0.0001, β=0.10. Calculate the sample size for each group, n.  

(2) Non-inferiority or Superiority Test 

The sample size (n) is calculated from the following formula 

 

்ߪ
ଶ/ሺߜଶߪோ

ଶሻ = F1−β, n−1,n−1/Fα/2,n−1,n−1 

 

where δ: the margin (e.g., 1.3, δ=-1.3). 1:1 non-inferiority design. δ<0 if non-inferiority test is made and δ>0 if 

superiority test is made. Follow the example above. 

(3) Equivalence Test 

For equivalence test, the sample size (n) is calculated from the following formula 

 

்ߪଶߜ
ଶ/ߪோ

ଶ = F1−β, n−1,n−1/Fα/2,n−1,n−1 

 

where δ: the margin (e.g., 1.3, δ=-1.3). 1:1 equivalence design. Follow the example above. 

2.2.5.2 Repeated Parallel Controlled Trials 

(1) Significance Test 

For significance test, the sample size (n) is  

 

     n = (z1-α/2 + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪ
ଶ )2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + (ߪோ
ଶ ௐோߪ+

ଶ /m)2 + ሺ݉ െ 1ሻߪௐ்
ସ /m2 + ሺ݉ െ 1ሻߪௐோ

ସ /m2) 
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where ்்ߪ
ଶ ்ߪ=

ଶ ௐ்ߪ+
ଶ ோ்ߪ ,

ଶ ோߪ=
ଶ ௐோߪ+

ଶ . For example, a two-group parallel control experiment with 3 

replications (m=3). According to the pilot study, the between-subject standard deviations of groups T and R 

were 0.2 (σBT) and 0.3 (σBR), respectively, and the within-subject standard deviations of groups T and R were 

0.4 (σWT) and 0.5 (σWR), respectively. α=0.001, β=0.10. 1:1 significance design. Calculate the sample size for 

each group, n. 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is  

 

     n = (z1-α + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪଶߜ
ଶ )2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + ߜସ(ߪோ
ଶ ௐோߪ+

ଶ /m)2 + ሺ݉ െ 1ሻߪௐ்
ସ /m2 + ߜସሺ݉ െ 1ሻߪௐோ

ସ /m2) 

 

where δ: the margin (e.g., 1.0, δ=-1.0). 1:1 non-inferiority design. δ<0 if non-inferiority test is made and δ>0 if 

superiority test is made. Follow the example above. 

2.2.5.3 Standard 2×2 Crossover Design 

(1) Significance Test 

For significance test, the sample size (n) is  

 

     n = ((z1-α/2 + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪ
ଶ )2+2)/2 

 

where 

 

்்ߪ)ଶ = 2ߪ     
ସ  ோ்ߪ

ସ  - 2ρ2ߪ்
ଶ ோߪ

ଶ ) 

 

where ்்ߪ
ଶ ்ߪ=

ଶ ௐ்ߪ+
ଶ ோ்ߪ ,

ଶ ோߪ=
ଶ ௐோߪ+

ଶ . For example, a 2×2 standard crossover control experiment. According 

to the pilot study, the between-subject standard deviations of groups T and R were 0.2 (σBT) and 0.3 (σBR), 

respectively, and the within-subject standard deviations of groups T and R were 0.4 (σWT) and 0.5 (σWR), 

respectively. α=0.0001, β=0.10, ρ=0.8. 1:1 significance design. Calculate the sample size for each group, n. 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is  

 

     n = ((z1-α + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪଶߜ
ଶ )2+2)/2 

 

where 

 

்்ߪ)ଶ = 2ߪ     
ସ  ோ்ߪସߜ

ସ ்ߪଶρ2ߜ2 - 
ଶ ோߪ

ଶ ) 

 

δ<0 if non-inferiority test is made and δ>0 if superiority test is made. Follow the example above, 1:1 

non-inferiority design, δ=-1 (the margin=1). Calculate the sample size for each group, n. 

2.2.5.4 Repeated 2×2 Crossover Design 

(1) Significance Test 
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For significance test, the sample size (n) is  

 

     n = ((z1-α/2 + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪ
ଶ )2+2)/2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + (ߪோ
ଶ ௐோߪ+

ଶ /m)2 – 2ρ2ߪ்
ଶ ோߪ

ଶ + ሺ݉ െ 1ሻߪௐ்
ସ /m2 + ሺ݉ െ 1ሻߪௐோ

ସ /m2) 

 

where ்்ߪ
ଶ ்ߪ=

ଶ ௐ்ߪ+
ଶ ோ்ߪ ,

ଶ ோߪ=
ଶ ௐோߪ+

ଶ .  For example, a two-group cross-control experiment with 2 replications 

per subject (ABAB, BABA). According to the pilot study, According to the pilot study, the between-subject 

standard deviations of groups T and R were 0.2 (σBT) and 0.3 (σBR), respectively, and the within-subject 

standard deviations of groups T and R were 0.4 (σWT) and 0.5 (σWR), respectively. α=0.0001, β=0.10, ρ=0.8. 1:1 

significance design. Calculate the sample size for each group, n. 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is  

 

     n = ((z1-α + z1-β)
்்ߪ)/ଶߪ2

ଶ െ ோ்ߪଶߜ
ଶ )2+2)/2 

 

where 

 

்ߪ))ଶ = 2ߪ     
ଶ ௐ்ߪ+

ଶ /m)2 + ߜସ(ߪோ
ଶ ௐோߪ+

ଶ /m)2  – 2ߜଶρ2ߪ்
ଶ ோߪ

ଶ  ሺ݉ െ 1ሻߪௐ்
ସ /m2 + ߜସሺ݉ െ 1ሻߪௐோ

ସ /m2) 

 

δ<0 if non-inferiority test is made and δ>0 if superiority test is made. Follow the example above, 1:1 

non-inferiority design, δ=-1 (the margin=1). Calculate the sample size for each group, n. 

2.3 Large Sample Tests for Proportions 

2.3.1 One-Sample Design 

2.3.1.1 Significance Test 

The sample size (n) for significance test of proportion estimation is 

 

     n = (zα/2 + zβ)
2p(1 - p)/d2 

 

where p: the proportion of total population; d: the difference of proportion. Two-sided significance test. For 

example, an old method can reduce a disease incidence by 40% and the new method is expected to reduce it by 

80%, thus d=0.8-0.4=0.3.  

2.3.1.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) is 

 

     n = (zα + zβ)
2p(1 - p)/(d  - δ)

2 

 

where δ: the margin of d. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. 

2.3.1.3 Equivalence Test 

For equivalence design, the sample size (n) (two-sided test) is 

 

     n = (zα + zβ/2)
2p(1 - p)/(d - |δ|)2 
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where δ: the margin of d, e.g., δ=0.05. 

2.3.2 Two-Sample Parallel Design 

2.3.2.1 Significance Test 

For the significance test of two-sample parallel design, the sample size (n1) (two-sided test) for group 1 is 

(Chow et al., 2008) 

 

     n1 = kn2  

 

and the sample size for group 2 is 

 

     n2 = (zα/2 + zβ)
2(p1(1 - p1)/k + p2(1 - p2))/d

2 

 

where p1 and p2: the proportions for group 1 (treatment group) and group 2 (control group) respectively; d: the 

difference between p1 and p2, d=p1-p2.  

2.3.2.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n1) (two-sided test) for group 1 is 

 

     n1 = kn2  

 

and the sample size for group 2 is 

 

     n2 = (zα + zβ)
2(p1(1 - p1)/k + p2(1 - p2))/(d -δ)

2 

 

where d=p1-p2. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For example, 

non-inferiority design, δ=-5%. 

2.3.2.3 Equivalence Test 

For equivalence design, the sample size (n1) (two-sided test) for group 1 is 

 

     n1 = kn2  

 

and the sample size for group 2 is 

 

     n2 = (zα + zβ/2)
2(p1(1 - p1)/k + p2(1 - p2))/(δ - |d|)2 

 

where d=p1-p2.  

2.3.3 Two-Sample Crossover Design 

2.3.3.1 Significance Test 

For the significance test of two-sample crossover design, the sample size (n) (two-sided test; 1:1 design) is 

 

     n = (zα/2 + zβ)
2σ2/(2d2) 

 

where σ: the standard deviation of between-proportion difference. For example, use a test drug A and control 

drug B to treat a disease. Take the control drug for 1 month, wash out for 3 weeks, and then take the test drug 
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for 1 month, and vice versa for the other group. If the test drug is expected to have a 10% (d=0.1) higher 

effective rate than the control drug, the test drug is considered to have promotional value. The standard 

deviation of the pre-test difference σ=0.3. Choose α=0.0001, β=0.1, two-sided significance test. 

2.3.3.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) (two-sided test; 1:1 design) is 

 

     n = (zα + zβ)
2σ2/(2(d - δ)2) 

 

where σ: the standard deviation of between-proportion difference (it can be determined in a pre-experiment); δ: 

the margin of between-proportion. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For 

example, if the reshold is 5%, then δ=-0.05 for non-inferiority test. 

2.3.3.3 Equivalence Test 

For equivalence design, the sample size (n) (two-sided test; 1:1 equivalence test) is 

 

     n = (zα + zβ/2)
2σ2/(2(δ - |d|)2) 

 

2.3.4 One-Way Analysis of Variance 

In One-Way Analysis of Variance (One-Way ANOVA), if there is one factor only and the levels (groups) k≥3. 

it is a Multiple-sample Parallel Design. 

2.3.4.1 Pairwise Design 

In this design, there are at least two groups and no control group is included. The sample size (n) is (Desu and 

Raghavarao, 1990; Fleiss, 1986) 

 

n = max{nij} 

 

where 

 

     nij =
 (zα/(2T) + zβ)

2(p1(1 - p1) + p2(1 - p2))/dij
2 

 

where dij=μi -μj. For example, the incidence reduction of two treatment drugs are 40% and 60% respectively 

and the value for the control is 15%, d13=μ1 -μ3=0.4-0.15=0.25, d23=μ2 -μ3=0.6-0.15=0.45, 1:1:1 parallel design. 

The sample size of each group is n = max{n1, n2}. 

2.3.4.2 Overall Between-Proportion Comparison  

If we want to compare the overall difference of multiple proportions, the sample size (n) for each group is 

(Cohen, 1988): 

 

     n = 1641.6λ/(sin-1pmax
0.5 - sin-1pmin

0.5)2  

 

where pmax and pmin: the maximum proportion and the minimum proportion respectively. α, β: as described 

above. k is the number of groups. λ: obtained from Table 2. As an example, for α=0.05, β=0.1, and k=3, 

λ=12.65. For example, we want to study the therapeutic effect of different intensities of pharmaceutical 

interventions on hypertension levels. It is estimated that the strong intervention group has a treatment rate of 

85%, the weak intervention group has a treatment rate of 65%, and the control group has a treatment rate of 

20%. A two-sided test is required, α=0.05, β=0.1, and the ratio of the sample size of the three groups is 1:1:1 
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(that is, the number of cases in the three groups is equal, n). Use the method above to calculate the sample size 

required. 

2.3.4.3 Williams Design 

(1) Significance Test 

For the significance test of Williams Design, the sample size (n) (two-sided test) is 

 

     n = (zα/2 + zβ)
2σ2/(md2) 

 

where σ: the standard deviation of between-proportion difference; d: between-proportion difference; k: the 

number of groups (Common Williams designs are three-group designs (a 6×3 crossover design) and 

four-group designs (a 4×4 crossover design). When the experimental groups (k) are odd, the design result is a 

2k×k crossover design, and when the experimental groups are even, the design result is a k×k crossover design). 

For example, the incidence reduction of two dosages (dosages 1 and 2) of a drug and the control are 75%, 65% 

and 20%. We are interesting in the difference between dosage 1 and the control (d=0.75-0.2=0.55), the 

standard deviation of proportion difference between dosage 1 and control is σ=0.5 (i.e., 50%); use Williams 

three-crossover design (m=6). 

(2) Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (n) (two-sided test) is 

 

     n = (zα + zβ)
2σ2/(m(d - δ)2) 

 

where σ: the standard deviation of between-proportion difference (it can be determined in a pre-experiment); δ: 

the margin of between-proportion difference. δ<0 if non-inferiority test is made and δ>0 if superiority test is 

made. For example, if the reshold is 10%, then δ=-0.1 for for non-inferiority test. 

(3) Equivalence Test 

For equivalence design, the sample size (n) (two-sided test) is 

 

     n = (zα + zβ/2)
2σ2/(m (δ - |d|)2) 

 

2.3.5 Relative Risk - Parallel Design 

2.3.5.1 Significance Test 

Known that the proportions of treatment group and control group are pt and pc respectively, for the significance 

test, the sample size (two-sided test) for control group is 

 

     nc = (zα/2 + zβ)
2(1/(kpt(1 - pt)) + 1/(pc(1 - pc)))/(log OR)2 

 

where k=nt/nc, and for treatment group, the sample size is nt=knc.  

OR means odds ratio  

 

OR= (pt/(1 - pt))/(pc/(1 - pc)) 

 

OR>1 means that treatment has a significant effect and OR<1 no significant effect. For example, the incidence 

reduction of a treatment drug in pre-experiment is 35%, and the value for control drug is 20%; use OR as the 

assess index for treatment drug’ effect; two-sided test.  
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2.3.5.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (two-sided test) for control group is 

 

     nc = (zα + zβ)
2(1/(k pt(1 - pt)) + 1/(pc(1 - pc)))/(log OR - δ)2 

 

where δ: the margin. For the margin of 0.1 (i.e., 10%), δ=-0.1. Follow the example above. 

2.3.5.3 Equivalence Test 

For equivalence design, the sample size (two-sided test) is 

 

     nc = (zα + zβ/2)
2(1/(k pt(1 - pt)) + 1/(pc(1 - pc)))/(δ - log OR)2 

 

2.3.6 Relative Risk - Crossover Design 

2.3.6.1 Significance Test 

Known that the proportions of treatment group and control group are pt and pc respectively, for the significance 

test, the sample size (n) (1:1 design and two-sided test) for each group is 

 

     n = (zα/2 + zβ)
2σ2/(log OR)2 

 

where σ: the standard deviation of between-proportion difference. For example, the incidence reduction of a 

treatment drug and the standard method are 40% (pt=0.4) and 25% (pc=0.25) respectively. Use OR as the 

assess index for treatment drug’ effect: OR=(pt/(1-pt))/(pc/(1-pc)). σ=0.3 (30%). 1:1 crossover control design 

and two-sided test.  

2.3.6.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, the sample size (1:1 design and two-sided test) for each group is 

 

     n = (zα + zβ)
2σ2/(log OR - δ)2 

 

where δ: the margin. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For the margin of 

0.1 (i.e., 10%), δ=-0.1 for non-inferiority test. Follow the example above. 

2.3.6.3 Equivalence Test 

For equivalence design, the sample size (1:1 design and two-sided test) for each group is 

 

     n = (zα + zβ/2)
2σ2/(δ - |log OR)|)2 

 

where δ: the margin. For the margin of 0.1 (i.e., 10%), δ=0.1. Follow the example above. 

2.3.7 Intervention-Control Comparison 

For two independent populations with proportions p1 and p2 respectively, if p1-p2 follows normal distribution 

or the sample size is large enough, then the sample size (n) for each population is (Chow et al., 2008; Fleiss et 

al., 2003): 

 

n = (p1 + p2)*(2 - p1 - p2)/2) (zα + zβ)
2/(p1 - p2)

2 

 

where p1 and p2 can be estimated in advance. 

2.3.8 Cohort Study 
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Known the incidence probability p0 (e.g., 0.1) and p1 (e.g., 0.2) in control group and treatment group 

respectively, the sample size for each group is (Machin et al., 1997; Chow et al., 2003; Fleiss et al., 2003): 

 

n = (zα ((   - ଵ)(2 െ ଵ)/2)0.5 + z2β (p0(1 - p0) + p1(1 - p1))
0.5)2/(p1 - p0)

2 

 

2.3.9 Two-Stage Sampling For Proportion  

Two-stage sampling can be used in proportion estimation. In the first sampling, n1 samples are taken and p1 is 

calculated; in the second sampling, n-n1 samples are taken, and thus 

 

    n = p1q1/v + (3 - 8 p1q1)/(p1q1) - (1 - 3 p1q1)/(v n1) 
 

where n: the sample size, q1=1- p1, v=d2/zα/2
2, d: the expected error (difference) of p.  

2.4 Exact Tests for Proportions 

2.4.1 Binomial Test 

The sample size estimation of the binomial distribution test is suitable for accurate testing of smaller sample’s 

count data. As an example table, Table 3 is for α=0.05, from which the sample size and margin (r) of the 

binomial distribution test can be achieved. For example, in the preliminary trial, the cure rate of a new 

anti-tumor drug was 60% (p1) and the cure rate of standard treatment was 40% (p0). Single-group design, 

binomial distribution test, α=0.05, β=0.1. Find the number of cases for each group in Table 3. 

 

 

Table 3 Table for binomial distribution test (in part; α=0.05). 

p0 p1 
 β=0.1  β=0.2 

r n r n 

0.05 0.2 4 38 3 27 

0.1 0.25 9 55 7 40 

0.15 0.3 14 64 11 48 

0.2 0.35 21 77 16 56 

0.25 0.4 27 83 21 62 

0.3 0.45 35 93 26 67 

0.35 0.5 41 96 30 68 

0.4 0.55 45 94 35 71 

0.45 0.6 52 98 38 70 

0.5 0.65 54 93 41 69 

0.55 0.7 58 92 45 70 

0.6 0.75 58 85 43 62 

0.65 0.8 55 75 41 55 

0.7 0.85 54 69 39 49 

0.75 0.9 46 55 38 45 

0.8 0.95 39 44 27 30 

0.05 0.25 3 25 2 16 

0.1 0.3 6 33 5 25 

0.15 0.35 9 38 7 28 

0.2 0.4 14 47 11 35 
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0.25 0.45 17 49 13 36 

0.3 0.5 21 53 16 39 

0.35 0.55 24 53 19 41 

0.4 0.6 28 56 22 42 

0.45 0.65 30 54 24 42 

0.5 0.7 32 53 23 37 

0.55 0.75 33 50 25 37 

0.6 0.8 32 45 26 36 

0.65 0.85 32 42 24 31 

0.7 0.9 30 37 23 28 

0.75 0.95 25 29 20 23 

0.8 1 13 14 13 14 

 

 

2.4.2 Fisher’s Exact Test 

In a two-group parallel control design, if the theoretical number in the four-cell table is less than 5, or the total 

number of observations is less than 40, Fisher’s exact test is required. To accurately estimate the sample size, 

we need to query Table 4 to obtain the sample size for different proportions. For example, in the preliminary 

trial, the cure rate of a new anti-tumor drug for treating a certain cancer was 40% (p1), and the cure rate of 

standard treatment was 10% (p0). The two groups were parallel controlled in a 1:1 design, two-sided difference 

test, α=0.05, β=0.1. Find the number of cases needed for each group. 

 

 

Table 4 Sample size table for Fisher’s exact test. 

p0 p1 
 α=0.05  α=0.10 

β=0.1 β=0.2 β=0.1 β=0.2 

0.05 0.3 42 34 33 25 

0.1 0.35 52 39 41 31 

0.15 0.4 60 46 48 34 

0.2 0.45 65 49 52 39 

0.25 0.5 71 54 56 40 

0.3 0.55 72 55 57 41 

0.35 0.6 77 56 57 41 

0.4 0.65 77 56 57 41 

0.45 0.7 72 55 57 41 

0.5 0.75 71 54 56 40 

0.55 0.8 65 49 52 39 

0.6 0.85 60 46 48 34 

0.65 0.9 52 39 41 31 

0.7 0.95 42 34 33 25 

0.05 0.35 33 25 26 20 

0.1 0.4 39 30 32 23 

0.15 0.45 45 34 35 26 

0.2 0.5 47 36 39 28 
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0.25 0.55 51 37 40 29 

0.3 0.6 53 41 40 29 

0.35 0.65 53 41 40 33 

0.4 0.7 53 41 40 29 

0.45 0.75 51 37 40 29 

0.5 0.8 47 36 39 28 

0.55 0.85 45 34 35 26 

0.6 0.9 39 30 32 23 

0.05 0.4 25 20 21 16 

0.1 0.45 31 24 24 19 

0.15 0.5 34 26 28 20 

0.2 0.55 36 27 29 23 

0.25 0.6 36 30 29 24 

0.3 0.65 40 31 33 24 

0.35 0.7 40 31 33 24 

0.4 0.75 36 30 29 24 

0.45 0.8 36 27 29 23 

0.5 0.85 34 26 28 20 

0.55 0.9 31 24 24 19 

0.6 0.95 25 20 21 16 

 

 

2.4.3 Optimal Multiple-Stage Designs for Single Arm Trials 

2.4.3.1 Optimal Two-Stage Designs 

In this design, we allow the experiment to terminate after a certain number of failures. The sample size for this 

design can be obtained by consulting the Table 5. For example, a new anti-tumor drug is undergoing phase II 

clinical trials. The effectiveness of standard treatment is 30% (p0), and if the effectiveness of the new drug 

reaches 50% (p1), it is considered to have clinical value. Optimal Two-Stage Designs, α=0.05, β=0.1. The 

result of this example is: 8/24, 24/63, 7/24, 21/53. It menas that there are in total of 24 cases in the first phase, 

and 8 of them are effective, then the second phase of the trial can be carried out. In the second phase, 7 more 

cases need to be continued to reach 24 cases. If at least 7 cases are effective, further research can be conducted. 

 

 

Table 5 Table for Optimal Two-Stage Designs (α=0.05). 

p0 p1 β=0.1 β=0.2 

0.05 0.2 1/21 4/41 1/29 4/38 0/10 3/29 0/13 3/27 

0.1 0.25 2/21 10/66 3/31 9/55 2/18 7/43 2/22 7/40 

0.2 0.35 8/37 22/83 8/42 21/77 5/22 19/72 6/31 15/53 

0.3 0.45 13/40 40/110 27/77 33/88 9/27 30/81 16/46 25/65 

0.4 0.55 19/45 49/104 24/62 45/94 11/26 40/84 28/59 34/70 

0.5 0.65 22/42 60/105 28/57 54/93 15/28 48/83 39/66 40/68 

0.6 0.75 21/34 64/95 48/72 57/84 17/27 46/67 18/30 43/62 

0.7 0.85 18/25 61/79 33/44 53/68 14/19 46/59 16/23 39/49 

0.8 0.95 16/19 37/42 31/35 35/40 7/9 26/29 7/9 26/29 
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0.05 0.25 0/9 3/30 0/15 3/25 0/9 2/17 0/12 2/16 

0.1 0.3 2/18 6/35 2/22 6/33 1/10 5/29 1/15 5/25 

0.2 0.4 4/19 15/54 5/24 13/45 3/13 12/43 4/18 10/33 

0.3 0.5 8/24 24/63 7/24 21/53 5/15 18/46 6/19 16/39 

0.4 0.6 11/25 32/66 12/29 27/54 7/16 23/46 17/34 20/39 

0.5 0.7 13/24 35/61 14/27 32/53 8/15 26/43 12/23 23/37 

0.6 0.8 12/19 37/53 15/26 32/45 7/11 30/43 8/13 25/35 

0.7 0.9 11/15 29/36 13/18 26/32 4/6 22/27 19/23 21/26 

 

 

2.4.3.2 Flexible Two-Stage Designs 

This design gives multiple choices for the number of cases in the two stages. The sample size and boundary 

value of the optimized and flexible two-stage design can be found in Table 6. For example, a new anti-tumor 

drug is undergoing phase II clinical trials. The effectiveness of standard treatment is 20% (p0), and if the 

effectiveness of the new drug reaches 40% (p1), it is considered to have clinical value. Optimal Flexible 

Two-Stage Designs, α=0.05, β=0.1. The result is: 4/18-20, 5/21-24, 6/25 ----- 13/48, 14/49-51, 15/52-55. It 

means that the first stage of the study requires 18-20 cases, and if at least 4 cases are effective, the second 

stage trial can be carried out. In the second stage, we will continue to do 28 to 30 cases, bringing the total 

number to 48. If 13 cases are effective, further research can be conducted. 

 

 

Table 6 Table for Flexible Two-Stage Designs (α=0.05). 

  p0 p1  ri-ni  Rj-Nj 

β=0.1 

0.05 0.2 1/17-24 4/41-46,5/47-48 

0.1 0.25 2/21-24,3/25-28 9/57-61,10/62-64 

0.4 0.55 16/38-39,17/40-41,18/42-44,19/45 49/104-105,50/106-107,51/108-109,52/110-111 

0.5 0.65 21/40,22/41-42,23/43-44,24/45-46,25/47 59/103-104,60/105-106,61/107,62/108-109,63/110

0.6 0.75 20/32-33,21/34,22/36-36,23/37/24/38-39 61/90-91,62/92,63/93-94,64/95,65/96-97 

0.7 0.85 17/24,18/26,19/26,20/27-28,21/29,22/30,23/31 57/73-74,58/75,59/76-77,60/78,61/79,62/80 

0.8 0.95 
10/12,11/13-14,12/15,13/16, 

14/17,15/18,16/19 
35/40,36/41,37/42,38/43,39/44, 40/45-46,41/47 

0.05 0.25 0/8-13,1/14-15 2/24,3/25-31 

0.1 0.3 1/12-14,2/15-19 6/36-39,7/40-43 

0.2 0.4 4/18-20,5/21-24,6/25 13/48,14/49-51,15/52-55 

0.3 0.5 6/19-20,7/21-23,8/24-26 21/55,22/56-58,23/59-60,24/61-62 

0.4 0.6 8/20,9/21-22,10/23-24,11/25-26,12/27 28/58,29/59-60,30/61-62,31/63,32/64-65 

0.5 0.7 10/19-20,11/21,12/22-23,13/24-25,14/26 33/55-56,34/57-58,35/59,36/60-61,37/62 

0.6 0.8 11/17-18,12/19,13/20-21,14/22,15/23,16/24 34/48-49,35/50-51,36/52,37/53-54,38/55 

0.7 0.9 7/10,8/11,9/12-13,10/14,11/15,12/16,13/17 27/34/28/35,29/36,30/37-38,31/39,32/40,33/41 

 

 

 

 

 

0.05 0.2 0/10-12,1/13-17 3/27-34 

0.1 0.25 1/13-15,2/16-20 6/40,7/41-45,8/46-47 

0.2 0.35 4/18-21,5/22-24,6/25 17/62-64,18/65-69, 

0.2 0.35 6/31,7/32-34,8/35-38 22/82-85,23/86-89 

0.3 0.45 7/23,8/24-25,9/26-29,10/30 27/73,28/74-76,29/77-78,30/79-80 
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β=0.2 

0.3 0.45 11/35-36,12/37-39,13/40-42 36/98-99,37/100-102,38/103-104,39/105 

0.4 0.55 11/25-26,12/27-29,13/30-31,14/32 37/78,38/79-80,39/81-82,40/83-85 

0.5 0.65 12/23,13/24-25,14/26-27,15/28-29,16/30 45/77-78,46/79-80,47/81-82,48/83,49/84 

0.6 0.75 14/22-23,15/24,16/25 46/68,47/69,48/70-71 

0.7 0.85 9/13,10/14,11/15,12/16-17,13/18,14/19,15/20 44/56-57,45/58,46/59,47/60,48/61-62,49/63 

0.8 0.95 7/9,8/10,9/11,10/12, 11/13,12/14,13/15,14/16 25/28,26/29,27/30,28/31-32, 29/33,30/34,31/35 

0.05 0.25 0/5-10,1/11-12 2/17-22,3/23-24 

0.1 0.3 1/8-12,2/13-15 4/26,5/27-32,6/33 

0.2 0.4 2/10-12,3/13-15,4/16-17 10/33-35,11/36-40 

0.3 0.5 3/11,4/12-14,5/15-16/6/17-18 16/40-41,16/42-44,18/45-46,18/47 

0.4 0.6 5/12-13,6/14,7/15-16,8/17-19 22/44-45,23/46-47,24/48-49,25/50,26/51 

0.5 0.7 5/10,6/11-12,7/13-14,8/15,9/16-17 25/42,26/43-44,27-45,28/46-47,29/48,30/49 

0.6 0.8 5/8-9,6/10,7/11,8/12-13,9/14-15 25/35-36,26/37,27/38,28/39-40,29/41,30/42 

0.7 0.9 4/6,5/7,6/8,7/9,8/10-11,9/12,10/13 22/27,23/28-29,24/30,25/31,26/32-33,27/34 

 

 

2.4.3.3 Optimal Three-Stage Designs 

It is basically the same as the two-stage one. The sample content and margin can be found in Table 7. For 

example, a new anti-tumor drug is undergoing phase II clinical trials. The effectiveness of standard treatment 

is 20% (p0), and if the effectiveness of the new drug reaches 40% (p1), it is considered to have clinical value. 

Optimal Three-Stage Designs, α=0.05, β=0.1. The result is: 3/17 --> 7/30 --> 14/50. It means that the first 

stage of the study requires 17 cases, and if at least 1 case is effective, the second stage trial can be carried out. 

In the second stage, we will continue to do 13 cases, bringing the total number to 30. If at least 7 cases are 

effective, the third stage trial can be carried out. In the third stage, we will continue to do 20 cases, bringing 

the total number to 50 cases. If at least 14 cases are effective, continue the further reaserch. 

 

Table 7 Table for Optimal Three-Stage Designs (α=0.05). 

β=0.1 β=0.2 

p0 p1 S1: r1/n1 S2: r2/n1n2 S3: r3/n1n2n3 p0 p1 S1: r1/n1 S2: r2/n1n2 S3: r3/n1n2n3 

0.05 0.2 0/14 2/29 4/43 0.1 0.25 1/13 3/24 8/53 

0.1 0.25 1/17 4/34 10/66 0.15 0.3 2/15 6/33 13/62 

0.15 0.3 3/23 8/46 16/77 0.2 0.35 3/17 9/37 18/68 

0.2 0.35 5/27 11/49 23/88 0.25 0.4 4/17 12/42 25/79 

0.25 0.4 6/26 15/54 32/103 0.3 0.45 5/18 14/41 31/84 

0.3 0.45 8/29 19/57 38/104 0.35 0.5 6/19 17/43 34/80 

0.35 0.5 9/28 23/60 45/108 0.4 0.55 7/19 19/43 39/82 

0.4 0.55 12/31 28/64 54/116 0.45 0.6 8/19 21/42 45/86 

0.45 0.6 13/30 29/60 58/112 0.5 0.65 8/17 21/39 49/85 

0.5 0.65 14/29 34/63 62/109 0.55 0.7 7/14 23/39 49/78 

0.55 0.7 15/28 36/61 65/105 0.6 0.75 8/14 23/36 52/77 

0.6 0.75 14/24 36/56 70/105 0.65 0.8 8/13 27/38 52/72 

0.7 0.85 12/18 28/38 58/75 0.65 0.8 16/25 35/50 66/92 

0.75 0.9 10/14 23/29 55/67 0.7 0.85 4/7 11/16 44/56 

0.8 0.95 6/8 24/28 41/47 0.75 0.9 9/12 21/26 39/47 
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0.05 0.25 0/10 1/17 3/30 0.8 0.95 2/3 16/19 35/40 

0.1 0.3 1/13 3/23 7/45 0.05 0.25 0/8 1/13 2/19 

0.15 0.35 2/15 5/27 11/51 0.1 0.3 0/6 2/17 5/29 

0.2 0.4 3/17 7/30 14/50 0.15 0.35 1/9 4/21 8/35 

0.25 0.45 4/18 10/33 19/58 0.2 0.4 1/8 5/22 11/38 

0.3 0.5 4/16 11/32 23/60 0.25 0.45 2/10 6/20 16/48 

0.35 0.55 6/18 15/38 27/62 0.3 0.5 3/11 7/21 18/46 

0.4 0.6 6/16 17/38 32/66 0.35 0.55 3/10 9/23 21/47 

0.45 0.65 6/15 17/34 34/63 0.4 0.6 3/9 10/23 23/46 

0.5 0.7 7/15 19/34 38/65 0.45 0.65 3/8 10/20 29/54 

0.55 0.75 7/14 16/27 36/56 0.5 0.7 4/9 13/23 29/49 

0.6 0.8 6/11 19/29 38/55 0.55 0.75 6/11 14/23 28/43 

0.65 0.85 6/10 16/23 35/47 0.6 0.8 5/9 12/48 28/40 

0.7 0.9 6/9 16/21 31/39 0.65 0.85 5/8 13/18 27/36 

0.75 0.95 6/8 13/16 24/28 0.7 0.9 3/5 10/13 25/31 

0.05 0.2 0/10 1/19 3/30 0.75 0.95 1/2 9/11 19/22 

 

 

2.4.3.4 Minimum Three-Stage Designs 

This method needs the minimal sample size. For example, a new anti-tumor drug is undergoing phase II 

clinical trials. The effectiveness of standard treatment is 20% (p0), and if the effectiveness of the new drug 

reaches 40% (p1), it is considered to have clinical value. Minimum Three-Stage Designs, α=0.05, β=0.1. The 

result is: 2/16 --> 6/28 --> 13/45. It means that the first stage of the study requires 16 cases, and if at least 2 

cases are effective, the second stage trial can be carried out. In the second stage, we will continue to do 12 

cases, bringing the total number to 28. If at least 6 cases are effective, the third stage trial can be carried out. In 

the third stage, we will continue to do 17 cases, bringing the total number to 45 cases. If at least 13 cases are 

effective, continue the further reaserch. 

 

 

Table 8 Table for Minimum Three-Stage Designs (α=0.05). 

β=0.1         β=0.2     

p0 p1 S1: r1/n1 S2: r2/n1n2 S3: r3/n1n2n3 p0 p1 S1: r1/n1 S2: r2/n1n2 S3: r3/n1n2n3 

0.05 0.2 0/23 1/30 4/38 0.05 0.2 0/14 1/20 3/27 

0.1 0.25 1/21 4/39 9/55 0.1 0.25 1/17 3/30 7/40 

0.15 0.3 4/35 8/51 14/64 0.15 0.3 2/19 6/36 11/48 

0.2 0.35 16/65 19/72 20/74 0.2 0.35 3/22 7/35 15/53 

0.25 0.4 9/47 17/67 27/83 0.25 0.4 7/30 12/42 20/60 

0.3 0.45 12/46 25/73 33/88 0.3 0.45 8/29 14/42 25/65 

0.35 0.5 11/36 22/60 40/94 0.35 0.5 10/33 18/48 29/66 

0.4 0.55 20/55 32/77 45/94 0.4 0.55 13/33 30/63 34/70 

0.45 0.6 26/58 47/90 50/95 0.45 0.6 13/32 25/53 38/70 

0.5 0.65 19/43 34/67 54/93 0.5 0.65 18/36 36/62 40/68 

0.55 0.7 23/43 42/84 45/89 0.55 0.7 18/33 41/64 42/66 

0.6 0.75 18/46 50/75 57/84 0.6 0.75 19/32 40/58 42/61 
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0.7 0.85 13/20 31/42 43/68 0.65 0.8 16/26 27/40 41/55 

0.75 0.9 12/17 23/30 45/54 0.65 0.8 25/41 37/56 55/75 

0.8 0.95 16/20 31/35 35/40 0.7 0.85 11/17 16/24 39/49 

0.05 0.25 0/15 1/21 3/25 0.75 0.9 8/12 16/21 33/39 

0.1 0.3 0/14 2/22 6/33 0.8 0.95 7/9 16/19 26/29 

0.15 0.35 1/16 4/28 9/38 0.05 0.25 0/12 1/15 2/16 

0.2 0.4 2/16 6/28 13/45 0.1 0.3 0/11 2/19 5/25 

0.25 0.45 4/21 9/35 17/45 0.15 0.35 1/12 3/19 7/28 

0.3 0.5 5/20 12/36 21/53 0.2 0.4 2/13 5/22 10/33 

0.35 0.55 10/34 17/45 24/53 0.25 0.45 3/15 6/23 13/36 

0.4 0.6 7/20 17/39 27/54 0.3 0.5 3/13 8/24 16/39 

0.45 0.65 15/32 28/51 29/53 0.35 0.55 4/14 9/24 18/39 

0.5 0.7 8/18 18/34 32/53 0.4 0.6 4/12 11/25 21/41 

0.55 0.75 12/22 21/35 32/49 0.45 0.65 6/15 12/24 22/39 

0.6 0.8 15/26 24/37 32/45 0.5 0.7 7/16 13/25 23/37 

0.7 0.9 5/9 12/17 26/32 0.55 0.75 8/15 14/23 24/36 

0.75 0.95 9/12 19/22 22/26 0.6 0.8 9/15 23/32 24/34 

- - - - - 0.65 0.85 6/10 13/18 23/30 

- - - - - 0.65 0.85 16/24 28/37 30/40 

- - - - - 0.7 0.9 4/7 19/23 20/25 

- - - - - 0.75 0.95 6/8 14/16 17/20 

 

2.4.3.5 Flexible Designs for Multiple-Arm Trials 

In this design, we need to specify a clinically meaningful boundary value [−δ, δ] in advance. If the difference 

in proportions is greater than δ, then the group with the larger proportion will be selected. If the proportion 

difference is less than or equal to δ, other factors need to be considered in the selection. This design is not to 

compare the advantages and disadvantages between groups, but to maintain the existence of advantageous 

treatments as accurately as possible for further research. 

(1) Flexible Designs for Two-Arm Trials  

Suppose that λ is a pre-specified threshold, and δ=0.05. The sample sizes of the two groups of flexible designs 

can be found in Table 9 when ρ=0 or ρ=0.5. For example, the effectiveness of standard treatment is 25% (p0), 

and the effectiveness of the new drug is 40% (p1). Flexible Designs for Two-Arm Trials. Suppose that ρ=0, 

λ=0.9. The result is: 71. Each group needs 71 cases. 

 

Table 9 Table for Flexible Designs for Two-Arm Trials. 

p0 p1 λ=0.9, ρ=0  λ=0.8  λ=0.9, ρ=0.5 

0.05 0.2 32 13 16 

0.1 0.25 38 15 27 

0.15 0.3 0.53 17 31 

0.2 0.35 57 19 34 

0.25 0.4 71 31 36 

0.3 0.45 73 32 38 

0.35 0.5 75 32 46 

0.4 0.55 76 33 47 

123



Network Biology, 2024, 14(2): 100-155 

 IAEES                                                                                      www.iaees.org    

(2) Flexible Designs for Multiple-Arm Trials 

Suppose that λ is a pre-specified threshold, and δ=0.05. The sample sizes of the multiple groups of flexible 

designs can be found in Table 10 when λ=0.8, 0.9, ρ=0, 0.5, r=3, 4, and d=0.2, 0.3, 0.4, 0.5. 

 

 

Table 10 Table for Flexible Designs for Multiple-Arm Trials. 

λ  d  ρ=0, r=3 ρ=0, r=4 ρ=0.5, r=3 ρ=0.5, r=4 

0.8 0.2 18 31 13 16 

0.8 0.3 38 54 26 32 

0.8 0.4 54 73 31 39 

0.8 0.5 58 78 34 50 

0.9 0.2 39 53 30 34 

0.9 0.3 77 95 51 59 

0.9 0.4 98 119 68 78 

0.9 0.5 115 147 73 93 

                   d: Proportion’s magin; r: number of arms. 

 

 

2.5 Tests for Goodness-of-Fit and Contingency Tables 

2.5.1 Test for Goodness-of-Fit 

For Goodness-of-Fit test, the sample size (n) (One-group design and two-sided test) is 

 

     n = δα,βሺ∑ ሺ െ ,ሻଶ/,

ୀଵ )-1 

 

where pk: the proportion of the category k, k=1,2,…,r; pk,0: the proportion of the category k in the literature. δα,β: 

calculated from Fr-1(χఈ,ିଵ
ଶ |δ)=β, where δ=lim՜ן ∑ ݊ሺ െ ,ሻଶ/,


ୀଵ . For example, to analyze the effect 

of a drug in the pilot study, preliminary trials have shown that the proportions of marked effect, effect and 

ineffect of the drug in treating the disease are about 20%, 55% and 25% respectively. According to literature 

reports, the proportions of marked effect, effect and ineffect of existing antihypertensive drugs are 15%, 50% 

and 20%, respectively.  

2.5.2 Test for Independence - Single Stratum 

For r×c contingency table data (two-way) without stratum, the following methods are commonly used for 

sample size estimation. 

2.5.2.1 Pearson’s Test 

For Pearson’s test, the sample size (n) (Two-group parallel design and two-sided test) is 

 

     n = δα,βሺ∑ ∑ ൫ െ ൯
ଶ
/ሺ


ୀଵ ሻ

ୀଵ )-1 

 

where r,c: the number of rows and columns in the table respectively; pij: the proportion of row category i and 

category j, i=1,2,…,r; j=1,2,…,c; δα,β: calculated from Fr-1,c-1( χఈ,ሺିଵሻሺିଵሻ
ଶ |δ)=β, and 

δ=lim՜ן ∑ ∑ ݊൫ െ ൯
ଶ
/ሺ


ୀଵ ሻ

ୀଵ . For example, to analyze the effect of a drug, preliminary trials 

have shown that the marked effective proportion, effective proportion and ineffective proportion of the drug in 
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treating the disease are about 15%, 58% and 25% respectively, and the marked effective proportion, effective 

proportion and ineffective proportion of the control are about 8%, 30% and 16% respectively. 

2.5.2.2 Likelihood Ratio Test 

The method is the same as Pearson’s Test. 

2.5.3 Test for Independence - Multiple Strata 

The test for independence of multiple strata is used in multi-center (multi-stratum) clinical trials. The later can 

not only guarantee the repeatability and representativeness of experimental results, but also facilitate the 

selection of subjects within the expected time. Multi-center clinical trials produce multi-level contingency 

table data. When the response rate is binary data, the Cochran-Mantel-Haenszel Test is a commonly used 

method. Suppose that nh,ij is the number of response j in layer h (i.e., center h) after processing i (i.e., group i),  

ph, ij is the proportion of response j in layer h after processing i . The sample size (n) is 

 

     n = (zα/2 + zβ)
2/δ2 

 

where  

 

      δ = |ሺ∑ ,ଵଶሺߨ െ ,ଵ.,.ଶሻ/
ு
ୀଵ ሺ∑ ,.ଵሻሻ.ହ.,ଶ,.ଶ.,ଵߨ

ு
ୀଵ | 

 

and πh=nh/n. For example, make a multi-center clinical trial for a drug and the control and observe the 

proportion of adverse events. Three strata are used (H=3). The data are as follows 

 

 

Strata Groups 

Adverse events 

No 

Adverse events 

Yes Total 

1 Treatment 0.25 0.25 0.50 

 Control 0.15 0.35 0.50 

2 Treatment 0.20 0.30 0.50 

 Control 0.30 0.20 0.50 

3 Treatment 0.35 0.15 0.50 

 Control 0.15 0.35 0.50 

 

 

Two-group 1:1 parallel design, and two-sided test. πh=1/3.  

2.5.4 Categorical Shift Test 

In clinical trials, to study the changes in the data of the two categories before and after the trial, McNemar test 

and Stuart-Maxwell test are usually used. 

2.5.4.1 McNemar Test 

The McNemar test is suitable for comparisons before and after binary variables. For McNemar test, the sample 

size (n) is 

 

     n = (zα/2 (φ+1) + zβ((φ+1)2 - (φ-1)2πDisordant)
0.5)2/((φ-1)2πDisordant) 
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where φ=p01/p10, πDisordant= p01+ p10, p01=P(x1=0, x2=1), p10=P(x1=1, x2=0). For example, use a drug to treat the 

disease. p10=0.6 (60%), p01=0.2 (20%). Two-sided significance test. 

2.5.4.2 Stuart-Maxwell Test 

The Stuart-Maxwell test is suitable for comparisons before and after multiple categorical variables. For 

Stuart-Maxwell test, the sample size (n) is 

 

     n = δα,β (∑ ൫ െ ൯
ଶ
/ሺ  ழ ))-1 

where pij=nij/∑∑nij, δ=lim୬՜ן ݊∑ ൫ െ ൯
ଶ
/ሺ  ሻழ . Fr(r−1)/2(χα,r(r−1)/2|δ)=β. For example, to study the 

possibility of the effect-changing trend of using a drug to treat the disease, and the data are as follows 

 

 

Before treatment

After treatment 

response 1 

After treatment 

response 2 … 

After treatment 

response r 

Response 1 n11 n12 … n1r 

Response 2 n21 n22 … n22 

… … … … … 

Response r nr1 nr2 … nrr 

 

 

2.5.5 Carry-Over Effect Test 

Residual effects refer to some reasons caused by the previous stage of treatment (such as the withdrawal effect 

caused by drug resistance, psychological effects, and legacy effects caused by changes in the patient's physical 

condition due to medication) that interfere with the treatment effect of the next stage. To understand the 

residual effect, the sample size (n) is 

 

     n = (zα/2 + zβ)
ଵߪ)2

ଶ +ߪଶ
ଶ)/2 

 

where σ1: the standard deviation for from A to B; σ2: the standard deviation for from B to A; γ: the difference of 

residual effects between the A→B and B→A orders. For example, in a trial for the drugs A and B, γ=0.6, σ1=3.6, 

σ2=3.9. 

2.6 Time-to-Event 

The result of some experiments is the time of an event. The time from the observation of the event is called the 

time-to-event. If the end point of the study is death, the time to the event is called the survival time. Survival 

time refers to the time elapsed from a certain starting point to the occurrence of an event. Survival probability 

indicates the probability that subjects who survived at the beginning of a unit period are still alive at the end of 

the period. Survival rate refers to the probability that the research object is still alive after a period of time, that 

is, the probability that the survival time is greater than or equal to. The survival function S(t) (Survival 
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distribution function) is also called the cumulative survival rate, which is the probability that time is greater 

than a certain point in time. The death probability function F(t) is referred to as death probability for short, 

which represents the death probability of an observed object from the beginning of observation to time t, and 

its relationship with the survival function is F(t)=1-S(t). Hazard function refers to the probability of the 

surviving subjects at time t dying immediately after time t, which is a conditional probability. 

2.6.1 Exponential Model  

Survival time usually does not follow the normal distribution, and sometimes it approximately follows the 

exponential distribution, Weibull distribution, Gompertz distribution, etc. In most cases, it does not follow any 

regular distribution type. 

2.6.1.1 Significance Test 

Suppose that survival time follows the exponential distribution. We want to test the significance of difference 

between two groups of endpoints (survival rates). The sample size is 

 

n2 = (zα/2 + zβ)
2(σ2(λ1)/k + σ2(λ2))/(λ1 - λ2)

2 

 

where n1 and n2: the sample size for group 1 and group 2 respectively, k=n1/n2; λ1 and λ2: the hazard ratio of 

group 1 and group 2 respectively; σ: standard deviation; T: The expected time for trials, that is, the time from 

the start to the end of trials; T0: The expected time for all subjects to be enrolled (keep consistent with T), and 

      

σ2(λi) =γ
2 (1 +λieିఒ்(1 - eିሺఒିఊሻ బ்)/((λi- )( 1 െ eିఒ బ்)) )−1 

 

For example, to study the effect of two treatment methods on the time to transformation of malignant tumor to 

cancer. The observation time lasted for 5 years (T=5, T0=1). Assume that the hazard ratios of the two groups 

are λ1=0.5 and λ2=0.8, respectively. Estimate the sample size for each group. 

2.6.1.2 Non-inferiority or Superiority Test 

For non-inferiority or superiority test, we want to test if the difference between two groups of terminals 

(survival rates) is non-inferior or superior to the known margin. The sample size is 

 

n2 = (zα + zβ)
2(σ2(λ1)/k + σ2(λ2))/(d - δ)2 

 

where d: the difference between endpoints (survival rates) of two groups; δ: the margin; k=n1/n2; λ1 and λ2: the 

hazard ratio of group 1 and group 2 respectively; σ: standard deviation, and  

 

σ2(λi) =γ
2 (1 +λieିఒ்(1 - eିሺఒିఊሻ బ்)/((λi- )( 1 െ eିఒ బ்)) )−1 

 

δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For example, the margin is 0.1 (i.e., 

10%), δ=0.1 for superiority test. Follow the example above. 

2.6.1.3 Equivalence Test 

In equivalence design, we hope to test the equivalence of two groups of endpoints (survival rates). The sample 

size is 

 

n2 = (zα + zβ/2)
2(σ2(λ1)/k + σ2(λ2))/(δ - |d|)2 

 

where d: the difference between terminals (survival rates) of two groups; δ: the margin; k=n1/n2; λ1 and λ2: the 
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hazard ratio of group 1 and group 2 respectively; σ: standard deviation, and  

 

σ2(λi) =γ
2 (1 +λieିఒ்(1 - eିሺఒିఊሻ బ்)/((λi- )( 1 െ eିఒ బ்)) )−1 

 

For example, the margin is 0.1 (i.e., 10%), δ=0.1. Follow the example above. 

2.6.2 Cox Proportional Hazards Model  

2.6.2.1 Significance Test 

In significance test, adopt 1:1 two groups of parallel control design. Based on the Cox Proportional Hazards 

Model for survival analysis, test whether the difference between the two groups of endpoints is significant. 

The sample size is 

 

n = (z1-α/2 + z1-β)
2/(log2b p1p2d) 

 

where p1 and p2: the hazard rate of two groups respectively; b: the hazard ratio of two groups; d: the 

occurrence rate of specified event. For example, compare the therapeutic effect of a new method and a 

traditional method. In the pilot test, the hazard ratio of the traditional method and the new method is b=3, 70% 

of the patients will be observed local infection (d=0.7), when p1=0.4, p2=0.4, two groups 1:1 parallel control. 

Make significance test. Each group requires n cases. 

2.6.2.2 Non-inferiority or Superiority Test 

In non-inferiority or superiority test, adopt 1:1 two groups of parallel control design. Based on the Cox 

Proportional Hazards Model for survival analysis, test whether the difference between the two groups of 

endpoints is non-inferior or superior to the known margin. The sample size is 

 

n = (z1-α + z1-β)
2/(logb - δ)2p1p2d) 

 

where δ: the margin of logb. δ<0 if non-inferiority test is made and δ>0 if superiority test is made. For example, 

take superiority test, δ=0.4 for superiority test. 

2.6.2.3 Equivalence Test 

In equivalence design, adopt 1:1 two groups of parallel control design. Based on the Cox Proportional Hazards 

Model for survival analysis, test the equivalence of two groups of endpoints. The sample size is 

 

n = (z1-α + z1-β/2)
2/(δ – |logb|)2p1p2d) 

 

2.6.3 Logrank Test  

The survival analysis based on the Logrank test (also known as the time series test), is based on the premise 

that the null hypothesis is established, and the difference between the actual number of deaths with two 

survival times and the theoretical number of deaths (expected number of deaths) calculated based on the 

number of initial observations and the theoretical death probability should not be large; if the difference is 

large, the null hypothesis is invalid, and the difference between the two survival curves can be considered to be 

statistically significant. For significance test, the sample size is 

 

n = 2d/(p1 + p2) 

 

where 
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     d = (z1-α/2 + z1-β)
2

 (∑ ݓ
ଶே

ୀଵ ∑ )/(ߟߩ ݓ
ே
ୀଵ (ߛߩ

2 

 

Corresponding to wi=1, ni, and ݊
.ହ, the test is Logrank test, Wilcoxon test and Tarone-Ware test. For example, 

in a trial of two years, it is assumed that the annual hazard rate of the experimental group is 0.8 (the annual 

event rate is 1−e−0.8), the annual hazard rate of the control group is 0.4 (the annual event rate is 1−e−0.4), and 

the annual loss rate was 2%, the annual non-compliance rate was 5%, and 8% of the patients in the control 

group chose other treatments (drop-in) similar to those in the experimental group. The total event rate was 86% 

in the treatment group and 60% in the control group. Calculate the sample size, n. 

2.7 Group Sequential Methods 

The traditional randomized controlled trial design requires the sample size to be determined before the trial 

begins. Sequential design usually does not fix the sample size in advance, but according to the order in which 

the subjects enter the experiment, one analysis is performed after one experiment is done, and the experiment 

is stopped immediately once the expected result is achieved. The group sequential design allows interim 

analysis of the accumulated data during the trial, such as evaluating the effectiveness and safety of the trial 

drug, and if there is enough evidence to prove that the trial drug is effective or ineffective, the trial can be 

terminated early. Compared with the traditional experimental design, because the interim analysis provides the 

possibility to end the trial early, the group sequential trial can often save the trial sample size, shorten the trial 

period, save money, and is more in line with the ethical requirements. In addition, the interim evaluation of 

data by group sequential design can also enable researchers to discover problems in the trial as early as 

possible, which is conducive to improving the quality of the trial. 

   The most used group sequential experiments are staged experiments. It is required to divide the whole 

experiment into k consecutive stages, and in each stage, 2n subjects join the experiment, and are randomly 

assigned to the experimental group and the control group, and each group has n subjects. When the ith (i≤k) 

stage test is over, the experimental results from stage 1 to stage i are accumulated for statistical analysis. If H0 

is rejected, the test can be ended, otherwise continue to the next stage of the test. If H0 cannot be rejected after 

the end of the last kth stage, H0 is acceptable. In group sequential experiments, repeated significance tests are 

required, and the significance level of each stage needs to be adjusted, and the adjusted significance level 

becomes the nominal significance level. In group sequential design, there are two conceptual ways of dividing 

time points, one is calendar time and the other is information time. Calendar time is based on the progress of 

the trial duration to determine when to conduct interim analysis; the meaning of information time refers to the 

percentage of the sample size observed at a certain observation point in the total sample size of the plan, 

measured by the amount of information that can be observed with which to decide when to conduct an interim 

analysis. 

2.7.1 Pocock’s Test 

In Pocock’s Test, the same margin and nominal significance level were used for each stage. For k-stage 

Pocock’s Test, the total sample size is 

 

nmax = Rp(k,α,β) (z1-α/2 + z1-β)
ଵߪ)2

ଶ +ߪଶ
ଶ)/(μ1 -μ2)

2 

 

and the sample size for each stage is nmax/k. Rp(k,α,β) is obtained from the Table 11. Margin values for kth 

stage are listed in Table 12. For example, for k=5 and α=0.05, it is 2.413. So in a group sequential design with 

a significance level of 0.05 in 5 stages, a margin of 2.413 is used in each stage. Only when the nominal 

significance level in each stage is less than 0.0158218 can H0 be rejected. As an example, for a 5-phase group 

sequential trial comparing the efficacy of a drug and a control, according to the pilot test, the overall standard 
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deviation is 3 (ߪଶ=ߪଵ
ଶ=ߪଶ

ଶ=9), μ1−μ2=1; Pocock design; calculate the sample size for each stage, nmax/k.  

 

Table 11 Rp(k,α,β) table. 

k 
β=0.10 β=0.20 

α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10 

1 1 1 1 1 1 1 

2 1.084 1.1 1.11 1.092 1.11 1.121 

3 1.125 1.151 1.166 1.137 1.166 1.184 

4 1.152 1.183 1.202 1.166 1.202 1.224 

5 1.17 1.207 1.228 1.187 1.229 1.254 

6 1.185 1.225 1.249 1.203 1.249 1.277 

7 1.197 1.239 1.266 1.216 1.265 1.296 

8 1.206 1.252 1.28 1.226 1.279 1.311 

9 1.215 1.262 1.292 1.236 1.291 1.325 

10 1.222 1.271 1.302 1.243 1.301 1.337 

11 1.228 1.279 1.312 1.25 1.31 1.348 

12 1.234 1.287 1.32 1.257 1.318 1.357 

15 1.248 1.305 1.341 1.272 1.338 1.381 

20 1.264 1.327 1.367 1.291 1.363 1.411 

 

 

Table 12 Margin value table for Pocock’s Test. 

k α=0.01 α=0.05 α=0.10

1 2.576 1.96 1.645 

2 2.772 2.178 1.875 

3 2.873 2.289 1.992 

4 2.939 2.361 2.067 

5 2.986 2.413 2.122 

6 3.023 2.453 2.164 

7 3.053 2.485 2.197 

8 3.078 2.512 2.225 

9 3.099 2.535 2.249 

10 3.117 2.555 2.27 

11 3.133 2.572 2.288 

12 3.147 2.588 2.304 

15 3.182 2.626 2.344 

20 3.225 2.672 2.392 

 

 

2.7.2 O’Brien and Fleming Test 

This method adopts different margins for different stages, and the margin is set higher in the early stage and 

lower in the later stage. Table 13 lists the margin of the last stage of each stage. For example, the margin of the 

last stage of 13 stages is 2.04 (α=0.05), and the difference table can be used for the first 4 stages. The values 

are 4.562, 3.226, 2.634 and 2.281, respectively. 
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Table 13 Margin value table for O’Brien and Fleming Test. 

k α=0.01 α=0.05 α=0.10 

1 2.576 1.96 1.645 

2 2.58 1.977 1.678 

3 2.595 2.004 1.71 

4 2.609 2.024 1.733 

5 2.621 2.04 1.751 

6 2.631 2.053 1.765 

7 2.64 2.063 1.776 

8 2.648 2.072 1.786 

9 2.654 2.08 1.794 

10 1.66 2.087 1.801 

11 2.665 2.092 1.807 

12 2.67 2.098 1.813 

15 2.681 2.11 1.826 

20 2.695 2.126 1.842 

 

 

For k-stage O’Brien and Fleming Test, the total sample size is 

 

nmax = Rb (z1-α/2 + z1-β)
ଵߪ)2

ଶ +ߪଶ
ଶ)/(μ1 -μ2)

2 

 

and the sample size for each stage is nmax/k. Rb is obtained from the Table 14. 

 

 

Table 14 Rb table. 

k 
β=0.10 β=0.20 

α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10 

1 1 1 1 1 1 1 

2 1.001 1.007 1.014 1.001 1.008 1.016 

3 1.006 1.016 1.025 1.007 1.017 1.027 

4 1.01 1.022 1.032 1.011 1.024 1.035 

5 1.014 1.026 1.037 1.015 1.028 1.04 

6 1.016 1.03 1.041 1.017 1.032 1.044 

7 1.018 1.032 1.044 1.019 1.035 1.047 

8 1.02 1.034 1.046 1.021 1.037 1.049 

9 1.021 1.036 1.048 1.022 1.038 1.051 

10 1.022 1.037 1.049 1.024 1.04 1.053 

11 1.023 1.039 1.051 1.025 1.041 1.054 

12 1.024 1.04 1.052 1.026 1.042 1.055 

15 1.026 1.042 1.054 1.028 1.045 1.058 

20 1.029 1.045 1.057 1.03 1.047 1.061 
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2.7.3 Wang and Tsiatis Test 

It is an extension of Pocock Test and O’Brien and Fleming Test. It is the Pocock Test when ρ=0 and τ=0. It is 

the O’Brien and Fleming Test when ρ=0.5 and τ=0. Table 15 lists the margins for each stage. 

 

Table 15 Margin value table for Wang and Tsiatis Test. 

k δ=0.10 δ=0.25 δ=0.40 

1 1.96 1.96 1.96 

2 1.994 2.038 2.111 

3 2.026 2.083 2.186 

4 2.05 2.113 2.233 

5 2.068 2.136 2.267 

6 2.083 2.154 2.292 

7 2.094 2.168 2.313 

8 2.104 2.18 2.329 

9 2.113 2.19 2.343 

10 2.12 2.199 2.355 

11 2.126 2.206 2.366 

12 2.132 2.213 2.375 

15 2.146 2.229 2.397 

20 2.162 2.248 2.423 

 

For k-stage Wang and Tsiatis Test, the sample size is 

 

n = Rwt (z1-α/2 + z1-β)
ଵߪ)2

ଶ +ߪଶ
ଶ)/(μ1 -μ2)

2 

 

Rwt is obtained from the Table 16. 

 

Table 16 Rwt table. 

k 
β=0.10 β=0.20 

α=0.01 α=0.05 α=0.10 α=0.01 α=0.05 α=0.10 

1 1 1 1 1 1 1 

2 1.014 1.034 1.068 1.016 1.038 1.075 

3 1.025 1.05 1.099 1.027 1.054 1.108 

4 1.032 1.059 1.117 1.035 1.065 1.128 

5 1.037 1.066 1.129 1.04 1.072 1.142 

6 1.041 1.071 1.138 1.044 1.077 1.152 

7 1.044 1.075 1.145 1.047 1.081 1.159 

8 1.046 1.078 1.151 1.05 1.084 1.165 

9 1.048 1.081 1.155 1.052 1.087 1.17 

10 1.05 1.083 1.159 1.054 1.089 1.175 

11 1.051 1.085 1.163 1.055 1.091 1.178 

12 1.053 1.086 1.166 1.056 1.093 1.181 

15 1.055 1.09 1.172 1.059 1.097 1.189 

20 1.058 1.094 1.18 1.062 1.101 1.197 
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2.7.4 Inner Wedge Test 

The above three group sequential tests can stop the test when H0 is rejected and H1 is accepted, i.e., the test can 

be stopped if the test drug is effective. The Inner Wedge Test is a method that stops the test when H0 is 

accepted, that is, the test can be stopped when the test drug is ineffective. 

For k-stage Inner Wedge Test, the sample size is 

 

n = Rw (z1-α/2 + z1-β)
ଵߪ)2

ଶ +ߪଶ
ଶ)/(μ1 -μ2)

2 

 

Rw is obtained from the Table 17. 

 

Table 17 Rw table (α=0.05). 

β δ k Cw1 Cw2 Rw 

0.2 -0.5 1 1.96 0.842 1 

0.2 -0.5 2 1.949 0.867 1.01 

0.2 -0.5 3 1.933 0.901 1.023

0.2 -0.5 4 1.929 0.919 1.033

0.2 -0.5 5 1.927 0.932 1.041

0.2 -0.5 10 1.928 0.964 1.066

0.2 -0.5 15 1.931 0.979 1.078

0.2 -0.5 20 1.932 0.988 1.087

0.2 -0.25 1 1.96 0.842 1 

0.2 -0.25 2 1.936 0.902 1.026

0.2 -0.25 3 1.932 0.925 1.04 

0.2 -0.25 4 1.93 0.953 1.059

0.2 -0.25 5 1.934 0.958 1.066

0.2 -0.25 10 1.942 0.999 1.102

0.2 -0.25 15 1.948 1.017 1.12 

0.2 -0.25 20 1.952 1.027 1.131

0.2 0 1 1.96 0.842 1 

0.2 0 2 1.935 0.948 1.058

0.2 0 3 1.95 0.955 1.075

0.2 0 4 1.953 0.995 1.107

0.2 0 5 1.958 1.017 1.128

0.2 0 10 1.98 1.057 1.175

0.2 0 15 1.991 1.075 1.198

0.2 0 20 1.998 1.087 1.212

0.2 0.25 1 1.96 0.842 1 

0.2 0.25 2 1.982 1 1.133

0.2 0.25 3 2.009 1.059 1.199

0.2 0.25 4 2.034 1.059 1.219

0.2 0.25 5 2.048 1.088 1.252

0.2 0.25 10 2.088 1.156 1.341

0.2 0.25 15 2.109 1.18 1.379

0.2 0.25 20 2.122 1.195 1.4 
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0.1 -0.5 1 1.96 1.282 1 

0.1 -0.5 2 1.96 1.282 1 

0.1 -0.5 3 1.952 1.305 1.01 

0.1 -0.5 4 1.952 1.316 1.016

0.1 -0.5 5 1.952 1.326 1.023

0.1 -0.5 10 1.958 1.351 1.042

0.1 -0.5 15 1.963 1.363 1.053

0.1 -0.5 20 1.967 1.37 1.06 

0.1 -0.25 1 1.96 1.282 1 

0.1 -0.25 2 1.957 1.294 1.006

0.1 -0.25 3 1.954 1.325 1.023

0.1 -0.25 4 1.958 1.337 1.033

0.1 -0.25 5 1.96 1.351 1.043

0.1 -0.25 10 1.975 1.379 1.071

0.1 -0.25 15 1.982 1.394 1.085

0.1 -0.25 20 1.988 1.403 1.094

0.1 0 1 1.96 1.282 1 

0.1 0 2 1.958 1.336 1.032

0.1 0 3 1.971 1.353 1.051

0.1 0 4 1.979 1.381 1.075

0.1 0 5 1.99 1.385 1.084

0.1 0 10 2.013 1.428 1.127

0.1 0 15 2.026 1.447 1.148

0.1 0 20 2.034 1.458 1.16 

0.1 0.25 1 1.96 1.282 1 

0.1 0.25 2 2.003 1.398 1.1 

0.1 0.25 3 2.037 1.422 1.139

0.1 0.25 4 2.058 1.443 1.167

0.1 0.25 5 2.073 1.477 1.199

0.1 0.25 10 2.119 1.521 1.261

0.1 0.25 15 2.14 1.551 1.297

0.1 0.25 20 2.154 1.565 1.316

 

 

2.7.5 Between-Proportion Comparison 

For this design, the fixed sample size is  

 

     nfixed = (z1-α/2+ z1-β)
2(p1(1 - p1) + p2(1 - p2))/ (p1 - p2)

2 

 

A 5-phase group sequential trial comparing the efficacy of a drug and a control. According to the overall 

effective rate of the test drug in the pre-test and 30% in the control group, Pocock Test, O’Brien and Fleming 

Test and Wang and Tsitis Test (δ=0.1) were carried out respectively. Calculate the number of cases for each 

stage (nfixed* Rp (or Rb, Rw, Rwt, etc.)/k). 
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2.7.6 Survival Analysis 

For the group sequential design with time events as the experimental results, the Cox proportional hazards 

model is used as an example. The sample size is 

 

n = Imax/Ik 

 

where  

 

Imax = Rb ((z1-α/2+ z1-β)
2/θ2 

 

The sample size for each stage is n=Imax/0.25. For example, a 5-stage group sequential trial comparing the 

efficacy of a drug and a control, with time events as the test results, according to the pilot study, θ=0.2. 

Calculate the sample size for each stage. 

2.7.7 Re-Estimation of Sample Size 

In the interim analysis of some group sequential trials, it is necessary to re-estimate the sample size based on 

the accumulated data, and it should be noted that blind re-estimation may cause bias. Shih et al. proposed a 

random double-blind sample size re-estimation method based on the observed results after 50% of the samples 

were completed. The estimation formula is as follows 

 

     n = (z1-α/2+ z1-β)
 2(ଶ̂ - ଵ̂ )/((ଶ̂ - 1)ଶ̂ + (ଵ̂ - 1)ଵ̂)2

 

where  

  

ଵ݄) = ଵ̂      െ ሺ1 െ ݄ሻଶ)/(2h-1) 

ଶଶ = (ĥ      െ ሺ1 െ ݄ሻଵ)/(2h-1) 

 

For example, in the two-center clinical trial, center A assigns patients to the trial group with a probability of 

60%, center B assigns patients to the trial group with a probability of 40%, and the entire trial assigns patients 

to the trial group with a probability of 45% (h). In the interim analysis, 50% sample size was completed, the 

effective rate of center A is 70% (ଵ), and the effective rate of center B is 60% (ଶ). Let α=0.0001, β=0.10, 

re-estimate the sample size required for the next stage, n. 

2.8 Bioequivalence 

Bioequivalence (BE) means that different preparations of the same drug are given the same dose under the 

same experimental conditions, and there is no significant difference in the degree and speed of absorption. It is 

mainly used to evaluate whether generic drugs (generic drugs) and patented drugs (brand-name drug) is 

equivalent. Bioequivalence is compared with the test product and the reference product, and the two should 

have similar dosage forms, and there is no significant difference in their absorption rate and absorption amount 

in the organism. The current experimental design and analysis of bioequivalence is based on the following 

assumptions: the absorption rate and absorption amount of two drugs are the same, that is, bioequivalence is 

considered, and their therapeutic effects should also be the same. Bioequivalence is for the population 

distribution in which these observations lie, and when it is a normal distribution or a lognormal distribution, it 

is sufficient to compare the mean and variation. That is, to see whether the bioavailability is equivalent 

requires a statistical inference of these availability values as a sample of population parameters in the two 

formulations. Chinchilli (1996) gave three definitions of bioequivalence, that is, population bioequivalence 
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(PBE): bioequivalence for the probability distribution function related to two drugs; average bioequivalence 

(ABE): bioequivalence for the mean or median of the probability distribution functions related to two drugs; 

subject bioequivalence (IBE): bioequivalence for most subjects in the population. Two drugs with subject 

bioequivalence have drug switchability, that is, after a patient takes a certain drug for a period of time, if he 

switches to another drug with subject equivalence, he can get the same drug. Drugs with population 

bioequivalence have prescribability, that is, doctors can choose arbitrarily when prescribing drugs to patients 

for the first time, which has the same effect on this population of patients. 

2.8.1 Average Bioequivalence 

In a standard 2 (sequential) × 2 (period) crossover experiment, namely two treatments T and R, subjects were 

randomly divided into two groups, the first group received T treatment in the first period and R in the second 

period, and the experimental order was TR. The second group received R treatment in the first period and T 

treatment in the second period, and the experimental order was RT. The sample size based on a 2 × 2 crossover 

design for average bioequivalence is 

 

     n = (z1-α + z1-β/2)
 ଶ/(2*(δ - |d|)2)ߪ2

 

where δ: the margin of average bioequivalence (log(0.8)≤δ≤log(1.25)); ߪଶ: within-subject variance; d: the 

difference between T and R. For example, predesign an average bioequivalence study comparing inhalation 

and subcutaneous administration of a drug in a 2×2 crossover design. According to the pilot study, the 

within-subject standard deviation is 0.3, the margin of average equivalence is δ=log(1.25), d=0.08, σ=0.3. 

α=0.0001, β=0.10. Calculate the sample size for each group, n. 

2.8.2 Population Bioequivalence 

The sample size based on a 2×2 crossover design for population bioequivalence is 

 

     n = ζ (z1-α + zβ)
 ଶ/λ2ߪ2

 

where  

 

     ζ = 2ߜଶߪଶ + ்்ߪ
ସ  (1 + a)2்ߪோ

ସ   – 2ሺ1    ܽሻρ2்்ߪ
ଶ ோ்ߪ

ଶ  

 

where ρ  between-subject correlation coefficient; a=1.74; δ: the margin , i.e., the average difference of AUC. 

For example, predesign a population bioequivalence study comparing inhalation and subcutaneous 

administration of a drug in a 2×2 crossover design. According to the pilot study, σ=0.3, σTT=0.4, σTR=0.4, 

ρ=0.8, δ=0, λ=-0.3, a=1.74. α=0.0001, β=0.10. Calculate the sample size for each group, n. 

2.8.3 Individual Bioequivalence 

The sample size, n,  based on a 2×4 crossover design (TRTR, RTRT) for individual bioequivalence is 

calculated from the following formula 

 

     γො + ܷ.ହ   ܷଵିఉ
.ହ  ≤ 0 

 

where 

 

     U = ((|ߜመ| + ݐ,ଶכିଶ
ఙෝೌ,್
ଶ

(2/n)0.5)2 - ߜመଶ)2 + ߪො,
ସ (

ଶכ ିଶ

భషഀ,మכషమ
మ  - 1)2 +  
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+abߪොௐ்
ସ (

ଶכ ିଶ

భషഀ,మכషమ
మ  - 1)2 + ሺ1.5  ොௐோߪூாሻଶߠ

ସ (
ଶכ ିଶ

ഀ,మכషమ
మ  - 1)2 

      = δ2 + ߪ
ଶ + ߪௐ்

ଶ ௐோߪ - 
ଶ ௐோߪ,ூாmax{σ0ߠ - 

ଶ } 

,ߪ     
ଶ ߪ = 

ଶ + ܽߪௐ்
ଶ  + bߪௐோ

ଶ  

 

whereߪௐ்
ଶ  and ߪௐோ

ଶ : within-subject variances of group T and R respectively; ߪ்
ଶ  and ߪோ

ଶ : between-subject 

variances of group T and R respectively; δ: the difference between T and R; ߪ
ଶ: the interaction between 

subject and drug. For example, predesign an individual bioequivalence study comparing inhalation and 

subcutaneous administration of a drug in a 2×4 crossover design. According to the pilot study, σBT=0.2, 

σBR=0.1, σWT=0.3, σWR=0.4, ρ=0.8, δ=0, λ=-0.3, a=b=0.5, ߠூா=4. α=0.0001, β=0.10. Calculate the sample size 

for each group, n. 

2.8.4 In-vitro Trial  

The sample size based on a 2×4 crossover design (TRTR, RTRT) for in-vitro trial (1:1 design) is calculated 

from the following formula 

 

መ + ܷ.ହߦ        ܷଵିఉ
.ହ  ≤ 0 

 

where 

 

     U = ((|ߜመ| + ݖ(
௦ಳ
మ


+
௦ಳೃ
మ


்ݏ + መଶ)2ߜ - 2(0.5(

ସ (
ିଵ

భషഀ,షభ
మ  - 1)2 + ሺ1 െ ்݊

ିଵሻ2ݏௐ்
ସ (

ሺିଵሻ

భషഀ,ሺషభሻ
మ  - 1)2 + 

ோݏ2(ாߠ+1) +
ସ (

ିଵ

ഀ,షభ
మ  - 1)2 + ሺ1  ாሻଶሺ1ߠ ܿ െ ݊ோ

ିଵሻ2ݏௐோ
ସ (

ሺೃିଵሻ

ഀ,ሺೃషభሻ
మ - 1) 

       = δ2 + ்ߪ
ଶ - ߪோ

ଶ - ߠாmax{ߪ
ଶ,ߪௐோ

ଶ } 

 

where ߪௐ்
ଶ  and ߪௐோ

ଶ : within-subject variances of group T and R respectively; ߪ்
ଶ  and ߪோ

ଶ : between-subject 

variances of group T and R respectively; δ: the difference between T and R; ߪ
ଶ: the interaction between 

subject and drug. For example, predesign an in-vitro experiment without repeated parallel controls. According 

to the pilot study, σBT=0.4, σBR=0.5, σWT=0.5, σWR=0.5, δ=0, ߠா=1.5. α=0.0001, β=0.10. Calculate the sample 

size for each group, n. 

2.9 Dose Response Studies 

The research on dose-response relationship mainly includes: the dose-response relationship between different 

dose groups, the shape of the dose-response relationship curve, and the optimal dose. Usually, a randomized 

parallel control design is used to study the dose-response relationship, and the effectiveness of the drug is 

proved by measuring the variance. The Williams method compares the minimum effective dose of the 

experimental group and the control group, demonstrates the dose-response relationship through a model, and 

illustrates the optimal dose through the maximum tolerable dose (MTD). 

2.9.1 Continuous Response 

The sample size is (1:1 design) 

 

     n = ((z1-α + z1-β)σ/d)2∑ ܿ
ଶ

ୀ  

 

where σ: standard deviation; d=∑ ܿ

ୀ ݑ i; ∑ ܿ


ୀ =0; ܿ : grouping, and ܿ : control group; ui: percent 

improvement from baseline for each group, and ݑ: control group. Each group shares the same sample size; 
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For example, a four-group parallel controlled dose-response trial, including 1 control group and 3 test groups 

(k=3; doses are 10 mg, 20 mg, 30 mg respectively). According to the pilot study, σ=0.2, c0=−6, c1=1, c2=2, 

c3=3, u0=0.05, u1=0.1, u2=0.2, u3=0.25. α=0.0001, β=0.10. Calculate the sample size for each group, n. 

2.9.2 Binary Response 

The sample size is estimated from the following formula (1:1 design) 

 

     n = ((z1-α(∑ ܿ
ଶ

ୀ ҧሺ1 െ ∑)ҧሻ)0.5 + z1-β ܿ
ଶ

ୀ ሺ1 െ (ሻ
0.5)/d)/2 

 

where d=∑ ܿ

ୀ ∑ ;i ܿ


ୀ =0; ܿ: grouping, and ܿ: control group; : response rate of each group, and : 

control group. For example, a four-group (k=3) parallel controlled dose-response trial, including 1 control 

group and 3 test groups (k=3; doses are 10 mg, 20 mg, 30 mg respectively). According to the pilot study, 

c0=−6, c1=1, c2=2, c3=3, p0=0.05, p1=0.1, p2=0.2, p3=0.25. α=0.0001, β=0.10. Calculate the sample size for 

each group, n. 

2.9.3 Time-to-Event Endpoint 

The sample size is estimated from the following formula (1:1 design) 

 

     n = ((z1-ασ0(∑ ܿ
ଶ

ୀ  )0.5 + z1-β(∑ ܿߪ
ଶ

ୀ  )0.5)/d)/2 

 

where  

 

ߣ = (ߣ)ଶߪ     
ଶ (1 + eିఒ்(1 - eఒ బ்)/(T0ߣ))

-1 

 

where T0: the inclusion time of the trial; T: total trial time; ∑ ܿ

ୀ =0; ܿ: grouping. For example, a phase II 

clinical trial of a drug is conducted. A control group, a low-dose group, a high-dose group and a combined 

treatment group are designed. Observe the patient's survival time. Assuming that the inclusion time of the trial 

is 9 months and the total trial time is 18 months. The median survival time of the four groups is estimated to be 

12, 18, 20 and 22 months, and the corresponding risk ratios are 0.04/month, 0.03/month, 0.02/month and 

0.03/month. α=0.001, β=0.10. Calculate the sample size for each group, n. 

2.9.4 Minimum Effective Dose (MED) 

The sample size for minimum effective dose based on the Williams test is 

 

          n = 2σ2(tα(k)+ zβ)
2/δ2 

 

For example, design a dose-response trial using the Williams test to detect the minimum effective dose. 

According to the pilot study, σ=0.4, k=3, δ=0.15. α=0.0001, β=0.10. Calculate the sample size for each group, 

n. 

2.9.5 Cochran-Armitage Test for Trend 

The sample size based on the Cochran-Armitage trend test (1:1 design) is 

 

     n = (n*/4) (1 + (1+2δ/A)0.5)2 

 

where  

 

     n* = (z1-α((k+1)((k+1)2-1)pd )0.5 + z1-β(∑ ܾݍ
ଶ

ୀ  )0.5)2 
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     bi = i – (k+1)/2 

     d = ∑ ܾ

ୀ  

     A = ∑ 

ୀ ሺ݀ െ መ݀) 

     p = ∑ 

ୀ /(k+1) 

     q = 1-p 

 

For example, design a four-group (1 control group; k=3 test groups) Cochran-Armitage trend detection 

dose-response trial. According to the pilot study, d0=1, d1=2, d2=3, d3=4, p0=0.2, p1=0.4, p2=0.6, p3=0.8, δ=1. 

α=0.0001, β=0.10. Calculate the sample size, n. 

2.9.6 Dose Escalation Trials 

The non-parametric escalation trial design is also called "M+N" design or "A+B" design. All subjects were 

randomly assigned to several groups, and each group contained several subjects. Subjects in the same group 

received the same dose level of the test drug. According to the random distribution scheme, the subjects 

entered the test process group by group, and the subjects in each group took a certain dose level of the test drug 

only once. Drug response results were recorded regardless of whether the expected drug response was detected. 

When the number of drug responders at a certain dose level satisfies the conditions for stopping the overall 

trial, the overall trial process ends and the explored target dose is obtained. When exploring dose limiting 

toxicity (DLT) and maximum tolerable dose (MTD), the "3+3" design of the climbing test is widely used, that 

is, each time there are 3 subjects who enter the test process, and a maximum of 6 subjects at a dose level will 

take the drug. The overall dose escalation rules for escalation trial design can be further divided into two 

different dose escalation strategies: TER strategy (traditional escalation rules) and STER strategy (strict 

traditional escalation rules). The biggest difference between the TER strategy and the STER strategy is that 

when a toxic response to the test drug is detected at the xj dose level, phase I clinical trials that follow the TER 

dose escalation strategy do not allow subjects to continue to be enrolled at the xj−1 dose level, and it is required 

to stop the trial directly. At this time, the dose level xj is considered to be the expected target dose level. 

However, clinical trials that follow the STER dose escalation rule require that subjects be continued to be 

included in the trial at the xj−1 dose level to observe the overall toxic response of the subjects at the xj−1 dose 

level, so that the target dose can be inferred. 

The sample sizes of A+B TER strategy design are  

 

nj =∑ ݊
ିଵכ

ୀ  

 

where 

 

     nji = 
బ

ೕାሺାሻబ
ೕ

బ
ೕା బ

ೕ ,  j<i+1 

     nji = 
ሺଵିబ

ೕିభ
ೕሻାሺାሻሺభ

ೕିబ
ೕሻ

ଵିబ
ೕି బ

ೕ ,  j=i+1 

     nji =0,  j>i+1 

     
 = ∑ ሺ ܣ

݇
ିଵ
ୀ ሻ

ሺ1 െ  ሻି

ݍ     
 = ∑ ∑ ሺ ܣ

݇
ாି
ୀ ሻ

ୀ۱ 
൫1 െ ൯

ି
ሺ ܤ
݉
ሻ

൫1 െ ൯
ି

 

כ             = ∏ ሺ
  ݍ

ሻ
ୀଵ  
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The sample sizes of A+B STER strategy design are  

 

nj =  ݊כ  ∑ ∑ ݊

ୀାଵ

ିଵ
ୀ  

 

where 

 

     njki = 
బ

ೕାሺାሻబ
ೕ

బ
ೕା బ

ೕ ,  j<i 

     njik = A + B,  i≤j<k 

     njik = 
ሺଵିబ

ೕିభ
ೕሻାሺାሻሺభ

ೕିబ
ೕሻ

ଵିబ
ೕି బ

ೕ ,  j=k 

     njik =0,  j>i+1 

     
∑ = כ 


ୀାଵ  

     
 = (ݍ

 ݍ + 
  - 1)(

 െ ݍ
 ) ∏ ሺ

  ݍ
ሻିଵ

ୀଵ ∏ ଶݍ
ିଵ

ୀାଵ  

כ             = ∏ ሺ
  ݍ

ሻ
ୀଵ  

 

For example, the "3+3" design of the escalation trial. According to the pilot study, the dose-limiting toxicity of 

6 doses (10, 13, 25, 38, 59, 68) of a certain drug were 0.02, 0.025, 0.035, 0.06, 0.2, 0.7. Calculate the sample 

size for each dose. 

2.10 Microarray Studies 

The sample size of microarray data is small and the number of variables is large. The traditional t-test and 

Wilcoxon test need to be adjusted when they are applied. There are FDR (fasle discover rate) control, FWER 

(family-wise error rate) control, etc., based on control indices; single-step method, step-wise method, 

resampling-based method, based on the control operation procedures, and frequency school method and Bayes 

school method, based on different schools. Multiple testing is an extension of the traditional concept of 

multiple comparisons. The null hypothesis H0 is verified by repeated testing of multiple variables on the same 

question. This hypothesis is a series of hypotheses (a family of hypotheses), rather than a single hypothesis. 

Assuming that m hypotheses are tested at the same time, among which m0 are correct, and R represents the 

number of hypotheses with positive results, as indicated in the following table: 

 

 Not reject H0  Reject H0  Total 

H0 is true U V m0 

H1 is true T S m−m0 

Total m-R R m 

 

 

Among them, m is known before the hypothesis test, R is an observable random variable, and U, V, S, and T 

are unobservable random variables. Fasle Discover Rate (The proportion of occurring errors in the results of 

rejecting H0) is defined as 
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     FDR = E(V/R), R≠0 

     FDR = 0, R=0 

 

     Based on FDR design, the sample size of each group for one-sided fixed effect test is 

 

     n =( (ݖఈݖ +כఉכ)
2/(a1a2δ

2) + 1)/2 

 

where  

 

     α* = r1f /(m0(1-f)) 

     β* = 1 - r1/m1 

 

     The sample size for one-sided variable effect test can be calculated from the following formula 

 

     ∑ Ԅ൫ݖఈכ െ ߜሺ݊ܽଵܽଶሻ.ହ൯ െ ெభאଵ ݎ
= 0 

     α* = r1f /(m0(1-f)) 

 

where f: the false discovery rate; r1: the number of actual rejections; ak: the distribution ratio of two groups; m: 

the total number of tested genes; m1: the number of prognostic genes, and δ: the size of the effect of prognostic 

genes. 

Based on FDR design, the total sample size of each group for two-sided fixed effect test is 

 

     n = ((ݖఈכ/ଷ+ ݖఉכ)
2/(a1a2δ

2) + 1)/2 

≤ 

where  

 

     α* = r1f /(m0(1-f)) 

     β* = 1 - r1/m1 

 

     The sample size for two-sided variable effect test can be calculated from the following formula 

 

           ∑ Ԅ൫ݖఈכ/ଶ െ  |ሺ݊ܽଵܽଶሻ.ହ൯ߜ| െ ெభאଵ ݎ
= 0 

     α* = r1f /(m0(1-f)) 

 

where f: the false discovery rate; r1: the number of actual rejections; ak: the distribution ratio of two groups; m: 

the total number of tested genes; m1: the number of prognostic genes, and δj: the size of the effect of prognostic 

genes. 

One-sided fixed effect design. For example, design a microarray study of 2000 candidate genes (m=2000). 

It is estimated that there are 30 (m1=30) genes that are differently expressed between the two groups, and the 

actual number of rejected genes is about 18 (r1=18). FDR=0.01. δ=1, ܽଵ=ܽଶ=0.5. Calculate the sample size for 

each group, n. 

One-sided variable effect design. For example, design a microarray study of 2000 candidate genes 

(m=2000). It is estimated that there are 30 (m1=30) genes with different expression between the two groups, 

and the actual number of rejected genes is about 18 (r1=18). FDR=0.01. δj=1, if 1≤i≤10, and δj=0.5, if 11≤i≤30. 
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ܽଵ=ܽଶ=0.5. Calculate the sample size for each group, n/2. 

Two-sided fixed effect design. For example, design a microarray study of 2000 candidate genes (m=2000). 

It is estimated that there are 30 (m1=30) genes with different expression between the two groups, and the actual 

number of rejected genes is about 18 (r1=18). FDR=0.01. δ=1, ܽଵ=ܽଶ=0.5. Calculate the sample size for each 

group, n. 

Two-sided variable effect design. For example, design a microarray study of 2000 candidate genes 

(m=2000). It is estimated that there are 30 (m1=30) genes with different expression between the two groups, 

and the actual number of rejected genes is about 18 (r1=18). FDR=0.01. δj=1, if 1≤i≤10, and δj=0.5, if 11≤i≤30. 

ܽଵ=ܽଶ=0.5. Calculate the sample size for each group, n/2. 

2.11 Nonparametrics 

Nonparametric tests are hypothesis tests that do not rely on statistical parameters. They are suitable for 

hypothesis testing of unknown distribution types, skewed data, hierarchical data, etc. 

2.11.1 Test for Independence 

The sample size for test of independence is  

 

     n = 4 (z1-α/3 + z1-β(2p2 – 1 – (2p1 - 1)2)0.5)2/(2p1 - 1)2 

 

where p1=P((x1-x2)(y1-y2)>0), p2=P((x1-x2)(y1-y2)(x1-x3)(y1-y3)>0>0). For example, it has been observed that in 

a pilot study that as the x increases, y also tends to increase. A clinical trial is designed to verify the above 

conjecture. According to the pilot study, p1=0.4, p2=0.6. α=0.0001, β=0.10. Calculate the sample size, n. 

2.12 Sample Sizes Calculation in Other Areas 

2.12.1 ANOVA with Repeated Measures 

The ANOVA with repeated measures can be repeated measures under the same condition, or repeated 

measures under different conditions. The ANOVA with repeated measures can be used to examine whether 

there are significant differences between various treatments, to find differences among subjects, or to find 

interaction between various treatments and groups of subjects. In parallel controlled clinical trials, it is mainly 

used to evaluate effectiveness and safety. The sample size for ANOVA with repeated measures is 

 

     n = 2σ2ሺݖଵିఈ/ଶ   ݖଵିఉሻଶ/ߜ
2 

 

where σ2: the sum of variances of all groups. For example, a test drug and a traditional drug are tested in 

parallel on experimental animals, and each experimental animal records disease scores repeated three times. 

According to the pilot study, σ2=1.5, 1.2=ߜ. α=0.001, β=0.10. Calculate the total sample size, n. 

2.12.2 QT/QTc 

The QT interval refers to the time course of ventricular depolarization and repolarization, that is, the time 

course from the starting point of the QRS complex to the end point when the T wave returns to baseline. 

Delayed cardiac repolarization will create a special cardiac electrophysiological environment in which 

arrhythmias are prone to occur, the most common of which is torsade de pointes (TdP), but other types of 

ventricular tachyarrhythmias can also occur. Since the degree of QT prolongation can be regarded as a relative 

biomarker of arrhythmogenic risk, there is usually a qualitative relationship between QT prolongation and TdP, 

and it is more important for those drugs that may cause QT prolongation. Since the QT interval is inversely 

related to heart rate, it is routine to correct the measured QT interval to a less heart rate dependent QTc interval 

through various formulas. However, it is unclear whether there is a necessary link between the occurrence of 

arrhythmia and an increase in the QT interval or the absolute value of QTc. Most drugs that cause TdP can 
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significantly prolong the QT/QTc interval (i.e., QT/QTc). Because QT/QTc interval prolongation is an 

electrocardiographic finding associated with increased sensitivity for detecting arrhythmias, adequate safety 

evaluation of new drugs before marketing should include a detailed characterization of their effects on the 

QT/QTc interval. 

2.12.2.1 Parallel Control Design 

The sample size for parallel control design is 

 

     n = 2ቀݖଵିഀ
మ
  ݖଵିఉቁ

ଶ
ሺߩ  ሺ1 െ   2ߜ/ሻܭ/ሻߩ

 

where ρ=ߪ
ଶ/(ߪ

ଶ+ߪ௪ଶ ߪ ;(
ଶ: between-subject variance; ߪ௪ଶ : within-subject variance; K: number of replications 

per subject; ߜ=݀ ߪ)/
ଶ+ߪ௪ଶ ); d: clinical difference; For example, a non-antiarrhythmic drug conducts a 

comprehensive ECG parallel control study to determine its effect on the QT/QTc interval. According to the 

prel-trial, σb=2.8, σw=0.5, d=2, K=5. α=0.0001, β=0.1. Calculate the sample size for each group, n. 

2.12.2.2 Parallel Control Design with Covariates 

The sample size for parallel control design with covariates is 

 

     n = (2+(v1-v2)
2/(߬ଵ

ଶ+߬ଶ
ଶ))ቀݖଵିഀ

మ
  ݖଵିఉቁ

ଶ
ቀߩ 

ଵିఘ


ቁ/2ߜ 

 

where ρ=ߪ
ଶ/(ߪ

ଶ+ߪ௪ଶ ߪ ;(
ଶ: between-subject variance; ߪ௪ଶ : within-subject variance; K: number of replications 

per subject; ߪ)/݀=ߜ
ଶ+ߪ௪ଶ ); d: clinical difference; v1, v2: means of two groups; ߬ଵ, ߬ଶ: the standard deviations 

of two groups. For example, a comprehensive electrocardiogram parallel control study was conducted on a 

non-antiarrhythmic drug. The Cmax of the drug is known to have an impact on the QT/QTc interval to clarify its 

impact on the QT/QTc interval. According to the prel-trial, σb=3.2, σw=0.5, v1=1.1, v2=1.0, ߬ଵ=1.8, ߬ଶ=0.9, 

d=2, K=5. α=0.0001, β=0.1. Calculate the sample size for each group, n. 

2.12.2.3 Crossover Control Design 

The sample size for crossover control design is 

 

     n = ቀݖଵିഀ
మ
  ݖଵିఉቁ

ଶ
ሺߩ  ሺ1 െ ଵିఈݖγ൫ – 2ߜሻ/ሺܭ/ሻߩ   ݖଵିఉ൯

ଶ
ሻ 

 

where ρ=ߪ
ଶ/(ߪ

ଶ+ߪ௪ଶ ߪ ;(
ଶ: between-subject variance; ߪ௪ଶ : within-subject variance; K: number of replications 

per subject; ߪ)/݀=ߜ
ଶ+ߪ௪ଶ ); d: clinical difference; γ=ߪଶ/(ߪ

ଶ+ߪ௪ଶ  .ଶ: Additional variation in crossover designߪ ;(

For example, a comprehensive ECG cross-control study was conducted on a non-antiarrhythmic drug to 

determine its effect on the QT/QTc interval. According to the prel-trial, σb=2.8, σw=0.5, σp=0.1; d=2, K=5. 

α=0.0001, β=0.1. Calculate the sample size for each group, n. 

2.12.2.4 Crossover Control Design with Covariates 

The sample size for crossover control design with covariates is 

 

     n = (1+(v1-v2)
2/(߬ଵ

ଶ+߬ଶ
ଶ))ቀݖଵିഀ

మ
  ݖଵିఉቁ

ଶ
ሺߩ  ሺ1 െ ଵିఈݖγ൫ – 2ߜሻ/ሺܭ/ሻߩ   ݖଵିఉ൯

ଶ
ሻ 

 

where ρ=ߪ
ଶ/(ߪ

ଶ+ߪ௪ଶ ߪ ;(
ଶ: between-subject variance; ߪ௪ଶ : within-subject variance; K: number of replications 
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per subject; ߪ)/݀=ߜ
ଶ+ߪ௪ଶ ); d: clinical difference; γ=ߪଶ/(ߪ

ଶ+ߪ௪ଶ  ;ଶ: Additional variation in crossover designߪ ;(

v1, v2: means of two groups; ߬ଵ, ߬ଶ: the standard deviations of two groups. For example, a comprehensive 

ECG cross-control study was conducted on a non-antiarrhythmic drug to determine its effect on the QT/QTc 

interval. According to the prel-trial, σb=2.8, σw=0.5, v1=1.8, v2=1.1, ߬ଵ=1.8, ߬ଶ=0.9, σp=0.1; d=2, K=8. 

α=0.0001, β=0.1. Calculate the sample size for each group, n. 

2.12.3 Quality of Life (QOL) 

Since chronic non-infectious diseases are difficult to cure, it is difficult to use cure rate to evaluate treatment 

effects, and the role of survival rate is also limited. Therefore, quality of life is used as an evaluation item for 

new drugs. The sample size for QOL analysis is  

 

     n = max {cሺݖଵିఈ/ଶ   ݖଵିఉሻଶ/݀ଶ, cሺݖଵ/ଶାఎ/ଶ   ݖଵିఈ/ଶሻଶ/ሺ݀ െ ߶ሻ2} 

 

where d: the difference; c: the constant. For example, a drug is undergoing a clinical trial based on the QOL. 

According to the pilot study, c=0.3, d=0.2, ϕ=0.1. η=0.1, α=0.0001, β=0.10. Calculate the sample size, n. 

2.12.4 Bridging Studies 

This design mainly evaluates the impact of "ethnic factors" on drugs, and provides relevant 

pharmacokinetics/pharmacodynamics or clinical trial data such as efficacy, safety, usage and dosage, so that 

clinical trial data can be extrapolated to reduce repeated clinical trials , quickly provide patients with medicines. 

Ethnic factors are generally defined as factors related to race or to a group of people with common traits and 

habits, and are usually divided into intrinsic and extrinsic factors. Chow et al proposed to use the Sensitivity 

Index as an indicator to extrapolate the experimental results of the placebo parallel controlled trial design. The 

sample size designed with sensitivity index is calculated from the following 

 

     ܲ∆ = ܧఋ,௨(1 - ߬ିଶሺtn--2 |
∆ஔ

௨
) - ߬ିଶሺെtn--2 |

∆ஔ

௨
)) 

 

where ∆: sensitivity index between ethnic groups. For example, a pharmaceutical company intends to promote 

a certain drug to another country, and conducts a bridging study with the parallel control design, using the 

sensitivity index as an assessment index for ethnic factors. According to the pilot test, Δ=2.1, 0.60=∆̂. 

α=0.0001. Calculate the sample size, n. 

2.12.5 Vaccine Clinical Trials 

The most important goal of evaluating a vaccine is its ability to prevent disease, which usually requires a 

large-sample placebo-controlled design. Relative reduction in disease incidence, (pC-pT)/pC, where pT is  

2.12.5.1 Reduction in Disease Incidence 

The sample size for the test of reduction in disease incidence is 

 

     n  = ݖଵି/ଶ
ଶ ሺሺ1 െ ்/ሻ்  ሺ1 െ ݀/ሻ/ሻ

2 

 

where d=ݖଵି/ଶሺሺ1 െ ሻ்ሻ/ሺ்݊  ሺ1 െ ሻሻሻ/ሺ݊
0.5. For example, it is planned to implement a vaccine 

clinical trial, compared with placebo, and the index uses the reduction in disease incidence. According to the 

pilot study, the incidence rate of the vaccine group is 2% (pT), and the incidence rate of the control group is 5% 

(pC), d=0.1. α=0.0001. Two-group 1:1 parallel control. Two-sided test. Calculate the sample size for each 

group, n. 

2.12.5.2 Evaluation of Vaccine Efficacy with Extremely Low Disease Incidence 
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The sample size for the test of the evaluation of vaccine efficacy with extremely low disease incidence is 

 

     n  = ሺݖଵିఈ൫ߠሺ1 െ ሻ൯ߠ
0.5  ݖଵିఉ൫ߠሺ1 െ ்ሻ൯0.5ሻ2/ሺሺߠ  ߠሻሺ െ ሻߠ

2) 

 

where θ=(1-π)/(1-π+nC/nT), θ0=(1-π0)/(1-π0+nC/nT), and π=(pC-pT)/pC. pT=0.01, pC=0.02, θ=0.3, θ0=0.5, follow 

the example above. 

2.12.5.3 Composite Efficacy Measure 

Composite Efficacy Measure index includes not only the evaluation of the occurrence of the disease, but also 

the evaluation of the infection of the disease. The sample size is 

 

     n = ሺݖଵିഀ
మ
ቀ2ߤҧଶҧሺ1 െ ҧሻ  ்ߪҧሺ2

ଶ  ߪ
ଶሻቁ0.5 + 

                    ݖଵିఉሺ்ሺ்ߪ
ଶ  ்ߤ

ଶሺ1 െ ሻሻ்  ߪሺ
ଶ  ߤ

ଶሺ1 െ ሻሻሻ
0.5ሻ2/(μT pT  - μC pC)2 

 

where μT , μC : the mean of test and control groups respectively; ்ߪ,  : the standard deviation of test andߪ

control groups respectively. According to the pilot study, μT =0.2, μC=0.4, pT =0.1, pC=0.2, ்ߪ
ଶ=ߪ

ଶ=0.1. 

α=0.0001, β=0.1. Two-group 1:1 parallel control. Two-sided test. Calculate the sample size for each group, n. 

2.12.6 Propensity Scores in Nonrandomized Clinical Trials 

In nonrandomized trials, assignment of subjects is dependent on subject baseline covariates. For example, 

whether a patient will receive a drug may be affected by many factors. When these factors also affect the 

prognosis at the same time, they are potential interference factors. If the basic characteristics of treated and 

untreated patients are different, outcomes cannot be directly compared between the two groups. In the 

propensity score analysis, the propensity score is a probability (0~1), representing a patient's chance of 

receiving drug treatment under its existing basic characteristics (or interference factors). The propensity score 

focuses on the relationship between the basic characteristics of the object and the presence or absence of drug 

treatment, in an attempt to recreate a situation similar to random allocation. In a randomized trial, each subject 

should have a propensity score of 0.5 for treatment. In nonrandomized observational studies, propensity scores 

will vary according to the underlying characteristics of the patients. The most common propensity score comes 

from a logistic regression model: treatment or not is regarded as the dependent variable, and each factor of the 

basic characteristics is regarded as the independent variable. The propensity score method has been widely 

used in these non-randomized controlled trials to reduce the selection bias caused by confounding factors, so 

as to ensure that the baseline data between groups are balanced and comparable. 

2.12.6.1 Weighted Mantel-Haenszel (WMH) 

The sample size for weighted Mantel-Haenszel is 

 

     n = (σ0z1-α/2 +σ1z1-β)
 2ߜ/2

 

where  

 

∑ (ϕ - 1) = ߜ      ݓ ܽ

ୀଵ ܾଵ ܾଶ

ೕభషೕభ
ೕభାೕభ

 

ଵߪ     
ଶ = ∑ ݓ

ଶ
ܽ


ୀଵ ܾଵ ܾଶሺ ܾଶଵݍଵ   ܾଵଶݍଶሻ 

ߪ     
ଶ = ∑ ݓ

ଶ
ܽ


ୀଵ ܾଵ ܾଶሺ ܾଵଵ   ܾଶଶሻሺ ܾଵݍଵ   ܾଶݍଶሻ 

     ϕ = ଶݍଵ/ଵݍଶ 
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and m: the number of layers; ݇: two groups and one is the control, ݇ ൌ 1,2;  ܾ= ݊/ ݊; ܾଵ ܾଶ=2; ܽ: the 

proportion of samples in ith layer vs. total samples, ܽ= ݊/n; : the probability for kth group at jth layer. For 

example, a clinical trial comparing a drug with a traditional drug was designed with a weighted 

Mantel-Haenszel analysis, and the main evaluation index was cardiovascular events. The baseline variable was 

tested for between-group balance, and it was found that the baseline variable was unbalanced between the test 

drug and the control drug. The designed number of layers in clinical trial is 5. According to the pilot study, the 

proportions of samples in each layer to the total number of samples is 0.2, 0.2, 0.2, 0.2, and 0.2, the assigned 

proportions of each layer for test group is 0.5, 0.5, 0.5, 0.4, and 0.4, and in each layer the probabilities of 

occurring response are 0.6, 0.4, 0.8, 0.9, and 0.7. α=0.0001, β=0.10, ϕ=2. Calculate the sample size, n. 

2.12.6.2 Unstratified Analysis 

The sample size for unstratified analysis is 

 

     n = (ߪොz1-α/2 + ߪොଵz1-β)
2/ሺଵ െ ଶሻ

2 

 

where  

 

ଵߪ     
ଶ = ∑ ܽ


ୀଵ ܾଵ ܾଶሺ ܾଶଵݍଵ   ܾଵଶݍଶሻ 

ߪ     
ଶ = ∑ ܽ


ୀଵ ܾଵ ܾଶሺ ܾଵଵ   ܾଶଶሻሺ ܾଵݍଵ   ܾଶݍଶሻ 

 

and J: the number of layers; ݇: two groups and one is the control, ݇ ൌ 1,2;  ܾ= ݊/ ݊; ܾଵ ܾଶ=2; ܽ: the 

ratio of samples in ith layer vs. total samples, ܽ= ݊/n; : the probability for kth group at jth layer. Follow 

the example above. 

2.12.7 Sensitivity and Specificity Estimation 

This is a single sample trial aimed to assess the value of a technique in finding a phenomenon (e.g., a disease). 

First, obtain the sensitivity and specificity (p) from previous studies or experiments, then the sample size is 

(Fleiss et al., 2003): 

 

     n = (z1-α/2 (p(1 - p))0.5/d)2 

 

where d: permissible error (e.g., 0.1), p: sensitivity (pse, e.g., 0.8) or specificity (psp, e.g., 0.9). Use the 

maximum of n from pse and psp. 

2.12.8 Distance Based Sampling 

In the distance based sampling, the CV for density estimation is (Seber, 1982) 

 

     CV = 1/(n*r - 2)1/2 

 

thus 

 

     n = (1/CV2+2)/r 

 

where n: the number of random points for measuring distance; r: the number of distance measuring for each 
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point. r=1, if only the distance from the nearst points is measured.  

2.12.9 Linear Transect Sampling 

The coefficient of variation for density estimation along a linear transect is (Eberhardt, 1978) 

 

     CV(D) = ((1 + CV2(1/ri))/n)1/2 

 

where n: the sample size, ri: radial distance to each visible animal, CV(1/ri): the coefficient of variation of 

reciprocal of the radial distance. Usually CV(1/ri)=1, and CV(D)=(2/n) 1/2. The sample size is thus 

 

     n = 2/CV(D)2 

 

In two-stage sampling, the length of a linear transect is (Burnham et al., 1980) 

 

     L = (b/CV2(D)) (L1/n1) 

 

where b: a value in [1.5, 4] (usually b=3), L1: the length of linear transect in the first sampling, and n1: the 

number of subjects (e.g., animals) found in the first sampling. L1/n1 can be estinated in advance according to 

previous studies. For example, there are 20 objects/km, then L1/n1=0.05. 

Assume that the CV for density estimation is 0.1, i.e., the half-width of confidence interval at α=0.05 is ±20% 

of the true density. 10 objects are found along a linear transect of 30 km. The length of linear transect to be 

investigated should be: L = 3/0.12*(30/10) = 900 km. If only 300 km is investigated, CV(D)=0.173 (i.e., 300 = 

3/CV2(D)*(30/10)), i.e., ±17% of error, and the width of confidence interval at α=0.05 is ±34% of the true 

density (Krebs, 1989; Zhang, 2007). 

2.12.10 Mark-Recapture Sampling 

According to Seber (1982), for Petersen mark-recapture sampling, the number of marked animals recaptured in 

the second sampling (R) is 

 

     R = 1/CV2 

 

where CV is coefficient of variation for the estimation of population size (e.g., CV=0.03). Therefore the total 

number of marked animals in the first sampling should be larger than R.  

    For Schnabel mark-recapture sampling, the number of marked animals recaptured in the sequential 

samplings is 

 

     ∑Ri = 1/CV2 

 

where Ri: the number of marked animals recaptured in the i-th sampling. Given CV (e.g., 0.03, etc.), the time 

for stoping recapture can be calculated. 

2.12.11 Stratified Random Sampling 

Assume that the total samples will be proportionally assigned to sub-populations according to their sizes: 

 

     wi = ni/n = Ni/N 

 

where ni: the number of samples assigned to the i-th sub-population, n: the sample size of total population, Ni: 
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the size of the i-th sub-population, N:.the size of total population. 

The sample size for total population is calculated by 

  

     n = m/(1 + m/N) 

 

where  

 

     m = A*∑wisi
2/d2 

 

A=4 for α=0.05, A=7.08 for α=0.01, d: the permitted error, i.e., the half-width of of confidence interval for 

mean estimation at confidence level α, and si: the standard deviation for the i-th sub-population, which has 

been determined in the first sampling.  

 

3 Simple Random Sampling 

Once the same size is determined, one can implement the simple random sampling (or other advanced 

sampling techniques) to take the sample needed.  

Probability Sampling Principle is a fundamental principle in sampling theory. It can be outlined as follows:  

(1) Define a set of candidate samples Si, i=1,2,…, each candidate sample contains some sampling units 

(subjects);  

(2) Assign a selection probability to each candidate sample;  

(3) With the help of the random number table, select the available sample from the candidate sample set Si, 

i=1,2,…, through selection probability. By selecting a sample according to the above probability sampling 

principles, a suitable sampling theory can always be found to explain and analyze the data collected.  

The Simple Random Sampling is a type of probability sampling and is defined as follows:  

(1) Suppose the statistical population contains N sampling units;  

(2) Select n sampling units (n is the sample size) from the statistical population (total population), and each 

sampling unit has an equal chance of being selected. The Simple Random Sampling is the basis of all random 

sampling techniques. 

   In sampling study, we assume that the sample size and the selection probability of all candidate samples 

are the same respectively. Randomly select one candidate sample from candidate samples and use it as the 

final sample to be taken. 

 

4 Computational Tool: SampSizeCal 

I delveloped a computational tool, SampSizeCal, to harbor more than 120 methods of sample size estimation 

described above. The SampSizeCal  includes both online 

(http://www.iaees.org/publications/journals/nb/articles/2024-14(2)/SampSizeCal.htm) and offline versions, 

and can be used for various computing devices (PCs, iPads, smartphones, etc.), operating systems (Windows, 

Mac, Android, Harmony, etc.) and web browsers (Chrome, Firefox, Sougo, 360, etc.). In this tool, both default 

p-value (in most cases, 0.0001, which is 200 times of the commonly used p-value, 0.05) and the maximum 

p-value (in most cases, 0.005, which is 10 times of the commonly used p-value, 0.05) were greatly enhanced 

Meanwhile, the default statistical power, 80%, was enhanced to 90% in SampSizeCal. These settings will lead 

to the reasonable increase of sample sizes. It is currently the most comprehensive platform-independent 

computational tools for sample sizes, and can be used in experimental sciences such as medicine (clinical 

medicine, experimental zoology, public health, pharmacy, etc.), biology, ecology, agronomy, psychology and 
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engineering technology. 

   Both user manual guide and offline tool can be found at: 

http://www.iaees.org/publications/journals/nb/articles/2024-14(2)/e-suppl/SampSizeCal.rar 

Double-click the offline tool, it will be opened in the default web browser. 
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Fig. 1 Some page profiles in SampSizeCal. 
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5 Discussion and Explanation 

5.1 Parameters Obtaining 

Almost all of the methods for sample sizes require some parameters as standard deviations, differences, 

proportions, margins, etc. All these parameters can be obtained from small-scale pilot studys, past records, 

literature reports and reasonable estimations, etc.  

5.2 Balanced Design 

Some methods and software in the past allowed users to independently choose the distribution ratio of the total 

sample size in each group, resulting in arbitrariness, an unbalanced design, and reduced efficiency and 

credibility. In the present methods, in order to ensure efficiency and credibility, all adopt the balanced design, 

i.e., the total sample size is distributed in the same proportion among each group. 

5.3 Significance Test, Non-inferiority or Superiority Test, and Equivalence Test 

As indicated above, in the statistical hypothesis testing, α is the probability of rejecting the truth, i.e., the 

probability of rejecting the null hypothesis when there is no difference is true, and β is the probability of taking 

the false, i.e., the probability of accepting the null hypothesis when the difference is false. Sample size 

increases with the decrease of α and β. In addition, sample size increases with the decrease of specified 

difference and increase of the standard deviation achieved in pilot study. A small statistical power (1-β) will 

lead to the differences existing in the population cannot be detected, resulting in false negative results. The 

purposes of clinical studies are different, and the sample size estimation methods used are also different (Liang, 

2014). In clinical trials, it is necessary to distinguish between significance tests and interval hypothesis tests. 

The significance test is used to infer whether two samples come from the same population. Its test hypothesis 

is the null hypothesis that the two groups are equal to each other, that is, the samples come from the same 

population. In clinical trials, for the evaluation of the therapeutic effects of two groups, the significance test 

results cannot evaluate the actual size of the difference, let alone whether the difference has practical clinical 

significance. They can only indicate whether the therapeutic effects of the two groups come from different 

populations. In clinical practice, it is often necessary to confirm whether a new drug is no worse than, 

equivalent to or even better than a standard effective drug, so non-inferiority/equivalence/superiority test is 

usually used. Their test hypothesis is an interval, so it can also be called "interval hypothesis" or "interval test". 

Interval hypothesis testing includes equivalence test, non-inferiority test and superiority test. A non-inferiority 

trial refers to a trial whose main research purpose is to show that the response to the experimental drug is not 

worse (non-inferior) than the control drug in a clinical sense. If the treatment difference (efficacy of the test 

drug - efficacy of the control drug) > 0, then the test drug is more effective. If the therapeutic effect of the 

experimental drug is less than 0, then the control drug is more effective; if the therapeutic effect of the 

experimental drug is allowed to be lower than that of the control drug within a certain range, the two drugs are 

still considered to be equally effective. That is, δ means the allowed maximum difference value that the 

therapeutic effect is not judged worse in a clinical sense. Then if the treatment difference >-δ, the test drug is 

non-inferior to the control drug. The δ is called the judgment margin (margin) of the non-inferiority test. 

Non-inferiority trials are usually used to compare a new treatment option with an effective drug or standard 

treatment regimen that is already on the market. Equivalence testing refers to a trial whose main purpose is to 

show that the magnitude of the difference between the responses of two or more treatments is not clinically 

important, usually by showing that the true difference is within the upper and lower bounds of clinically 

acceptable equivalence to confirm the original hypothesis. Only when both sets of hypotheses are established 

at the same time can it be considered equivalent. This is more common in bioequivalence of the same active 

ingredient and clinical equivalence verification when plasma cannot be measured. Superiority trials refer to the 

main research purpose of showing that the response of the drug under study is better than that of the 
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comparison preparation (positive or placebo control). Superiority trials are usually used for newly developed 

experimental drugs that have certain advantages and generally need to be compared with placebos undergo 

superiority trials to compare their true efficacy and safety to determine the benefits and risks of their marketing. 

If there are currently effective drugs that have been proven by superiority trials, they are often compared with 

them, and the efficacy of the drug to be verified is determined to be at least no worse (not inferior) to existing 

effective drugs as the minimum standard for its marketing. In clinical trials, the selection of clinical cutoff 

values should be jointly agreed upon by researchers and statisticians, and is based on the dual considerations of 

statistical reasoning and clinical judgment; if there is no recognized cutoff value, we may refer to Hou et al. 

(2009), and European Medicines Agency (2005), etc. 

5.4 Randomized Clinical Trial (RCT) 

Randomized clinical trial (RCT) is an important trial in clinical trials. According to the design scheme, it is 

often divided into parallel design, crossover design, factorial design and sequential design. Except for the 

sequential design, which does not require prior estimation of sample size, all other designs require estimation 

of sample size (Liang, 2014). (1) Parallel design: The research subjects are randomly assigned to two groups 

(or groups) and receive different treatments respectively. The two groups start the research at the same time 

and analyze and compare the research results at the same time. Double-blind randomized controlled trials with 

parallel designs are the gold standard for clinical trials. (2) Crossover design: A method in which four teams 

and two groups of subjects use two different treatment measures, and then the treatment measures are 

exchanged with each other, and finally the results are compared and analyzed. This design is more efficient 

than a parallel design and requires a smaller sample size. However, the intervention effects in the first stage 

may have an impact on the second stage, resulting in legacy effects or other interactive effects, making the 

design and analysis more complex. There are also shortcomings such as a long test period. (3) Factorial design: 

It is to combine the levels of two or more treatment factors and conduct experiments on various possible 

combinations to evaluate the individual effects of different treatments and the interaction of joint applications. 

Factorial design can analyze and deal with interactive factors, but the design and analysis are also more 

complex. (4) Sequential design: It does not specify samples before the test. They are assigned to the 

experimental group or the control group by randomization in order. After each test of one or a pair of subjects, 

analysis is carried out in a timely manner. Once it can be determined, the test can be stopped. The sequential 

design is in line with the reality that clinical patients seek medical treatment one after another. It is more 

suitable for paired comparisons of new drugs and old drugs or new drugs and placebos based on a single 

indicator, saving manpower and material resources. However, it is not suitable for experimental design of 

chronic diseases, multivariables, long-term follow-up, etc.  

5.5 Consecutive Updates 

The computational tool, SampSizeCal, is subject to consecutive updates in the future. Any constructive 

suggestions, corrections and supplements are encouraged. The possible updates can be found at:  

http://www.iaees.org/publications/journals/nb/articles/2024-14(2)/5-Zhang-Abstract.asp 
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